Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 16 (1925)

Heft: 7

Artikel: Vereinfachte harmonische Analyse periodischer Kurven

Autor: Kopeliowitch, J.

DOI: https://doi.org/10.5169/seals-1057289

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 29.01.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Voyons maintenant quels résultats nous avons obtenus avec la tarification multiple: à Neuchâtel, le nombre des compteurs de ce genre n'est pas encore assez développé pour tirer des conclusions précises, cependant nous pouvons, aujourd'hui

déjà, apprécier les bons effets de ce système rationnel de vente de

l'énergie électrique.

Le compte de consommation des abonnés est très facile à établir, ce qui nous a permis de diminuer de moitié le nombre des employés occupés à l'établissement des factures. Les recettes de vente de courant éclairage et chauffage ont été en augmentant, voici les chiffres:

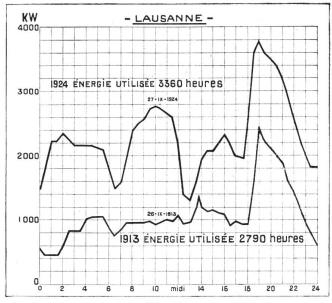
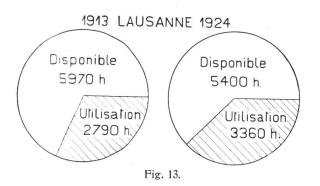



Fig. 12.

La courbe de consommation s'est passablement améliorée, vous avez sous les yeux les courbes de débit maximum de 1913 et celles, à la même saison, de 1924 (voir fig. 10 et 11). Nous remar-

quons une sensible amélioration; en 1913 le nombre d'heures d'utilisation était de 2800, en 1924 le nombre a passé à 3980.

La courbe de consommation de la ville de Lausanne est aussi significative. En 1913 le nombre d'heures d'utilisation était de 2790 tandis qu'il était de 3360 en 1924 (voir fig. 12 et 13).

Messieurs.

Je ne veux pas allonger, j'ai déjà retenu votre attention bien longtemps,

je reste à la disposition de ceux que cette tarification intéresse pour leur donner, en dehors de cette séance, tous les renseignements que je pourrai.

Vereinfachte harmonische Analyse periodischer Kurven.

Von Dr. J. Kopeliowitch, Baden.

Mit zunehmender Bedeutung der Analyse der Spannungskurven in Wechselstromanlagen hat man sich immer öfter mit dieser Aufgabe zu beschäftigen. Der Verfasser fasst kurz die Schwierigkeiten bezw. Nachteile zusammen, welche verschiedene bekannte Methoden der harmonischen Analyse haben und gibt ein vereinfachtes graphisches Verfahren an, welches bei öfteren Analysen grosse Zeitersparnis zu erreichen erlaubt.

Avec l'importance croissante de la forme de l'onde dans les installations à courant alternatif, le problème de l'analyse harmonique des courbes périodiques se présente de plus en plus fréquemment. L'auteur résume les difficultés et les inconvénients de diverses méthodes connues, et indique un procédé graphique simplifié, qui permet une économie notable de temps quand il s'agit d'analyses souvent répétées. Ce pro-

Die Methode besteht in der Verwendung von Formularen, die die Formeln und vereinigten Koeffizienten der harmonischen Zerlegung nach Runge enthalten. Die Anordnung dieser Formulare ist so getroffen, dass man in einer sehr einfachen Weise alle Ordinatensummierungen durchführen kann. Die Anzahl der auszuführenden Produkte ist durch zweckmässige Vereinigung der Koeffizienten auf ein Minimum reduziert. In den Formularen braucht man nur die ausgerechneten Grössen einzuschreiben und ihre übersichtliche Anordnung ermöglicht eine rasche Kontrolle der Resultate.

cédé repose sur l'emploi de formulaires, contenant les formules et les coefficients groupés selon la méthode de Runge. La disposition choisie permet d'effectuer très simplement toutes les sommes et différences d'ordonnées. Le nombre de produits à opérer est réduit au minimum par le groupement favorable des coefficients. Il suffit d'introduire les grandeurs calculées dans les formulaires préparés à l'avance; leur disposition claire facilité le contrôle rapide des résultats.

I. Einleitung.

Mit der Verbreitung des Anwendungsgebietes des Wechselstromes stösst man immer mehr auf die Aufgabe, die Kurvenform von Strom und Spannung genau zu erforschen. Zur Lösung dieser Aufgabe sind zahlreiche Methoden vorhanden, welche wir in zwei Kategorien unterteilen:

- 1. Indirekte Methoden: Aufnahme der Kurve und nachfolgende mathematische Analyse.
- 2. Direkte Methoden: Experimentelle Analyse.

Die direkten Methoden sind mit bedeutenden Nachteilen verbunden: 1. sie erfordern spezielle Apparate (Analysatoren), die in der Praxis nur selten zur Verfügung stehen; 2. eine rasche und genaue Durchführung der Analyse ist nur bei genügender Erfahrung und Uebung möglich; 3. die Genauigkeit des Verfahrens hängt vom System der gewählten Apparate ab.

Die Aufnahme der Kurve mittelst eines Oszillographen ist in den letzten Jahren zu einer täglichen Erscheinung geworden. Die zahlreichen Untersuchungen, die mit Hilfe dieses Apparates durchgeführt werden, sowie seine Empfindlichkeit und relativ einfache Handhabung haben ihn zu einem für ein Laboratorium oder Versuchslokal unentbehrlichen Instrument gemacht. Durch seine allgemeine Verbreitung ist der erste Teil, der unter 1. notierten Methoden sehr vereinfacht worden, und nur die mathematische Analyse der aufgenommenen Kurve bietet in der Praxis, besonders im Falle oft wiederholter Analysen, gewisse Schwierigkeiten.

Eine genaue Aufstellung der Gleichung einer graphisch gegebenen periodischen Kurve, oder mit andern Worten, ihre Zerlegung in die Komponenten höherer Frequenzen (die höheren Harmonischen) ist in der Tat sehr zeitraubend und darum in der Praxis fast undurchführbar. Für eine annähernde Berechnung der Amplituden der höheren Harmonischen wurden eine Anzahl von Methoden angegeben¹), die mehr oder weniger lange Rechnungen brauchen. Eine Zeitersparnis kann nur durch eine Schablonisierung dieser Rechnungen erreicht werden. Die harmonische Analyse mittelst der Hermannschen Schablonenmethode²) erfordert, trotz ihrer vielen Vorteile, eine mühsame und wiederholte Summierung der gleichen Zahlen. Es sind hauptsächlich die Multiplikationen, die sich bequem anordnen lassen. Diese aber können mit Hilfe eines Rechenschiebers durchgeführt werden, während man die Summierungen auf dem Papier machen muss.

Die im folgenden geschilderte Methode (vereinfachte Methode von Runge, siehe E.T.Z. 1905) und die dazugehörigen Formulare erlauben eine rasche und genügend

¹⁾ Vergleich: Dr. E. Orlich: Aufnahme und Analyse von Wechselstromkurven, Braunschweig 1906, Seite 112, Literaturübersicht.

A. Roth: Eine neue Methode der direkten Analyse von Wechselstromkurven, Diss.,

J. Springer, Berlin 1917, Seite 44, Quellenangabe.

2) L. Hermann: Schablonen zur harmonischen Analyse, Bd. 47, Arch. für gesamte Physiologie 1890, Seite 45, auch Zeitschrift für angew. Mathematik u. Mechanik, Band 2, Heft 2, Seite 153, 1922.

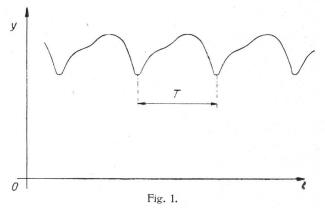
genaue Analyse³). Im allgemeinen Falle gibt sie die 11 ersten (geraden und ungeraden) Harmonischen und die dazu erforderlichen Rechnungen sind kaum komplizierter als die einer vollständig symmetrischen Kurve (Fall 1) oder einer Kurve, welche symmetrisch gegen die Zeitachse ist (Fall 2). Dies ist durch die Anwendung der Formulare erreicht, welche folgende Vorteile bieten:

1. fast alle Summierungen werden bequem und auf einmal durchgeführt,

2. durch die vorgedruckten Formeln braucht man nur die ausgerechneten Grössen zu schreiben, und

3. sie ermöglichen eine rasche Kontrolle der Rechnungen.

Um die zwei erwähnten Spezialfälle vor Beginn der Rechnung zu erkennen, wird die unter Abschnitt III angeführte graphische Zusammenstellung, welche den Einfluss der einzelnen Harmonischen auf die Sinuskurve wiedergibt, zu Hilfe genommen.


Wegen Zeitersparnis und den Vereinfachungen, die man mit dieser kombinierten Methode erreichen kann, wurde sie in den Bureaux der A.-G. Brown, Boveri & Cie. eingeführt.

II. Allgemeines über die periodischen Kurven und ihre mathematische Darstellung.

Unter einer *periodischen Kurve* ganz allgemeiner Form versteht man eine Kurve, deren Ordinaten sich beliebig ändern und nur die einzige Bedingung erfüllen, dass

sie nach Ablauf einer ganz bestimmten Zeit T (die Periodendauer) wieder die gleichen Werte annehmen. Die gleichen Ordinaten erscheinen deshalb in der Kurve in æquidistanten Punkten wiederholt. (Im folgenden bezeichnen wir die Abszissenachse als Zeitachse und alle dazugehörigen Werte durch Buchstaben t und T.) Eine solche Kurve ist z. B. in Fig. 1 dargestellt (Spannungskurve eines Gleichrichters).

Eine reine Wechselkurve beliebiger Form besitzt noch die folgende Eigenschaft, dass innerhalb einer Periode die Gesamtfläche, die oberhalb der

Spannungskurve eines Gleichrichters.

Zeitachse liegt, d. h. die positive Fläche derjenigen gleich ist, die sich unterhalb dieser Achse befindet. Diese letztere betrachten wir als negative Fläche. Die algebraische Summe der beiden Flächen ist folglich für eine reine Wechselkurve Null. In der Wechselstromtechnik kommen gerade solche Kurven am häufigsten vor (siehe Fig. $2 \div 13$).

Die mathematische Darstellung periodischer Kurven beliebiger Form beruht auf

dem Satz von Fourier, welcher lautet:

"Jede periodische Kurve (reine Wechselkurve) kann durch eine Ueberlagerung von einer Sinuskurve gleicher Frequenz – Grundharmonische, Grundwelle – mit einer Reihe von Sinuskurven – höhere Harmonische, Oberwellen – deren Frequenzen 2, 3, 4, ... mal so gross sind, wie die der Grundwelle, erzeugt werden. Die Zahl der Oberwellen braucht nicht endlich zu sein und der Phase nach können sie vollständig beliebig gegeneinander liegen".

³⁾ Seit der Ausarbeitung dieser Studie erschien in der Zeitschrift V. D. I. (Prof. Tomälen: Zur Analyse periodischer Kurven, Z. V. D. I., Bd. 67, Seite 1104, 1923) eine Methode, die das Verfahren von Runge und Hermann vereinigt. Sie ermöglicht, den Gebrauch der Schablonen zu vermeiden, indem sie die Anzahl der Multiplikationen herabsetzt: wie bei Runge fängt man mit der Summierung der Ordinaten an und nur die Endsummen werden mit den Cosinussen der entsprechenden Winkel multipliziert. Man erhält die gesuchten Amplituden der Harmonischen, indem man die Produkte nach den Formeln addiert und durch 12 dividiert. Diese Methode bietet im Vergleich zu den Methoden von Runge und von Hermann bedeutende Vorteile. Es lassen sich aber eine weitere Vereinfachung und Zeitersparnis erreichen.

Die Gleichung einer Harmonischen lässt sich schreiben:

$$y_{k} = r_{k} \sin \left(k \omega t + \psi_{k}\right) \tag{a}$$

oder: $y_k = r_k \cos \psi_k \sin k\omega t + r_k \sin \psi_k \cos k\omega t = a_k \sin k\omega t + b_k \cos k\omega t$, (b)

wobei $\omega = \frac{2\pi}{T} = 2\pi f$ Kreisfrequenz oder Winkelgeschwindigkeit ist, $k = 1, 2, 3, \ldots$ die Ordnung und ψ_k die Phase der Oberwelle bezeichnen.

Jede Harmonische beliebiger Phase kann folglich durch eine Summe von einer Sinus- und einer Cosinuskurve, deren Phasenwinkel Null sind, ersetzt werden. Die Amplituden dieser beiden Kurven sind durch folgende Beziehungen bestimmt:

$$a_{\rm k} = r_{\rm k} \cos \psi_{\rm k}$$
 , $b_{\rm k} = r_{\rm k} \sin \psi_{\rm k}$, (c)

$$r_{\rm k}=\sqrt{a_{\rm k}^2+b_{\rm k}^2}\;, \quad {
m tg}\; \psi_{\rm k}=rac{b_{
m k}}{a_{
m k}}\;, \qquad ({
m d})$$

wobei bei der Ermittlung von Phasenwinkel ψ_k die Vorzeichen von a_k und b_k in Betracht fallen.

Dem Fourierschen Satze zufolge lautet die Gleichung einer allgemeinen periodischen Kurve:

$$y = b_0 + r_1 \sin(\omega t + \psi_1) + r_2 \sin(2\omega t + \psi_2) + \dots + r_k \sin(k\omega t + \psi_k) + \dots$$
 (e) oder, umgeformt mit Hilfe der Formel (b):

$$y = \begin{cases} a_1 \sin \omega t + a_2 \sin 2\omega t + \dots + a_k \sin k\omega t + \dots \\ + b_0 + b_1 \cos \omega t + b_2 \cos 2\omega t + \dots + b_k \cos k\omega t + \dots \end{cases}$$
 (f)

Das konstante Glied b_0 stellt eine Verschiebung der Zeitachse dar, die nötig ist, um aus einer allgemeinen periodischen Kurve eine reine Wechselkurve zu bekommen.

Für eine genaue Berechnung der Amplituden a_k und b_k für eine gegebene Kurve gelten die von Fourier angegebenen Formeln:

$$b_0 = \frac{1}{T} \int_0^T y \, dt \, , \quad a_k = \frac{2}{T} \int_0^T y \sin k\omega t \, dt \, , \quad b_k = \frac{2}{T} \int_0^T y \cos k\omega t \, dt \, , \quad (g)$$

in der Praxis aber begnügt man sich mit einer annähernden Bestimmung dieser Koeffizienten. Die dazu nötigen Beziehungen lassen sich aus den obigen leicht ableiten, indem man eine Periode in 2n gleiche Teile unterteilt und die entsprechenden Ordinaten $y_0, y_1, y_2, \ldots, y_{2n-1}$ ermittelt. Mit diesen Ordinaten wird eine annähernde Integration durch die Anwendung untenstehender Formeln durchgeführt:

$$b_0 = \frac{1}{2n} \sum_{l=0}^{l=2n-1} y_l, \quad a_k = \frac{2}{2n} \sum_{l=0}^{l=2n-1} y_l \sin \frac{k \, l \, \pi}{n}, \quad b_k = \frac{2}{2n} \sum_{l=0}^{l=2n-1} y_l \cos \frac{k \, l \, \pi}{n}. \quad (h)$$

Je grösser die gewählte Zahl n ist, desto genauer ist das Resultat, denn für $n=\infty$ gehen diese Formeln (h) in die Integralformeln (g) über. Auch die Methode, die hier erläutert wird, verwendet die vorstehenden Formeln; diese nehmen aber durch die Wahl der Teilungszahl 2n und nach der Bestimmung der Koeffizienten $\sin\frac{k\,l\,\pi}{n}$ und $\cos\frac{k\,l\,\pi}{n}$ eine viel einfachere Gestalt an.

III. Einfluss der einzelnen Oberwellen auf eine Sinuskurve.

Die Form der in der Praxis vorkommenden periodischen Kurven weicht fast immer mehr oder weniger von der Form einer Sinuskurve ab. Diese Abweichung ist durch die höheren Harmonischen verursacht, deren Einfluss aus folgender Zusammenstellung deutlich hervorgeht (siehe Fig. $2 \div 13$).

Negative Harmonische Positive Harmonische a, sinut + a3 sin 3 wt a, sinut - a3 sin 3 wt Fig. 2 a, sinut + a5 sin 5 wt a, sinut-a, sin swt Fig. 4 2. a, sinut + b3 cos 3 wt 2! a, sin wt - b3 cos 3 wt Fig.6 Fig. 7 2" a sinut + 65 cos 5 wt 2.11 a, sinut-b, cos swt Fig. 8 Fig.9 3. a, sinut + a sin 2 wt a, sin wt - a, sin 4 wt 31 3." a, sinwt-b, cos 4 wt a, sinut + b, cos ewt

Charakteristische Eigenschaften der zusammengesetzten Kurven.

Fall 1 (Fig. 2 bis 5).

Ueberlagerung von ungeraden Sinus-Harmonischen.

Halbwellen: Gleich untereinander. Symmetrisch gegen Zeitachse.

Punkt T/2 =Symmetriezentrum.

Viertelwellen: Gleich untereinander. Symmetrisch gegen Vertikale

durch T/4.

Fall 2 (Fig. 6 bis 9).

Ueberlagerung von ungeraden Cosinus-Harmonischen.

Halbwellen: Gleich untereinander. Symmetrisch gegen Zeitachse. Viertelwellen: Ungleich. Unsymmetrisch gegen Vertikale durch T/4.

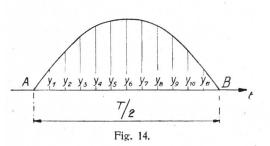
Fall 3 (Fig. 10 bis 13).

Ueberlagerung von geraden Sinus-Harmonischen.

Halbwellen: Gleich. Unsymmetrisch gegen Zeitachse. Punkt T/2

= Symmetriezentrum.

Viertelwellen: Ungleich. Unsymmetrisch gegen Vertikale durch T/4.


Ueberlagerung von geraden Cosinus-Harmonischen.

Halbwellen: Ungleich. Unsymmetrisch gegen Zeitachse.

Viertelwellen: Ungleich. Symmetrisch gegen Vertikale durch T/4.

IV. Vereinfachte harmonische Analyse.

Fall 1. Vollständig symmetrische Kurven. Eine vollständig symmetrische Kurve ist eine Kurve, deren ganze Welle durch eine zweckmässige Wiederholung einer Viertelwelle aufgezeichnet werden kann (Fig.

Zerlegung einer symmetrischen Kurve.

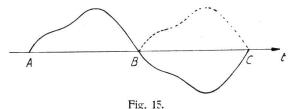
Viertelwelle aufgezeichnet werden kann (Fig. 2÷5). Solche Kurven können z. B. als Spannungskurven eines leerlaufenden Wechselstromgenerators vorkommen.

In diesem Falle sind alle geraden Sinusglieder und alle Cosinusglieder der Fourierschen Reihe Null und es empfiehlt sich, zur Ermittlung der ersten 11 ungeraden Oberwellen folgendes vereinfachtes Verfahren zu verwenden:

Man teile die Strecke AB=T/2 in 12 gleiche Teile. Es seien $y_1, y_2, y_3, \ldots y_{11}$ die entsprechenden Ordinaten (Fig. 14). Man bilde das Schema

Die Amplituden der ersten 11 Harmonischen sind dann durch folgende Beziehungen bestimmt:

$$\begin{vmatrix}
100 & a_1 \\
100 & a_{11}
\end{vmatrix} = [4,314 \, s_1 + 11,79 \, s_3 + 16,1 \, s_5] \pm [8,33 \, (s_2 + s_6) + 14,43 \, s_4] \\
\begin{vmatrix}
100 & a_3 \\
100 & a_9
\end{vmatrix} = 11,79 \, (s_1 + s_3 - s_5) \pm 8,33 \, (2 \, s_2 - s_6) \\
\begin{vmatrix}
100 & a_5 \\
100 & a_7
\end{vmatrix} = [16,1 \, s_1 - 11,79 \, s_3 + 4,314 \, s_5] \pm [8,33 \, (s_2 + s_6) - 14,43 \, s_4]$$
(i)


wobei das obere Vorzeichen für die obere, das untere für die untere Amplitude gilt und die Gleichung der Kurve lautet:

$$y = a_1 \sin \omega t + a_3 \sin 3\omega t + \dots + a_{11} \sin 11\omega t.$$

Fall 2. Die Kurve verläuft in den beiden Periodenhälften symmetrisch zur Zeitachse. Die Verzerrung der Kurve ist in diesem Falle in beiden Periodenhälften

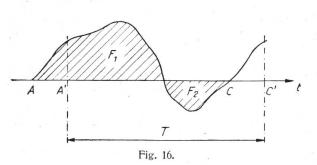
dieselbe (Fig. $6 \div 9$). Die zweite Halbwelle kann aus der ersten durch eine Verschiebung dieser letzteren um T/2 und Umklappung um die Zeitachse um 180° erhalten werden (Fig. 15).

Alle geraden Glieder der Fourierschen Reihe sind unter dieser Voraussetzung Null und zur Ermittlung der Harmonischen genügt es auch in diesem Falle, nur eine Halbwelle zu zerlegen. Die Zerlegung erfolgt

Periodische Kurve, symmetrisch zur Zeitachse.

genau wie im Fall 1. Mit den Ordinaten $y_1, y_2, \ldots y_{11}$ bildet man die Zusammenstellung:

wobei s_k und d_k (k = 1, 2, ... 6) die Summen und Differenzen der untereinander stehenden Glieder bezeichnen.


Mit diesen Grössen sind die Amplituden $a_1, a_3, \ldots a_{11}$ der Sinus-Harmonischen nach den Formeln (i) und die Amplituden $b_1, b_3, \ldots b_{11}$ der Cosinus-Harmonischen nach den untenstehenden Beziehungen zu berechnen:

$$\begin{vmatrix}
100 & b_1 \\
100 & b_{11}
\end{vmatrix} = [8,33 & d_4 + 14,43 & d_2] \pm [16,1 & d_1 + 11,79 & d_3 + 4,314 & d_5] \\
\begin{vmatrix}
100 & b_3 \\
100 & b_9
\end{vmatrix} = -16,67 & d_4 \pm 11,79 & (d_1 - d_3 - d_5) \\
\begin{vmatrix}
100 & b_5 \\
100 & b_7
\end{vmatrix} = [8,33 & d_4 - 14,43 & d_2] \pm [4,314 & d_1 - 11,79 & d_3 + 16,1 & d_5]
\end{vmatrix}$$
(j)

Fall 3. Periodische Kurven ganz allgemeiner Form. Die einzige Bedingung, die die Kurve erfüllen muss, ist diejenige der Periodizität (Fig. 1, 10 ÷ 13, 16); ihrer Form nach kann sie ganz beliebig sein. Die Gleichung einer solchen Kurve

wird im allgemeinen Falle durch die Entwicklung (f) gegeben. Zur Bestimmung der Amplituden $a_1, a_1, a_3, \ldots b_1, b_2, b_3, \ldots$ und des Koeffizienten b_0 muss eine ganze Welle zerlegt werden.

Sind die Flächen der beiden Halbwellen gleich gross, so ist der Koeffizient b_0

Periodische Kurve allgemeiner Form.

Null. Trifft dies nicht zu, so kann man in folgender Weise verfahren: Man unterteilt die Strecke AC oder A'C' (siehe Fig. in Tabelle III), d. h. eine volle Periode, in 24 gleiche Teile und bestimmt die entsprechenden Ordinaten y_0, y_1, y_2, \ldots $y_{23}, (y_0 = y_{24})$, wobei das Vorzeichen der einzelnen Ordinaten durch ihre Richtung festgelegt wird. Die Zeitachse AC kann übrigens ganz beliebig gewählt werden, sie soll nur parallel zu der Nullinie verlaufen. Es gilt dann:

$$b_0 = \frac{1}{24} (y_0 + y_1 + y_2 + \ldots + y_{23})$$
.

Die übrigen Koeffizienten können wie folgt ermittelt werden: Mit den gemessenen Ordinaten führt man nachstehende Operationen aus, die sich am besten nach folgendem Schema durchführen lassen:

Tabelle I.

									2022						rabelle i.
Kurvenordinaten:	y_0 y_0		$egin{array}{c} y_2 \ y_{22} \end{array}$		1000	$egin{array}{c} oldsymbol{y}_5 \ oldsymbol{y}_{19} \end{array}$	32.7	5555						0	
Summen: $x_k = y_k + y_{24-k}$	x_0	x_1	x_2	x_3	x_4	x_5	x_6	x ₇	x_8	x_9	<i>x</i> _{1··}	<i>x</i> ₁₁	x_{12}		
Differenzen: $z_k = y_k - y_{24-k}$	0	$\begin{vmatrix} z_1 \\ z_{11} \end{vmatrix}$	z_2 z_{10}	z_3 z_9	1.5		250	z ₇	z_8	z_9	z ₁₀	z ₁₁	0		
Summen: $s_k = z_k + z_{12-k}$		s_1	s_2	s_3	s_4	s_5	s_6	$x_0 \\ x_{12}$	-	$x_2 \\ x_{10}$		$\begin{vmatrix} x_4 \\ x_8 \end{vmatrix}$	$x_5 x_7$	$x_6 \\ x_6$	
Differenzen: $D_k = z_k - z_{12-k}$		500	$egin{array}{c} D_2 \ D_4 \end{array}$	225	1995	D_5	0	d_0	d_1	d_2	d_3	d_4	d_5	0	Differenzen: $d_k = x_k - x_{12}$.
Summen: $q_{k} = D_{k} + D_{6-k}$		q_1	q_2	q_3				S_0 S_6		S_2 S_4		S_4	S_5	S_6	Summen: $S_k = x_k + \dot{x}_{12}$.
Differenzen: $r_k = D_k - D_{6-k}$	2	r_1	r_2	0				u_0		$\begin{vmatrix} v_2 \\ u_2 \end{vmatrix}$					$v_k = S_k - S_{6-k}$ $u_k = S_k + S_{6-k}$

In dieser Zusammenstellung haben wir mit x_k , s_k , q_k , S_k , u_k die Summen, und mit z_k , D_k , r_k , d_k die Differenzen der untereinander stehenden und mit gleichen Buchstaben bezeichneten Glieder benannt. Mit diesen Bezeichnungen kann man die Formeln wie folgt schreiben:

$$\begin{vmatrix}
100 & a_1 \\
100 & a_{11}
\end{vmatrix} = [2,157 s_1 + 5,9 s_3 + 8,05 s_5] \pm [4,167 (s_2 + s_6) + 7,215 s_4]$$

$$\begin{vmatrix}
100 & a_3 \\
100 & a_9
\end{vmatrix} = 5,9 (s_1 + s_3 - s_5) \pm 4,167 (2 s_2 - s_6)$$

$$\begin{vmatrix}
100 & a_5 \\
100 & a_7
\end{vmatrix} = [8,05 & s_1 - 5,9 & s_3 + 2,157 & s_5] \pm [4,167 & (s_2 + s_6) - 7,215 & s_4] \\
100 & a_2 \\
100 & a_{10}
\end{vmatrix} = 4,167 & (q_1 + q_3) \pm 7,215 & q_2 \\
100 & a_4 \\
100 & a_8
\end{vmatrix} = 7,215 & (r_1 \pm r_2) \\
100 & a_6 = 4,167 & (2 & q_1 - q_3) \\
100 & b_1 \\
100 & b_{11}
\end{vmatrix} = [4,167 & (d_0 + d_4) + 7,215 & d_2] \pm [8,05 & d_1 + 5,9 & d_3 + 2,157 & d_5] \\
100 & b_3 \\
100 & b_3 \\
100 & b_5
\end{vmatrix} = 4,167 & (d_0 + d_4) - 7,215 & d_2] \pm [2,157 & d_1 - 5,9 & d_3 + 8,05 & d_5] \\
100 & b_5 \\
100 & b_7
\end{vmatrix} = [4,167 & (d_0 + d_4) - 7,215 & d_2] \pm [2,157 & d_1 - 5,9 & d_3 + 8,05 & d_5] \\
100 & b_0 = 4,167 & (\frac{u_0 + u_3}{2} + u_1 + u_2) \\
100 & b_2 \\
100 & b_1
\end{vmatrix} = 4,167 & (v_0 + v_2) \pm 7,215 & v_1 \\
100 & b_6 = 4,167 & (v_0 - 2 & v_2)$$

Die Zusammenstellung der Cosinus- und Sinusglieder von gleicher Frequenz und die Bestimmung der entsprechenden Phasenwinkel erfolgt in den beiden letzten Fällen (1) und (2) nach den Formeln (d).

Es ist zu bemerken, dass die Phasenwinkel ψ_k sich auf die Kreisfrequenz der entsprechenden Harmonischen beziehen. Um die analysierte Kurve aus ihren Komponenten wieder aufbauen zu können, soll man die gegenseitige Lage der einzelnen Harmonischen bestimmen. Dies kann wie folgt geschehen: Man bezieht sich auf den Anfangspunkt, d. h. man setzt überall t=0 und man führt alle Phasenwinkel ψ_k zu der Abszissenskala der Grundwelle mit Hilfe der folgenden Beziehungen zurück:

$$t_{0k} = \frac{\psi_k T}{2\pi k}$$

wenn es sich um die Zeit handelt, oder:

$$\psi_{0k} = \frac{\psi_k}{k}$$

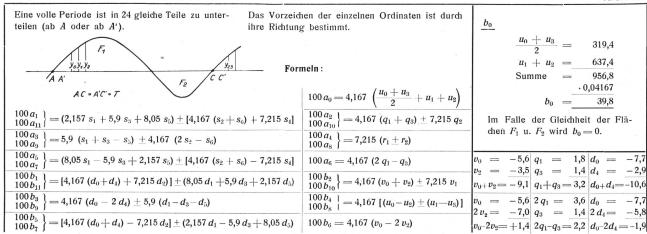
wenn man als Abszisse ein Winkelmass der Grundwelle hat. Die Werte t_{0k} oder ψ_{0k} werden links vom Anfangspunkt aufgetragen und die so erhaltenen Punkte als Ausgangspunkte der Sinuskurven entsprechender Frequenzen genommen.

Die beigefügten Formulare enthalten gleichfalls zwei Zahlenbeispiele, die eine

weitere Erläuterung der beschriebenen Methode überflüssig machen.

Es sei zum Schluss noch bemerkt, dass, falls man keine gedruckten Formulare besitzt, es genügt, nur ein Exemplar vorzubereiten. Die Rechnungen werden dann auf dem Pauspapier durchgeführt, welches man auf das Formular legt, so dass der Vordruck durch das Papier sichtbar ist.

								Tabelle II.	
Eine halbe Periode in 12 glei	che Teile zu unterteilen		y ₁ 3,8	y ₂ 6,3	y ₃ 9,0	y ₁ 11,4	y ₅ 13,0	y ₆ 14,0	
			y ₁₁ 4,6	y ₁₀ 7,1	y_9 9,5	y ₈ 11,7	y ₇ 13,5	y ₆ 14,0	
		$d_{k}=y_{k}-y_{12-k}$	$d_1 - 0.8$	$d_2 - 0.8$	$d_3 - 0,5$	$d_4 - 0,3$	$d_{5} = 0.5$	0	
A / Y1 Y2 Y3 Y4 Y5 Y6 Y7 J	18 Y9 Y10 Y11 B	$s_k = y_k + y_{12-k}$	s ₁ 8,4	s ₂ 13,4	s ₃ 18,5	s ₄ 23,1	s ₅ 26,5	s ₆ 28,0	
T/2	- '		s ₃ 18,5	s ₆ 28,0				$d_1 = -0.8$	
Formeln			$s_1 + s_3 26,9$	$s_2 + s_6 41,4$		$26,8$ d_3	= -0.5 = -0.5		
$\begin{bmatrix} 100 a_1 \\ 100 a_{11} \end{bmatrix} = (4,314 s_1 + 11,79 s_3 + 16,1)$	$(s_5) \pm [8,33 (s_2 + s_6) + 14,43 s_4]$		s ₅ 26,5		$2s_0-s_0=$	$\frac{26,0}{-1.2} \begin{vmatrix} d_5 \\ d_3 + d_3 \end{vmatrix}$	$= \frac{-0.5}{-d_5} = \frac{-1.0}{-1.0}$ $d_1 - (d_3 + c_4)$	= -1,0	
$\begin{bmatrix} 100 a_3 \\ 100 a_9 \end{bmatrix} = 11,79 (s_1 + s_3 - s_5) \pm 8,33$		$s_1 + s_3 - s_5 =$	0,4		202 06		$d_1 - (d_3 + d_3)$	$d_5) = +0,2$	
$\begin{bmatrix} 100 a_5 \\ 100 a_7 \end{bmatrix} = 16,1 s_1 - 11,79 s_3 + 4,314 s_3$		<i>a</i> ₃ u. <i>a</i> ₉			b_3	u. b ₉			
	$1 d_1 + 11,79 d_3 + 4,314 d_5$	11,79 $(s_1 + s_2 + s_3)$ 8,33 $(2 s_2 - s_3)$		4, -10,		6,66 d_4 9 $(d_1 - d_3 - a_4)$	$=$ d_5 $=$	5,00 2,36	
$\begin{bmatrix} 100 b_3 \\ 100 b_9 \end{bmatrix} = -16,66 d_4 \pm 11,79 (d_1 - d_2)$	d_3-d_5	$a_3 = \frac{\text{Sum}}{10}$		0,		= Summe 100		+0,0736	
$\begin{bmatrix} 100 b_5 \\ 100 b_7 \end{bmatrix} = (8,33 d_4 - 14,43 d_2) \pm (4,3)$	$4 d_1 - 11,79 d_3 + 16,1 d_5$	$a_9 = \frac{\text{Diffe}}{10}$	renz 0 =	+ 0,	147 b ₉ =	$= \frac{\text{Differenz}}{100}$	=	+0,0264 	
a ₁ u. a ₁₁	a ₅ u. a ₇	b_1 u.	b ₁₁			b ₅ u. b ₇			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rcl} 16,10 & s_1 & = & 135,0 \\ 4,314 & s_5 & = & 114,5 \end{array}$		8,33 d ₁ 14,43 d ₂	= $-2,5$ $=$ $-11,5$ $=$ -14.0	55	Differe	$nz_1 = +$	9,05	
Summe ₁ = $\frac{123,5}{680,5}$	Summe = 249.5 11,79 s_3 = 218.0		Summe ₁ Differenz ₁			4,314	$d_1 = -$	3,45	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Differenz_1 = 31,5$		$16,1 d_1$ $11,79 d_3$	= -12,8 $=$ -5,9		16,10 a		8,05 11,5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Differenz ₂ = $11,5$		11,79 d ₃ 4,314 d ₅ Summe ₂	= -3.9 $=$ -20.9	6	11,79		5,9	
$a_1 = \frac{\text{Summe}_1 + \text{Summe}_2}{100} = 13,58$	$a_5 = \frac{\text{Diff.}_1 + \text{Diff.}_2}{\text{Diff.}_2} =$	= 0.43 h ₁ =	Summe ₁ +	Summe ₂	- 0.35	b= Diff	$f_{\cdot 1} + Diff_{\cdot 2}$	= 0.0345	
$a_1 = \frac{100}{100} = \frac{13,58}{100}$ $a_{11} = \frac{\text{Summe}_1 - \text{Summe}_2}{100} = \frac{0,03}{0,03}$	$a_5 = -rac{ ext{Diff}_{.1} + ext{Diff}_{.2}}{100} = a_7 = -rac{ ext{Diff}_{.1} - ext{Diff}_{.2}}{100} =$	02		0 - Summe ₂		$b_5 = \frac{\text{Diff.}_1 + \text{Diff.}_2}{100} = \frac{0,0345}{0,1465}$ $b_7 = \frac{\text{Diff.}_1 - \text{Diff.}_2}{100} = \frac{0,1465}{0,1465}$			
100 = 0,00	100		10	0		07 —	100		


k	1	3	5	7	9	11
a _k ²	184,0	0,0028	0,1850	0,0040	0,0217	0,0009
$b_{\mathbf{k}}^{2}$	0,122	0,0054	0,0012	0,0215	0,0007	0,0048
$a_k^2 + b_k^2 = r_k^2$	184,122	0,0082	0,1862	0,0255	0,0224	0,0057
. r _k	13,58	0,0905	0,43	0,16	0,15	0,075
$tg \ \psi_{\mathbf{k}} = \frac{b_{\mathbf{k}}}{a_{\mathbf{k}}}$	-0,0258	-1,390	+ 0,0803	+ 0,736	+ 0,1795	+ 23
ψ_{k}	1029'	540 164	40 35'	360 204	100 104	870 311
ψ_{k}	358035	1250 434	40 35'	360 204	100 104	870311
$100 \frac{r_k}{r_1}^*$	100,0	0,666	3,17	1,18	1,102	0,55

- *) Prozentuale Abweichung von der Sinuskurve. Maximale Abweichung ist bei r_5 und beträgt 3,17~0/0.
- NB. 1. Für Fall 1 (s. Seite 999), d. h. für eine vollständig symmetrische Kurve sind d_k ebenso wie b_k gleich Null.

 Es werden nur a_k ausgerechnet.
 - 2. Bei der Bestimmung der Phasenverschiebungen $\psi_{\mathbf{k}}$ muss das Vorzeichen von $b_{\mathbf{k}}$ und $a_{\mathbf{k}}$ in Betracht gezogen werden.

Formular für die Zerlegung einer allgemein periodischen Kurve in 11 Harmonische. Die Kurve enthält gerade und ungerade Harmonische (Fall 3, siehe Seite 415).

Tabelle III.

420

													Tabelle III (F	fortsetzung).
y ₀ 37,2	y_1 38,1	y_2 39,0	y ₃ 39,45	y ₄ 39,90	y ₅ 40,2	y ₆ 40,70	y ₇ 40,85	y ₈ 41,05	y ₉ 41,1	y_{10} 4	41,05	y_{11} 41,1	y_{12} 41,05	
<i>y</i> ₀ 37,2	y_{23} 36,5	y ₂₂ 36,7	y_{21} 38,60	y ₂₀ 39,25	y ₁₉ 39,9	y ₁₈ 40,35	y ₁₇ 40,85	y ₁₆ 41,00	y_{15} 40,95	y_{14} 4	40,95	y_{13} 41,0	y_{12} 41,05	
x_0 74,4	x_1 74,6	x_2 75,7	x ₃ 78,05	x_4 79,15	x ₅ 80,1	x ₆ 81,05	x ₇ 81,70	x ₈ 82,05	x ₉ 82,05	x ₁₀ 8	82,0	x ₁₁ 82,1	x ₁₂ 82,1	$oldsymbol{x_{k}} = oldsymbol{y_{k}} + oldsymbol{y_{24-k}}$
0	z ₁ 1,6	z ₂ 2,3	z ₃ 0,85	z ₄ 0,65	z_5 0,3	z ₆ 0,35	z ₇ 0	z ₈ 0,05	z ₉ 0,15	z ₁₀	0,1	z_{11} 0,1	0	$z_{k} = y_{k} - y_{24-k}$
	z_{11} 0,1	z ₁₀ 0,1	z ₉ 0,15	z ₈ 0,05	z ₇ 0	z ₆ 0,35	Bei der A	Addition de	r Ordinater	ı y _k w	ird ih	r Vorzeich	en in Betra	cht gezogen.
$s_{k} = z_{k} + z_{12-k}$	s ₁ 1,7	s ₂ 2,4	s ₃ 1,0	s ₄ 0,7	s ₅ 0,3	s ₆ 0,7	x_0 74,4	x_1 74,6	x_2 75,7	x ₃ 7	78,05	x ₄ 79,15	x ₅ 80,1	x ₆ 81,05
$D_{k} = z_{k} - z_{12-k}$	D_1 1,5	D_2 2,2	D_3 0,7	D ₄ 0,6	D ₅ 0,3	0	x_{12} 82,1	x ₁₁ 82,1	$x_{:0}$ 82,0	x9 8	82,05	x ₈ 82,05	x ₇ 81,7	x ₆ 81,05
	D_5 0,3	D ₄ 0,6	D_3 0,7	*					$d_2 - 6,3$					0
$q_{\rm k} = D_{\rm k} + D_{\rm 6-k}$	q_1 1,8	q_2 2,8	q ₃ 1,4	s_1	- 1 7 S _k =	$=x_{k}+x_{12-k}$	S ₀ 156,5	S ₁ 156,7	S ₂ 157,7	S ₃ 1	160,1	S ₄ 161,2	S ₅ 161,8	S ₆ 162,1
$r_{\rm k} = D_{\rm k} - D_{\rm 6-k}$	r ₁ 1,2	r ₂ 1,6	= 0	s_3	= 1,0		S ₆ 162,1	S ₅ 161,8	S ₄ 161,2	S ₃ 1	160,1			
									$v_2 - 3,5$			d ₃ =	_ 40	= -7,5
_	= 4,8	S ₂		s_5	$=0,3$ u_k	$=S_k+S_{6-k}$	u ₀ 318,6	<i>u</i> ₁ 318,5	u ₂ 318,9	u ₃ 3	320,2	d ₅ =	= $-1,6$	
		$s_6 \\ s_2 + s_6$		$s_1 + s_3 - s_5$	= 2,4		u ₂ 318,9					$d_3 + d_5$	= -5,6	
2 02 00	-,-	2 1 20	5,1		•		u_0 - u_2 -0,3	$u_1-u_3-1,7$				d_1 – ($d_3 + d_5$)	= -1,9
a ₁ u. a ₁₁			a ₅ u.	a ₇			b ₁ u. b ₁₁				b ₅	u. <i>b</i> ₇		
5,900	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5,90			= 13,6 $= 0,6$				= -44,2 $= -45,4$	_		Diffe	$renz_1 = +$	- 1,2
	$\begin{array}{ccc} 0 & s_5 & = & \\ me_1 & = & 1 \end{array}$				= 14,3 $= 5,9$		Sum Diffe		= -89,6 = $+1,2$		-	0.157		16.0
4.167 ($(s_2 + s_6) =$	= 12.90			$z_1 = -\frac{7}{8,4}$		l	$0 \ d_1 =$	-60,3	5	-		$egin{array}{ll} d_1 &= - \ d_5 &= - \end{array}$	
7,215	s ₄ =	= 5,05	-				5,900	$d_{1} = 0$ $d_{3} = 0$ $d_{5} = 0$	-23,6 - 3,4				$d_3 = -$	
Summe Differe		= 18,00 = 7,80		Differen	$z_2 = 7,8$	30	,	$me_2 =$	-87,4	-			$renz_2 = -$	
$a_1 = \frac{\operatorname{Sumn}}{}$	ne ₁ + Sum 100	$me_2 = 0$	$a_5 = a_5 = a_5$	$= \frac{\text{Diff.}_1 + 10}{10}$	- Diff. ₂	+0,162	$b_1 = \frac{Sui}{}$	mme ₁ + Su	ımme ₂ =	1,77	b	$_{5}$ $=$ $ \frac{\mathrm{Diff}}{}$	$\frac{1}{100} + \text{Diff.}_2$	
$a_{11} = \frac{\text{Sumn}}{}$	ne ₁ - Sum 100	=-0,0												=+0,067
														120

										Tabelle III (Fo	ortsetzung).
a_3 u. a_9 $5,9 (s_1 + s_3)$ $4,167 (2 s_2)$ $a_3 = \frac{\text{Sum}}{10}$	$= \frac{s_6}{0} = \frac{s_6}{0}$	14,2 17,1 0,313	$5,90 \ (d_1 - Sun $			Summe Differenz $a_4 = \frac{7,215}{3}$	5 Summe =	1,2 1,6 2,8 - 0,4 0,202		= Summe =	- 0,3 - 1,7 - 2,0 1,4 - 0,084
$a_9 = \frac{\text{Diffe}}{10}$	$\frac{\text{renz}}{0} =$	- 0,029	$b_9 = \frac{\text{Diffe}}{10}$	erenz 00 =	+ 0,033	$a_8 = \frac{7,2}{}$	$\frac{15 \text{ Diff.}}{100} =$	0,029	$b_8 = \frac{4,10}{2}$	$\frac{67 \text{ Diff.}}{100} =$	- 0,058
a ₂ u. a ₁₀			b ₂ u. b ₁₀			a_6			<i>b</i> ₆		
$a_{1}67 (q_{1} + 4,167 (q_{1} + 4,$	= me = =	13,4 20,10 0,335 - 0,067	$4,167 (v_0 - 1)$ $7,215 v_1$ $b_2 = \frac{\text{Sun}}{10}$ $b_{10} = \frac{\text{Diffe}}{10}$	= = = = = = = = = = = = = = = = = = =	- 38,0 - 36,8 - 0,748 - 0,012	$a_6 = \frac{4,167}{2}$	$\frac{7 (2 q_1 - q_3)}{100} = \frac{0,092}{100}$	=	$b_6 = \frac{4,167}{}$	$\frac{(v_0 - 2 v_2)}{100}$ $0,058$	
k =	1	2	3	4	5	6	7	8	9	10	11
a_{k}^2	0,09	0,112	0,0980	0,041	0,0264	0,0085	0,000036	0,00084	0,00087	0,0045	0,0036
$b_{\rm k}^2$	3,14	0,560	0,0365	0,007	0,0019	0,0034	0,004500	0,00342	0,00108	0,00014	0,0005
$a_k^2 + b_k^2 = r_k^2$	3,23	0,672	0,1345	0,048	0,0283	0,0119	0,004536	0,00426	0,00195	0,0046	0,0041
r _k	1,8	0,82	0,366	0,219	0,168	0,109	0,067	0,065	0,044	0,068	0,064
$tg \ \psi_{\mathbf{k}} = \frac{b_{\mathbf{k}}}{a_{\mathbf{k}}}$	-5,9	-2,23	-0,612	-0,414	-0,264	0,6375	11,55	-2,03	-1,11	-0,175	+ 0,378
ψ_{k}	800201	65050'	310304	220304	140 504	320 304	8500'	630 504	4800'	1000'	200 404
ψ_{k}	2790404	2940104	3280304	3370 304	345010'	320 304	8500′	1160 104	13200'	17000′	2000 404
$100 \frac{r_k}{r_1}^*)$	100	45,5	20,3	12,15	9,34	6,05	3,72	3,6	2,44	3,77	3,55

^{*)} Prozentuale Abweichung von der Sinuskurve. Maximale Abweichung ist bei r_2 und beträgt 45,50/0.

NB. Bei der Bestimmung der Phasenverschiebungen ψ_k muss das Vorzeichen von b_k und a_k in Betracht gezogen werden. Definitive Werte von ψ_k sind in die vorletzte Linie der Tabelle eingetragen.