Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 26 (1935)

Heft: 4

Artikel: Der durch Kondensatoren selbsterregte Drehstrom-Asynchrongenerator

Autor: Hafner, H.

DOI: https://doi.org/10.5169/seals-1058437

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 26.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ASSOCIATION SUISSE DES ÉLECTRICIENS

BULLETIN

RÉDACTION:

Secrétariat général de l'Association Suisse des Electriciens et de l'Union de Centrales Suisses d'électricité, Zurich 8 EDITEUR ET ADMINISTRATION:

S. A. Fachschriften-Verlag & Buchdruckerei, Zurich 4 Stauffacherquai 36/40

Reproduction interdite sans l'assentiment de la rédaction et sans indication des sources

XXVIe Année

 N^{o} 4

Vendredi, 15 Février 1935

Der durch Kondensatoren selbsterregte Drehstrom-Asynchrongenerator.

Von H. Hafner, Zürich-Oerlikon*).

621.313.332 : 621.3.013.62

Es werden die Bedingungen zur Erregung des durch Kondensatoren selbsterregten leerlaufenden Asynchrongenerators entwickelt, und aus den Versuchsdaten (Leerlauf und Kurzschluss) des Motors die charakteristischen Leerlaufkurven des Generators abgeleitet. Es wird eine graphische Methode entwickelt, welche gestattet, für konstante Netzfrequenz und einen konstanten Netzleistungsfaktor die äussere Charakteristik (Klemmenspannung — Nutzlastcharakteristik) des Generators abzuleiten. Durch Leerlauf und Belastungsversuche an einem selbsterregten Generator wird die Brauchbarkeit der aus den Versuchsdaten des Motors ermittelten charakteristischen Kurven des Generators gezeigt. Es wird der günstige Einfluss einer hohen Jochsättigung oder einer parallel zum Generator geschalteten gesättigten Eisendrossel auf die Leistungsfähigkeit des Generators und auf den Verlauf der äusseren Charakteristik hervorgehoben. Die Selbsterregung des vom Netz getrennten Asynchronmotors wird besprochen, und mit einem Zahlenbeispiel wird gezeigt, was für ein Wert der Klemmenspannung bei Kompensierung auf cos $\varphi = 1$ im ersten Moment zu erwarten ist.

L'auteur développe les conditions d'excitation en marche à vide d'un alternateur asynchrone à auto-excitation par condensateurs, et déduit des résultats d'essai du moteur (en marche à vide et en court-circuit) les courbes caractéristiques de marche à vide de l'alternateur. Il développe une méthode graphique qui permet d'établir la caractéristique externe (tension aux bornes-charge utile) de l'alternateur à fréquence constante et à facteur de puissance constant du réseau. Des essais à vide et en charge exécutés sur un alternateur à auto-excitation prouvent que les courbes caractéristiques de l'alternateur déduites des résultats d'essai du moteur sont parfaitement utilisables. L'auteur fait ressortir qu'une très forte saturation de la culasse ou qu'une bobine de réactance à noyau de fer saturé branchée en parallèle à l'alternateur exerce une influence favorable sur la puissance de l'alternateur et sur l'allure de sa caractéristique externe. Il étudie ensuite l'auto-excitation du moteur asynchrone séparé du réseau pour montrer finalement par un exemple numérique, à quelle valeur de la tension aux bornes on doit s'attendre au premier instant lorsque la compensation est poussée jusqu'à obtenir un facteur de puissance égal à l'unité.

1. Einleitung.

Ein Asynchrongenerator arbeitet entweder in ein selbständiges oder ein unselbständiges Netz.

Im ersten Fall schickt die als Generator arbeitende Asynchronmaschine die Energie in ein kräftiges Netz, dessen Spannung und Frequenz durch die Regeleinrichtungen grosser Kraftwerke konstant gehalten werden. Das Netz ist für die Asynchronmaschine taktgebend. In diesem einfacheren Falle ist die Arbeitsweise des Asynchrongenerators durch das bekannte Kreisdiagramm der Asynchronmaschine (allgemeiner Transformator) dargestellt. Die Einfachheit der Schaltung und das Wegfallen von Regeleinrichtungen geben die Veranlassung, den unselbständigen Asynchrongenerator zur Ausnützung kleinerer Wasserkräfte und von Abfallenergie zu verwenden. Der mit wachsender Strombelastung zunehmende Blindleistungsverbrauch des Generators muss entweder ganz vom Netz geliefert werden, oder er kann auch durch die beim Betrieb als Motor häufig angewendeten Mittel, wie Parallelschalten von Kondensatoren oder schleifringseitige Erregung mit Hilfe eines Periodenumformers kompensiert werden.

Das unselbständige Netz enthält keinen Taktgeber; es entnimmt seine gesamte Wirkleistung dem Asynchrongenerator, und dazu muss noch eines der erwähnten Mittel zur Erzeugung von Blindleistung angewendet werden, welches den Blindleistungsbedarf von Netz und Generator zu decken hat.

Im folgenden wird nun die Arbeitsweise des in ein unselbständiges Netz arbeitenden Asynchrongenerators für den Fall behandelt, da die Blindleistungsquelle ein zum Generator parallel geschalteter Kondensator ist. Ueber diesen Gegenstand wurden mehrere Arbeiten veröffentlicht ¹). Es fehlt jedoch eine ausgebaute graphische Methode, welche die Betriebseigenschaften des durch Kondensatoren selbsterregten Asynchrongenerators aus den üblichen Messungen an der Asynchronmaschine im Prüffeld in augenfälliger Weise ergibt.

Der Abschnitt 3 der vorliegenden Arbeit, welcher den belasteten Generator graphisch behandelt, möchte diese Lücke ausfüllen. Im Zusammenhang mit der theoretischen Darstellung werden Versuchsresultate mitgeteilt, welche die Brauchbarkeit des Betriebsdiagrammes zeigen. Es soll noch hervorgehoben werden, dass die vorliegende Arbeit nicht

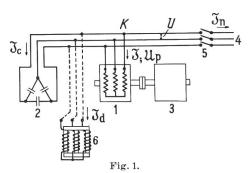
^{*)} Eingang 12. VI. 34.

¹⁾ Literaturangaben im Anhang.

auch den Erregungsvorgang als solchen, sondern nur die Bedingungen des stationären Betriebes und die Betriebseigenschaften untersuchen will.

2. Der Leerlauf.

In Fig. 1 ist die zu untersuchende einfache Schaltung dargestellt. Die Asynchronmaschine ist beispielsweise als Kurzschlussanker-Type gedacht. Die Umdrehungszahl der Antriebsmaschine ist ein-



Schema des durch Kondensatoren selbsterregten Asynchrongenerators,

- Asynchronmaschine mit Kurzschlussanker (KA) als
- Kondensator zur Erregung des Generators.
- Antriebsmaschine.
- Unselbständiges Netz.
- Eisendrosselspule zur Erhöhung der Leistungsfähigkeit (gestrichelt), wird später, im Abschnitt 3 D, behandelt.

stellbar. Das dem Schaltungsschema entsprechende Ersatzschema ist in Fig. 2 abgebildet. Es ist für den mit Kondensatoren kompensierten Asynchronmotor gleich; der Unterschied liegt nur im Vorzeichen des Drehmomentes und in der Unselbständigkeit des Netzes. Die Eisenverluste werden bei der Behandlung des Leerlaufes der Einfachheit

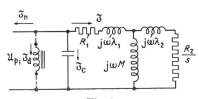


Fig. 2. Ersatzschema zu Fig. 1 mit den grundlegenden Bezeichnungen.

$$\begin{array}{lll} L_1 = \lambda_1 + M & L_2 = \lambda_2 + M & \mathbb{U}_{\mathfrak{p}} = \frac{1}{V^3} \, \mathbb{U} \\ & & \\ \text{Primärer Streukoeff.} & \tau_1 = \frac{\lambda_1}{M} & 3_1 = R_1 + \mathrm{j} \, \omega \, \lambda_1 \\ & & \sigma = 1 - \frac{M^2}{L_1 \cdot L_2} & 3_2 = \frac{R_2}{s} + \mathrm{j} \, \omega \, \lambda_2 \\ & & \\ & & \\ \text{tg} \, \alpha = \frac{R_1}{\omega \, L_1} & 3_3 = \mathrm{j} \, \omega \, M \end{array}$$

(Die Rotorwindungszahl ist auf den Stator reduziert.)

halber vernachlässigt. Im Leerlauf ist durch Oeffnen des Schalters 5 das Netz vom Generator getrennt. Die Summe von Kondensatorstrom \mathfrak{F}_c und Maschinenstrom 3 ist Null:

$$\mathfrak{J} + \mathfrak{J}_c = 0 \tag{1}$$

oder indem man Gl. (1) durch die gemeinsame Klemmenspannung \mathfrak{U}_p dividiert, treten an Stelle der Ströme die entsprechenden Admittanzen n der Maschine und \mathfrak{y}_c des Kondensators

$$\mathfrak{y} + \mathfrak{y}_c = 0
\mathfrak{y} = \frac{\mathfrak{J}_c}{\mathfrak{U}_n}; \quad \mathfrak{y}_c = \frac{\mathfrak{J}_c}{\mathfrak{U}_n} = j \omega C$$
(2)

 $\mathfrak{U}_p = \text{Phasenspannung.}$

 $\mathfrak{U}=$ verkettete Spannung.

 $\omega = 2\pi f$ Kreisfrequenz des Netzes.

C = Kapazität des Kondensators, umgerechnet in die äquivalente Sternschaltung.

Die Grundgleichung in der einfachen Form der Gl. (1), aber noch deutlicher in der Form (2), sagt aus, dass im Leerlaufzustand die Blindleistungsabgabe des Kondensators gleich dem Blindleistungsverbrauch des Generators sein muss. In dem Moment, da Gl. (1) erfüllt ist, genügt zur Anfachung der Selbsterregung des Generators ein Anstoss, z. B. remanenter Magnetismus im Rotor.

Um mit der Grundgleichung (2) Aufschluss über den Leerlaufbetrieb des Generators erhalten zu können, müssen die Admittanzen des Kondensators und der Asynchronmaschine durch die Konstanten des Ersatzschemas Fig. 2 ausgedrückt werden. Die verwendeten Bezeichnungen sind in das Ersatzschema eingetragen; ihre Bedeutung ist dadurch festgelegt. Die übrigen verwendeten Bezeichnungen sind neben dem Schema definiert. Die Gl. (2) geht dann über in Gl. 3

$$0 = j\omega C + j\omega M + \frac{R_2}{s} + j\omega \lambda_2$$
 (3)

$$\frac{1}{(R_1+j\omega\lambda_1) (j\omega M+\frac{R_2}{s}+j\omega\lambda_2)+j\omega M\left(\frac{R_2}{s}+j\omega\lambda_2\right)}$$

Bringt man Gl. (3) auf einen gemeinsamen Nenner und setzt den Zähler gleich Null, so erhält man Gl. 3a

$$\begin{split} &j\omega\,C\bigg[R_1+j\,\omega\,\lambda_1+\bigg(1\,+\frac{\lambda_1}{M}-j\frac{R_1}{\omega\,M}\bigg)\!\bigg(\!\frac{R_2}{s}+j\,\omega\,\lambda_2\bigg)\bigg]\\ &+1+\!\frac{\lambda_2}{M}-j\frac{R_2}{s\,\omega\,M}\!=\!0 \end{split} \eqno(3a)$$

und indem man die Summe aller reellen und die Summe aller mit j behafteten imaginären Glieder für sich gleich Null setzt und beispielsweise nach der Schlüpfung s auflöst, erhält man die beiden

$$s = \frac{R_2}{R_1} \cdot \frac{L_1}{L_2} \left(\frac{1}{\omega^2 L_1 C} - 1 \right) \text{für die imaginären}$$
(4)

$$s = \frac{C R_1 R_2}{L_2 (\omega^2 C L_1 \sigma - 1)} \text{ für die reellen Glieder}$$
 (5)

Durch Gleichsetzen der Ausdrücke rechts eliminiert man die Schlüpfung und erhält die Grundbedingung für den selbsterregten Leerlauf in einer deutlicheren Form:

$$\left(\frac{1}{\omega^2 L_1 C} - 1\right) \left(\omega^2 L_1 \sigma C - 1\right) - \frac{R_1^2 C}{L_1} = 0 \quad (6)$$

Die Gleichung (6) lässt sich noch vereinfachen, wenn man sich auf eine Asynchronmaschine beschränkt, wie sie die Elektrotechnik baut, d. h. eine Maschine, welche sich nicht unzulässig erwärmen soll. Für eine solche Maschine wird das Glied

$$\frac{R_1^2C}{L_1}$$

sehr klein, von der Grössenordnung 1 Promille, und man kann es in Gl. (6) vernachlässigen. Die zwei Lösungen der so vereinfachten Gl. (6) sind:

$$\omega_{\rm I} = \frac{1}{\sqrt{L_{\rm I} C}} \tag{7}$$

$$\omega_{\rm II} = \frac{1}{\sqrt{L_1 \sigma C}} \tag{8}$$

aber es wird sich zeigen, dass nur Gl. (7) in Betracht kommt und praktisch sehr genau die Leerlauffrequenz des selbsterregten Generators angibt. Im durch Kondensatoren selbsterregten Generator ist im Leerlaufzustand diejenige Frequenz vorhanden, welche die durch das Ersatzschema definierte Leerlaufinduktivität L_1 der Maschine mit dem Kondensator in Resonanz bringt.

Der Charakter der Leerlaufinduktivität, d. h. ihre durch die Sättigungserscheinung des Eisens bedingte Stromabhängigkeit ist für den Asynchrongenerator von ausschlaggebender Bedeutung; sie ist wie bei der selbsterregten Gleichstrommaschine die Voraussetzung eines stabilen Betriebes. Die Leerlaufinduktivität setzt sich aus der gemeinsamen Induktivität M und der primären Streuinduktivität λ_1 zusammen. Der erste Teil wird durch das dem Stator und Rotor gemeinsame Hauptfeld gebildet, welches das Rotor- und Statoreisen, die Zähne und den Luftspalt durchsetzt. Da mit zunehmender Luftinduktion die Ampèrewindungen der Eisenteile mehr als proportional steigen, nimmt die Induktivität M, sobald die Eisenteile sich sättigen, ab, und zwar um so rascher, je kleiner der Luftspalt relativ zum Eisenweg des magnetischen Kreises gewählt wird. Die Induktivität λ₁ entspricht zum Teil Kraftlinien, welche nur in Luft verlaufen (Stirnverbindungen), und zum Teil Kraftlinien, welche in magnetischen Kreisen mit relativ grossem Luftspalt liegen. Die Stromabhängigkeit von λ_1 ist für den in Frage kommenden Strombereich unwesentlich. Die Leerlaufinduktivität L_1 kann durch die Messung der Impedanz 30 der synchron laufenden Maschine ermittelt werden. Für die Schlüpfung s = o gilt:

$$\frac{1}{\sqrt{3}} \cdot \mathfrak{U} = \mathfrak{F}_0 (R_1 + j \omega L_1) = \mathfrak{F}_0 \mathfrak{F}_0$$
 (9)

²) Die exakten Lösungen von Gl. (6) lauten:

$$\omega_{1;\,\mathrm{II}}^{\,2} = \frac{1}{2\,L_{1}\,\sigma\,C} \left[1 + \sigma - \frac{R_{1}^{\,2}\,C}{L_{1}} + \sqrt{\left(1 + \sigma - \frac{R_{1}^{\,2}\,C}{L_{1}}\right)^{2} - 4\,\sigma} \,\right]$$

Die vom Leerlauffluss induzierte EMK ist der Grösse nach $I_0 \omega L_1$

$$I_0 \omega L_1 = \frac{1}{\sqrt{3}} U \cdot \cos \alpha \cong U \cdot \frac{1}{\sqrt{3}}$$

$$\operatorname{tg} \alpha = \frac{R_1}{\omega L_2}$$

Der Ausdruck $\frac{U}{\sqrt{3} \cdot \omega}$ istgleich der mittleren Flussverkettung, also ein Mass für den Sättigungsgrad. In Fig. 3 ist für einen vierpoligen Asynchronmotor



Fig. 3. Leerlaufinduktivität.

definiert in Fig. 2 in Abhängigkeit der mittleren Flussverkettung $\frac{U}{\omega}$ bei synchronem Lauf (s=0) Gl. 9ff eines für 500 V gewickelten vierpoligen 10 PS-Asynchronmotors mit Kurzschlussanker.

für 500 Volt und 10 PS der Verlauf der Leerlaufinduktivität in Abhängigkeit von $\frac{U}{\omega}$ aufgezeichnet.

Solange die Maschine ungesättigt ist, hat L_1 seinen höchsten Wert; er ist mit L_{1u} bezeichnet. Mit zunehmendem mittlerem Fluss bleibt L_1 erst konstant und nimmt rasch ab, sobald die Eisenteile sich sättigen. Es ist nicht nötig, die Impedanzmessung zur Bestimmung von L_1 bei exaktem Synchronismus auszuführen. Es genügt, die Maschine als Motor leer laufen zu lassen. Da die Schlüpfung sehr klein ist, sofern die Spannung nicht zu weit unter die Nennspannung gesenkt wird, gilt mit guter Annäherung:

$$L_1 = \frac{U}{\sqrt{3} I_L \omega} \tag{10}$$

I₁ = Leerlaufstrom für den Motor

Je höher die Sättigung getrieben wird, um so mehr weicht, ausgehend von einer sinusförmig verlaufenden Klemmenspannung, der Strom von der Sinusform ab. Die in symbolischer Form aufgeschriebenen Gleichungen setzen jedoch einen sinusförmigen Verlauf von Strom und Spannung voraus, d. h. sie gelten für die Grundwellen von Strom und Spannung. Bei einer exakten Auswertung des Leerlaufversuches müsste die Grundwelle des Leerlaufstromes ermittelt werden. Verzichtet man aber auf ein streng exaktes Vorgehen und rechnet mit den gemessenen Effektivwerten, wie wenn sie die Effektivwerte von Grundwellen wären, so entstehen keine Fehler, die merklich über die gewohnte Ungenauigkeit des Prüffeldes hinausgehen, wie die Versuchsergebnisse zeigen werden.

Mit dem Blindleistungsaustausch des erregten leerlaufenden Generators zwischen Leerlaufinduktivität und Kondensator sind Stromwärmeverluste verbunden. Diese elektrischen Leerlaufverluste des Statorkreises werden durch vom Rotor in den Stator übertragene Energie gedeckt, indem der Rotor übersynchron läuft und auf die Antriebsmaschine ein bremsendes Drehmoment ausübt. Da aber die Leerlaufverluste gegenüber der Nennbelastung gering sind, ist auch die Leerlaufschlüpfung s_o sehr klein, gewöhnlich ein Bruchteil eines Prozentes.

$$s_0 = \frac{R_1 R_2}{-\omega^2 M^2 + L_1 L_2 \left(\omega^2 - \frac{1}{L_1 C}\right)} \cong -\frac{R_1 R_2}{\omega_I^2 M^2} \quad (11)$$

Gl. 11 wird durch Einsetzen der angenäherten Lösung ω_1 in Gl. 5 erhalten. Die Leerlauffrequenz des selbsterregten, leerlaufenden Generators ist also praktisch gleich der der Rotortourenzahl n entsprechenden synchronen Frequenz

$$\omega = \frac{\omega_R}{1 - s_0} \cong \omega_R = \frac{n \ 2 \pi p}{60} = \frac{1}{\sqrt{L_1 C}}$$
 (12)

und sie stellt sich ein, sobald die Resonanzbedingung Gl. 6 erfüllt ist. Treibt man den Generator mit wachsender Drehzahl an, so setzt die Erregung ein im Moment, da die Drehzahl den Wert

$$n_e = \frac{1}{\sqrt{L_{1_u} C}} \cdot \frac{60}{2 \pi p} \text{ U/min}$$
 (12a)

erreicht. Vom Moment der vollzogenen Erregung an bleibt Gl. 12 stets erfüllt. Je weiter die Drehzahl n über den Wert n_e , welcher die Erregung brachte, steigt, um so kleiner muss L_1 werden, d. h. um so stärker sättigt sich die Maschine.

Die zweite Lösung dre Leerlaufkreisfrequenz ω_{II} nach Gl. (8) entspricht der Resonanzbedingung des Kondensators mit der Induktivität σL_1 . Die im Vergleich mit $L_{\scriptscriptstyle 1}$ sehr kleine Induktivität $\sigma\,L_{\scriptscriptstyle 1}$ wird vom Stator aus gemessen, wenn der Rotor mit un-endlich grosser Tourenzahl angetrieben wird (s == $-\infty$). Die Leerlauffrequenz ω_{II} ist also grösser als ω_I und zudem entspricht ihr eine grosse negative Schlüpfung von der Grössenordnung —1. Damit die Frequenz ω_{II} auftreten könnte, müsste der Rotor mit einer viel höhern Drehzahl angetrieben werden als zur Erzeugung von ω_l nötig ist. Wenn man diese Drehzahl einstellen wollte, würde man gezwungenermassen zuerst die Drehzahl n_e erreichen, welche die Erregung auf ω_I mit sich bringt. Die Sättigungserscheinung würde nun dafür sorgen, dass ω_{II} nicht erreichbar ist. Die zweite Lösung kommt also nicht in Betracht.

Mit der Gleichung (12) und der experimentell oder rechnerisch ermittelten $L_1 = f\left(\frac{U}{\omega}\right)$ -Kurve, Fig. 3, kann das Verhalten des leerlaufenden selbsterregten Asynchrongenerators leicht überblickt werden. Man kann z. B. die Kapazität konstant halten und zu jeder Drehzahl mit Gl. (12) die entsprechende Induktivität L_1 ausrechnen, die dazu gehörige Flussverkettung in Fig. 3 ablesen und durch Multiplikation mit $\omega = \frac{n \ 2 \pi \ p}{60}$ die Leerlaufspan-

nung ausrechnen, oder man kann die Drehzahl konstant halten und auf die gleiche Weise die jedem Wert von C entsprechende Leerlaufspannung ermitteln.

In Fig. 4 ist die durch Messung am leerlaufenden Generator ermittelte Kurvenschar U = f(n) für verschiedene Kondensatorwerte aufgezeichnet. Für

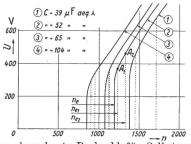


Fig. 4.
Leerlaufender, durch
Kondensatoren selbsterregter Asynchrongenerator

(dieselbe Maschine wie in Fig. 3).

Klemmenspannung in Abhängigkeit der Drehzahl des Rotors für verschiedene Kapazitäten der erregenden Konden-

no berechnete Drehzahl für Selbsterregung.
no 1, no 2 (durch gestrichelte Vertikale gekennzeichnet)
extreme beobachtete Werte, bei welchen die Erregung wirklich einsetzte.

Kurve 2 z. B. wurde eine Kapazität von 52 uF in äquivalenter Sternschaltung eingestellt und die Drehzahl der Maschine allmählich erhöht. Beim theoretischen Wert n_e sollte sie sich erregen. In Wirklichkeit erregt sie sich erst bei einem höheren Wert, und zwar hängt dieser Wert von der Vorgeschichte der Maschine ab, d. h. vom magnetischen Zustand, in welchen der Abschluss eines vorangehenden Versuches die Maschine gebracht hat. Bei 10 aufeinander folgenden Versuchen lag die erregende Drehzahl zwischen den extremen Werten n_{e1} und n_{e2} , gekennzeichnet durch zwei vertikale gestrichelte Linien. Vom Beginn der Erregung bis zu ihrem Abschluss, d. h. bis zum Moment, da die Klemmenspannung den der Leerlaufkurve U = f(n) entsprechenden Wert er-

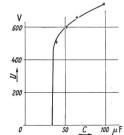


Fig. 5.
Leerlauf des durch Kondensatoren selbsterregten Generators

(dieselbe Maschine wie in Fig. 3 und 4),
Drehzahl n = 1500/min, Klemmenspannung U in Abhängigkeit der Kapazität der Kondensatoren aus den Betriebsdaten berechnet mit Hilfe von Gl. (12) und Kurve $L_1 = f\left(\frac{U}{\omega}\right)$ der Fig. 3 und direkt gemessen (++++).

reicht hat (z. B. A_1 bzw. A_2 , wenn die Erregung mit n_{e1} bzw. n_{e2} eingesetzt hat), verstreicht eine Zeit von einigen Sekunden bis einigen Minuten. Wenn einmal die Maschine sich voll erregt hat, verschwindet die Spannung tatsächlich, sobald die Drehzahl unter den berechneten Wert n_e gesenkt wird. In Fig. 5 ist für dieselbe Maschine die Leerlaufspannung in Abhängigkeit der Kapazität des Kondensators aufgetragen bei konstanter Drehzahl n=1500 U/min, und zwar wurde die Kurve mit Hilfe von

Gl. 12 und der
$$L_1 = f\left(\frac{U}{\omega}\right)$$
-Kurve der Fig. 3 berech-

net. Die eingezeichneten, gemessenen Punkte (Schnittpunkte der experimentell aufgenommenen Kurvenschar Fig. 4 mit der Vertikalen durch den Punkt n = 1500 U/min der Abszisse) geben eine gute Uebereinstimmung.

3. Belastung.

A. Theoretische Grundlagen.

Nachdem sich die Maschine erregt hat, wird der Schalter 5 (siehe Fig. 1) geschlossen. Der Generator gibt in das Netz den Netzstrom \mathfrak{J}_n ab. Es besteht jetzt die Frage, was für eine Klemmenspannung stellt sich ein und wie verändert sie sich mit der Grösse der Belastung und mit dem Netzleistungsfaktor bei konstanter Kapazität des Kondensators und konstanter Netzfrequenz.

Die Grundbedingung des Belastungszustandes lautet, dass die Summe von Generatorstrom \mathfrak{F}_c und Netzstrom \mathfrak{F}_n im Knotenpunkt K Null ist.

$$\mathfrak{F} + \mathfrak{F}_c + \mathfrak{F}_n = 0 \tag{13}$$

Oder indem man die Ströme durch die Phasenspannung im Punkte K dividiert, treten an Stelle der Ströme die für die Darstellung bequemeren Admittanzen

$$\mathfrak{y} + \mathfrak{y}_c + \mathfrak{y}_n = 0 \tag{14}$$

Zerlegt man die Admittanz in ihre Wirk- und Blindkomponenten:

$$\begin{array}{ll} \text{Generator} & \mathfrak{y} = -\,g - j\,b \\ \text{Kondensator} & \mathfrak{y}_c = j\,b_c \\ \text{Netz} & \mathfrak{y}_n = g_n - j\,b_n \end{array}$$

so zerfällt Gl. (14) in zwei Gleichungen

$$g = g_n \tag{14a}$$

$$b_c = b + b_n \tag{14b}$$

Man könnte nun wie bei der Behandlung des Leerlaufes die Admittanzen durch die Konstanten des Ersatzschemas ausdrücken, die erhaltenen Beziehungen diskutieren und die wichtigeren Resultate durch Kurven veranschaulichen. Dieser Weg führt aber zu unübersichtlichen Formeln, und es wird deshalb eine allerdings nicht immer streng exakte, aber dafür übersichtlichere graphische Darstellung vorgezogen.

Die Gl. (14a) und (14b) sagen, dass der Generator den Wirkleistungsverbrauch des Netzes decken muss, während der Kondensator für den Blindleistungsverbrauch des Netzes und des Generators aufzukommen hat. Der Generator schlüpft übersynchron, bis er die verlangte Wirkleistung abgibt; er erregt sich auf diejenige Spannung, für welche der gesamte Blindleistungsverbrauch durch die Blindleistungsabgabe des Kondensators kompensiert ist.

Während die Kondensatoradmittanz einen bestimmten, durch Zu- oder Wegschalten von Kondensatorelementen einstellbaren Wert hat, ist die Admittanz des selbsterregten Asynchrongenerators abhängig von der Schlüpfung und vom Sättigungsgrad der Maschine. Wenn die Klemmenspannung konstant gehalten wird, ist die Ortskurve der Admittanz der Asynchronmaschine der bekannte Kreis.

Die Veränderung des Sättigungsgrades der verschiedenen Teile des magnetischen Kreises, hervorgerufen durch die Belastungsänderungen hat dann praktisch keinen Einfluss auf die Form und Lage der Ortskurve. Beim selbsterregten, belasteten Asynchrongenerator dagegen gibt gerade die Art und Weise, wie die Admittanz vom Sättigungsgrad abhängt, dem Generator den Charakter.

Eine verhältnismässig einfache Darstellung wird glücklicherweise dadurch möglich, dass sich die Admittanz des Generators als Summe zweier Admittanzen darstellen lässt, von welchen die eine \mathfrak{y}_o praktisch nur von der Klemmenspannung und die andere \mathfrak{y}_s nur von der Schlüpfung abhängt.

Es lässt sich nämlich rechnerisch zeigen, dass der Maschinenstrom \Im sich aus dem Strom \Im_o , welcher

Fig. 6.
Vereinfachtes Ersatzschema einer Asynchronmaschine zur Darstellung der Zerlegung der Maschinenadmittanz in eine sättigungsabhängige (spannungsabhängige) und eine schlüpfungsabhängige Admittanz.

von der synchron angetriebenen Maschine (Schlüpfung s = 0) aufgenommen wird und aus dem Strom, welcher durch eine Hilfsimpedanz \mathfrak{F} fliesst, zusammensetzen lässt, entsprechend dem einfachen Ersatzschema Fig. 6.

$$\mathfrak{y} = \mathfrak{y}_0 + \mathfrak{U}_d \cdot \frac{1}{\mathfrak{z}'} \tag{15)3}$$

Die Ortskurve der Admittanz der Maschine wird also durch einfache Inversion der Hilfsimpedanz und durch die Addition der Admittanz der synchron angetriebenen Maschine erhalten.

$$\mathfrak{y} = \mathfrak{y}_o + \mathfrak{y}_s \qquad
\mathfrak{y}_s = g_o - j b_o \\
\mathfrak{y}_s = g_s + j b_s$$
(16)

Die Spannungs- bzw. Sättigungsabhängigkeit von \mathfrak{y}_o ist durch die Leerlaufinduktivität L_1 bedingt, deren charakteristischer Verlauf vom Leerlaufsversuch her oder durch Rechnung bekannt ist.

Die Admittanz der synchron angetriebenen Maschine

$$\mathfrak{y}_0 = \frac{1}{R_1 + j\omega L_1} = \frac{R_1}{R_1^2 + \omega^2 L_1^2} - j\frac{\omega L_1}{R_1^2 + \omega^2 L_1^2}$$
(17)

kann in Abhängigkeit der Spannung aufgezeichnet werden.

Die bis jetzt vernachlässigten Eisenverluste P_{te} können auf einfache Weise berücksichtigt werden, indem man zu der Wirkkomponente der Admittanz Gl. (17) noch den Betrag

$$g_{fe} = \frac{P_{fe}}{U^2}$$
 hinzufügt.

Die Ortskurve der Hilfsimpedanz 3' in Abhängigkeit der Schlüpfung ist eine Gerade. Ihre Inver-

³) Arnold, Wechselstromtechnik V 2, S. 82.

sion ist der bekannte Admittanzkreis der Asynchronmaschine, dessen Koordinatennullpunkt aber in dem der Schlüpfung s = 0 entsprechenden Kreispunkt liegt.

Die Hilfsimpedanz 3' kann in einer Form dargestellt werden, welche zeigt, dass der Einfluss der Sättigung im Bereich der tatsächlich auftretenden Ströme unwesentlich ist.

$$\delta' = \left\{ R_1 + \frac{R_2}{s} (1 + \tau_1)^2 + j \left[x_1 (1 + \tau_1) + x_2 (1 + \tau_1)^2 \right] \right\} e^{-j 2 \alpha}$$
(18)4)

(Die sehr kleinen Werte $tg^2\alpha$ und $\frac{tg^2\alpha}{\sigma}$ sind gegenüber 1 gestrichen.)

Sättigungsabhängig sind hauptsächlich der kleine Winkel α definiert durch tg $\alpha = \frac{R_1}{\omega \, L_1}$

und der Streukoeffizient
$$\tau_1 = \frac{\lambda_1}{L_1 - \lambda_1}$$

Einer Veränderung von α um $\Delta \alpha$ entspricht eine Drehung des Kreises um $2\Delta \alpha$ um seinen Mittel-

Betriebsdiagramm des durch Kondensatoren selbsterregten Asynchrongenerators zur graphischen Ermittlung der Klemmenspannung-Wirklast-Charakteristik (äussere Charakteristik) für konstante Netzfrequenz, konstanten Netzleistungsfaktor und fest eingestellter Kapazität der Kondensatoren.

punkt, und einer Veränderung von τ_1 entspricht eine Veränderung des Kreisdurchmessers. Die Beeinflussung des für einen mittleren Wert der Klemmenspannung richtig gezeichneten Kreises durch die Aenderung der Klemmenspannung von Leerlauf

bis Vollast ist aber gering und wird im folgenden vernachlässigt.

B. Konstruktion des Betriebsdiagrammes für konstante Netzfrequenz.

Zur Konstruktion des Betriebsdiagrammes Fig. 7 sind der Leerlaufversuch der Asynchronmaschine als Motor, der Kurzschlussversuch und die Kenntnis des Primärwiderstandes (Statorwiderstand) nötig.

Man zeichnet zuerst den Admittanzkreis k_1 der Maschine für eine mittlere Spannung, etwa die Nennspannung. Zur Erleichterung der Lektüre für den mit dem Kreisdiagramm des Drehstromasynchronmotors weniger vertrauten Leser ist im Anhang die bekannte Konstruktion des Kreisdiagrammes aus den Versuchsdaten kurz beschrieben 5). In üblicher Weise ist in vertikaler Richtung die mit der Phasenspannung phasengleiche Wirkkomponente der Admittanz (Konduktanz) und senkrecht dazu um 90° nacheilend die Blindkomponente der Admittanz (Suszeptanz) aufgetragen.

Der ideelle Leerlaufpunkt A_o der Maschine (s=0) ist der Fusspunkt des schlupfabhängigen Admittanzvektors y_s ; seine Spitze bewegt sich in Abhängigkeit der Schlüpfung auf dem Kreis k_1 . Um die Admittanz y des Generators zu erhalten, muss

zu \mathfrak{y}_s die sättigungs- bzw. spannungsabhängige Admittanz no der synchron laufenden Maschine addiert werden. Zu diesem Zwecke legt man durch den Punkt A_o ein rechtwinkliges Koordinatensystem und trägt in vertikaler Richtung als Ordinate die Klemmenspannung U und in horizontaler Richtung als Abszisse nach links den der Spannung zugeordneten Betrag der Blindkomponenten b_o der spannungsabhängigen Generatoradmittanz.

Der Zusammenhang zwischen der Spannung und der Blindkomponenten b_o der Leerlaufadmittanz wird durch die Kurve k_2 , eine Art Magnetisierungskurve, dargestellt. Für eine beliebige Spannung U_x hat die Admittanz y_o die Blindkomponente b_{ox} , Strecke $\overline{D_x A_o}$ und die Wirkkomponente g_{ox} Strecke $\overline{C_x D_x}$. Da die Wirkkomponenten g_o ebenfalls mit

nenten g_o ebenfalls mit wachsender Spannung zunimmt, gleitet der Fusspunkt des Admittanzvektors \mathfrak{y}_o in Abhängigkeit der Spannung auf der leicht nach abwärts gekrümmten Kurve k_3 , während seine Spitze im ideellen Leerlaufpunkt A_o liegt.

⁴⁾ M. Krondl: Das Arbeitsdiagramm des Boucherot-Motors. E. u. M. 1931, S. 161.

⁵) Sumec: Einfacher graphischer Beweis des genauen Diagrammes des Drehstrommotors und praktische Verwendbarkeit dieses Diagrammes auf dem Prüffeld. ETZ 1910, S. 110.

Das Ablesen der Klemmenspannung in Funktion der Netzleistung oder des Netzstromes geschieht punktweise, indem man von verschiedenen z. B. nach der Schlüpfung geordneten Kreispunkten ausgeht. In der Fig. 7 ist das Verfahren für den der Schlüpfung - s_1 entsprechenden Kreispunkt A durchgeführt. Zu der schlupfabhängigen Admittanz ns (Strecke $\overline{A_0A}$) wird die verlustlose Kondensatoradmittanz $\mathfrak{y}_c = j b_c$ (Strecke \overline{AB}) addiert. Das Netz hat einen gewissen Leistungsfaktor cos φ , welcher als bekannt vorausgesetzt wird. Von der Netzadmittanz \mathfrak{y}_n ist deshalb die Phasenlage φ gegenüber der Phasenspannung bekannt. Man zieht durch den Punkt B eine Gerade unter dem Winkel φ gegenüber der Vertikalen, wobei φ nach rechts abgetragen wird, wenn der Netzstrom der Klemmenspannung nacheilt. Diese Gerade schneidet die Kurve k_3 im Punkte C. Die Strecke B C ist die dem Kreispunkte A zugeordnete, gesuchte Netzadmittanz \mathfrak{y}_n , denn die drei Admittanzvektoren \mathfrak{y}_o , \mathfrak{y}_c und \mathfrak{y}_n bilden nach Gl. (14) ein Dreieck. Indem man durch den Punkt C die Vertikale zieht, findet man die Blindkomponente b_o (Strecke DA_o) und die ihr zugeordnete Klemmenspannung (Strecke DD').

Es sind jetzt alle interessanten Grössen bekannt. Bezeichnet man mit m_A den Admittanzmaßstab in Siemens pro mm und mit m_V den Spannungsmassstab in Volt pro mm, so ist für den Kreispunkt A

Klemmenspannung
$$U = \overline{DD'} \cdot m_V$$
 V

Phasenspannung $U_p = \frac{1}{\sqrt{3}}U$ V

Netzstrom $I_n = \overline{BC} \cdot U_p \cdot m_A$ A

Generatorstrom $I = \overline{CA} \cdot U_p \cdot m_A$ A

Netzwirkleistung $P_n = \overline{BC} \cdot \cos \varphi \cdot U^2 \cdot m_A$ $= \overline{C'C} \cdot U^2 \cdot m_A$ W

Schlüpfung $s = -\frac{\overline{HG}}{\overline{GF}}$

Bei konstanter Kapazität des Kondensators bleiben Grösse und Richtung des Vektors \mathfrak{y}_c unverändert; der Punkt B bewegt sich auf einem Kreis k_4 gleichen Durchmessers wie der Admittanzkreis k_1 der Asynchronmaschine, dessen Mittelpunkt um den Betrag b_c der Kondensatoratmittanz in horizontaler Richtung nach links verschoben ist. Die gesuchte Charakteristik, Klemmenspannung in Abhängigkeit des Netzstromes, z. B. bei konstantem Netzleistungsfaktor, ist verbildlicht durch die Abhängigkeit der Strecke \overline{DD} vom Produkt der Strecken \overline{BC} mit \overline{DD} , indem die beiden Strahlen \overline{BC} und \overline{BA} unter Beibehaltung der Richtung verschoben werden und indem der Punkt \overline{BC} von der Kurve \overline{BC} geführt werden.

Im Leerlauf fällt der Punkt B in den Punkt C_L , die Klemmenspannung steigt auf den Wert U_L (Strecke $\overline{D_L D_L}$ ').

Bei zunehmender Netzadmittanz wandert der Punkt B auf dem Kreis k_{\downarrow} in der Pfeilrichtung; die Spannung nimmt ab, während die Wirkleistung des Netzes bis zu einem Maximalwert zunimmt und wieder abnimmt. Die Spannung und damit die Wirklast brechen zusammen, sobald die Netzadmittanz den kritischen Wert (Strecke $\overline{B'C_u}$) erreicht. Die maximale Wirkleistungsabgabe an das Netznimmt mit abnehmendem Phasenwinkel φ des Netzstromes zu, und sie ist um so grösser, je grösser die Kondensatorbatterie gewählt wird.

Es ist zweckmässig, die Kondensatorkapazität durch ein Vergleichsmass K auszudrücken und sie mit derjenigen Kapazität C_o zu vergleichen, welche im Leerlauf den Generator mit der verlangten Kreisfrequenz gerade noch erregt.

$$K = \frac{C}{C_0} = \frac{\overline{MM'}}{C_u A_u} \cong \frac{\overline{MM'}}{\overline{D_u A_0}} = \frac{\omega C}{b_{0u}}$$
(19)

Die Admittanz ωC_o ist durch die Strecke $\overline{C_u A_u}$ dargestellt, und sie ist, da das Kreisstück $\overline{A_o A_u}$ kurz ist und nur wenig von der Vertikalen abweicht, praktisch gleich der Blindkomponente b_{ou} der spannungslosen synchron laufenden Maschine.

$$\omega \; C_0 \cong b_{0^{u}} \cong \frac{1}{\omega \; L_{_{1^{u}}}} \;$$
 (20) Vergl. Gl. (7) und (12a)

C. Zahlenbeispiel.

Das Diagramm Fig. 7 entspricht keiner wirklichen Maschine; der Deutlichkeit halber sind der Leerlaufstrom und die Verluste übertrieben. In Fig. 8 ist das Diagramm eines vierpoligen 10 PS-Asynchronmotors für 220/380 Volt mit Kurzschlussanker aufgezeichnet. Die für die Leerlaufversuche verwendete Maschine stand leider nicht mehr zur Verfügung. Dem Diagramm liegen folgende Versuchsdaten zu Grunde:

a) Der Leerlaufversuch als Motor ist in Tabelle I ausführlich wiedergegeben, weil ihm mit genügender Genauigkeit die Komponenten der Admittanz der synchron angetriebenen Maschine zur Konstruk-

Tabelle I.

U			Admittanz				
	I∟	P	Betrag y ₁	Wirkkomp. g_1	Blindkomp. $b_1 \cong b_0$	g_{0}	
Volt	Amp.	Watt		10-3 Siemens	10-3 Siemens	10-3Siemens	
0					57		
148	5,12	238	59,7	10,8	58,7	4,0	
200	7,30	312	63,2	7,8	62,7	4,1	
220	8,55	357	67,2	7,4	67,0	4,3	Nennspann.
240	10,2	419	73,8	7,3	73,4	4,7	
260	12,5	517	83,3	7,6	83,0	5,4	
280	15,7	700	97,2	9,0	97,0	7,1	
300	20,5	950	118	10,5	118	8,8	

Gemessen

Schaltung: Dreieck. Widerstand einer Phase R=0,715 Ohm. Reibungsverluste $P_{\rm Rb}\cong 150$ Watt.

tion der Kurven k_2 und k_3 entnommen werden können. Vgl. Gl. (10).

$$f = 50 \text{ Per./s}; \quad (\omega = 314)$$

Verwendete Formeln:

U = Klemmenspanung

 $I_L = \text{Leerlaufstrom}$

 $P_L =$ Leerlaufverluste

$$\begin{split} \mathbf{y}_{\mathit{L}} &= \frac{I_{\mathit{L}} \cdot \sqrt{3}}{U} \, ; \; \mathbf{g}_{\mathit{L}} = \frac{P_{\mathit{L}}}{U^2} ; \; b_{\mathit{L}} = \sqrt{\mathbf{y}_{\mathit{L}}^2 - \mathbf{g}_{\mathit{L}}^2} \cong b_{\mathit{0}} \\ & \qquad \qquad \mathbf{g}_{\mathit{0}} \cong \mathbf{g}_{\mathit{L}} - \frac{P_{\mathit{Rb}}}{U^2} \end{split}$$

tg
$$\alpha = \frac{R \cdot I_L}{U \cdot \sqrt{3}}$$
 für die Nennspannung tg $\alpha = \frac{0.715 \cdot 8.55}{220 \cdot \sqrt{3}}$

$$= 0.016$$

b) Kurzschlussversuch. Die Kurzschlussimpedanz ist für den in Frage kommenden Strombereich prak-

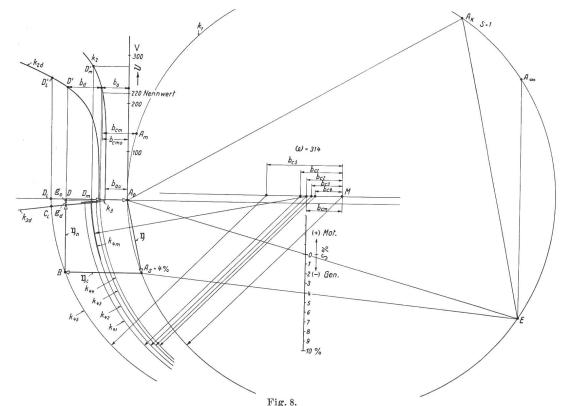
$$g_k = \frac{P_K}{U^2} = \frac{1200}{49,5^2}$$
 = 0,49 Siemens

$$b_k = \sqrt{y_K^2 - g_K^2} = \sqrt{1,05^2 - 0,49^2} = 0,927$$

c) Auswertung des Diagrammes. Das Diagramm Fig. 8 wurde auf die in Abschnitt B an Hand der Fig. 7 beschriebene Weise ausgewertet, und zwar für folgende verschiedenen Kapazitätswerte der erregenden Kondensatoren:

Kap. des Ko (aequi	ondensators v. 人)	Bezeichnung der entspr. Admittanz ω C bzw. der Kreise (Fig. 8)		
$C = 350 \ \mu \text{F}$ $300 \ ,$ $260 \ ,$ $230 \ ,$	K = 1,93 $1,65$ $1,43$ $1,27$	$egin{array}{c} b_{\mathtt{c}\mathtt{1}} \ b_{\mathtt{c}\mathtt{2}} \ b_{\mathtt{c}\mathtt{3}} \ b_{\mathtt{c}\mathtt{4}} \end{array}$	$egin{array}{c} k_{41} \ k_{42} \ k_{43} \ k_{44} \end{array}$	

Das Ergebnis, die Klemmenspannung bei konstanter Netzfrequenz und konstanter Kapazität der erregen-



Durch Kondensatoren selbsterregter Asynchrongenerator, Betriebsdiagramm wie Fig. 7, maßstäblich richtig gezeichnet für einen für 220 V gewickelten vierpoligen 10 PS-Asynchronmotor mit Kurzschlussanker.

s = Schlüpfung. Kreisfrequenz ω = 314

tisch konstant; es genügt die Angabe eines Punktes der Kurzschlusscharakteristik.

Kurzschlußstrom $I_K=30 \text{ A}$ Klemmenspannung U=49,5 V Verluste $P_K=1200 \text{ W}$

Daraus errechnen sich die Admittanzen

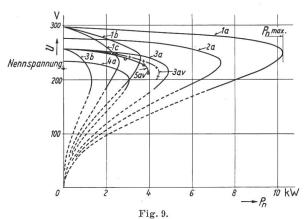
$$y_k = \frac{I_K \cdot \sqrt{3}}{U} = \frac{30 \cdot \sqrt{3}}{49,5}$$
 = 1,05 Siemens

den Kondensatoren in Abhängigkeit der Wirkbelastung durch das Netz für einen bestimmten Netzleistungsfaktor, ist in Fig. 9 festgehalten.

Als fremderregter Generator mit 220 Volt Klemmenspannung würde die Maschine eine Wirklast von 8 kW dauernd abgeben. Die maximale Nutzlast wäre etwa das 3,2fache. Demgegenüber ist der mit Kondensatoren erregte Generator weniger ausgenützt. Vom vollausgenützten Generator würde man die Abgabe der Dauerlast des fremderregten

BULLETIN No. 4

Generators erwarten, auch müsste man verlangen, dass die maximal abgebbare Nutzlast um einen gewissen Prozentsatz grösser ist als die grösste zu erwartende Wirklast; denn sobald die maximale Nutzlast überschritten wird, klappt der Generator zusammen; er enterregt sich und, wenn der Konden-



Belastung des durch Kondensatoren selbsterregten Asynchron-

	Bezeich-			tor	
	nung der Kurve	μF	K	Netz cos φ	
	1 a 1 b 1 c 2 a 3 a	350	1,93 1,65	\begin{cases} 1,0 \\ 0,9 \\ 0,8 \\ 1,0 \\ 1,0 \end{cases}	Netzfrequenz
Versuch +++	3av	260	1,43	ca. 1,0	konstant $\omega = 314$
	3 b 4 a	230	1,27	0,9 1,0)
Versuch ooo	5av	260	1,43	1,0	$n=1500~\mathrm{U/min}$

Auswertung des Diagrammes Fig. 8. Aeussere Charakteristiken für verschiedene Kapazität C der Kondensatoren bei verschiedenem Netzleistungsfaktor.

$$K = \frac{C}{C_0}$$
 = relativer Wert der Kapazität C , bezogen auf die mit Gl. 19 und 20 definierte Kapazität C_0 .

sator klein ist (K wenig grösser als 1) kann es vorkommen, dass er sich trotz abgeschaltetem Netz nicht mehr erregen will.

Die Kurven 1a, 2a, 3a, 4a der Fig. 9 beziehen sich auf eine Netzlast mit cos $\varphi = 1$; die ganze Blindleistungsabgabe des Kondensators dient zur Deckung des Blindleistungsverbrauches des Generators. Selbst wenn ein grosser Kondensator gewählt wird, z. B. K = 1,93, Kurve 1a, welcher den Generator im Leerlauf bis auf das 1,34fache der Nennspannung als Motor erregt, ist die grösstmögliche Nutzlast nur 10,2 kW. Dagegen hat die Kurve la dank der hohen magnetischen Sättigung der Maschine einen günstigen flachen Verlauf. Die rasche Abnahme der Leistungsfähigkeit des Generators mit kleiner werdendem Kondensator ist aus der Kurvenschar ersichtlich. Die Kurven mit dem Index b bzw. c zeigen, wie der Generator nur noch wenig leistet und wie die Klemmenspanung mit wachsender Belastung rasch abfällt, wenn er neben der Wirkleistung auch noch Blindleistung an das Netz abgeben muss. Die Kurve 3av wurde experimentell

aufgenommen. Das Netz wurde durch drei in Stern geschaltete Ohmsche Widerstände ersetzt, welche allmählich verkleinert wurden. Dem Charakter nach verläuft die Kurve genau wie die aus dem Diagramm abgeleitete. Der Grund der Abweichung gegenüber der Kurve 3a liegt darin, dass der Leistungsfaktor nicht genau 1 war. Wie schlecht der relativ schwach erregte Generator schon bei geringer Blindleistungsabgabe wird, zeigt der Vergleich von Kurve 3a mit Kurve 3b, für welche K=1,43 und $\cos\varphi=1$ bzw. 0,9 ist.

D. Folgerungen.

Der durch Kondensatoren erregte Asynchrongenerator eignet sich besonders zur Abgabe reiner Wirkleistung (cos $\varphi = 1$), beispielswiese an ein Beleuchtungsnetz oder zu Heizungszwecken. Er wird erst eine leistungsfähige Maschine mit günstiger, flach verlaufender Klemmenspannung-Belastungs-Charakteristik, wenn dafür gesorgt wird, dass die Blindkomponente bo der spannungsabhängigen Admittanz des Generators mit sinkender Spannung sehr rasch abnimmt; dann genügt schon eine kleine Senkung der Klemmenspannung um die durch eine Belastungszunahme bedingte Vergrösserung der Blindkomponenten b_n der Netzadmittanz und der schlupfabhängigen Generatorad
mittanz b_s durch eine entsprechende Senkung der Blindkomponenten bo der spannungsabhängigen Generatoradmittanz zu kompensieren.

Dazu gibt es zwei Mittel, die sich natürlich auch gleichzeitig anwenden lassen.

Man kann den Kondensator so gross wählen und den magnetischen Kreis der Asynchronmaschine so dimensionieren, dass besonders das Joch hoch gesättigt wird.

Man schaltet parallel zur Maschine eine Eisendrosselspule ohne Luftspalt (in den Fig. 1 und 2 gestrichelt angeschlossen), deren magnetischer Kreis so dimensioniert ist, dass er bei der verlangten Leerlaufspannung sich hoch sättigt.

Das zweite Mittel ist wirksamer und gestattet, eine als Motor entworfene Asynchronmaschine auch als selbsterregten Generator auszunützen. Die in Abschnitt 3 B beschriebene Konstruktion der Spannungs-Belastungs-Charakteristik mit Hilfe des Diagrammes der Fig. 7 bleibt dieselbe, nur ist zur spannungsabhängigen Admittanz $\mathfrak y$ des Generators die Admittanz der Eisendrosselspule $\mathfrak y_d$ zu addieren.

Wenn die Nennspannung des Asynchrongenerators kleiner als 500 Volt ist, wird man den Kondensator aus wirtschaftlichen Gründen über einen Autotransformator anschliessen, der dann gleichzeitig als hochgesättigte Eisendrosselspule verwendet werden kann.

E. Zahlenbeispiel des Abschnittes C, aber mit Eisendrosselspulen.

Das Diagramm der Fig. 8 dient auch zur Konstruktion der Spannungs-Belastungs-Charakteristik, wenn eine Eisendrosselspule zur Verbesserung der Ausnutzung des Generators verwendet wird, und

zwar ist die Konstruktion eines Betriebspunktes ausgehend vom Kreispunkt A, s = -4%, für einen Netzleistungsfaktor cos $\varphi = 1$ durchgeführt. An Stelle des Admittanzvektors \mathfrak{y}_{ϱ} tritt der Vektor

$$\mathfrak{y}_o + \mathfrak{y}_d = g_o + g_d - j (b_o + b_d)$$

dessen Fusspunkt in Abhängigkeit der Spannung auf der Kurve k_{3d} gleitet.

Zur Konstruktion der k_{2d} -Kurve, welche die Spanungsabhängigkeit von $b_o + b_d$ darstellt, liegt die Admittanzmessung der Tabelle II an einer zufällig zur Verfügung stehenden einigermassen zur Maschine passenden Eisendrosselspule zu Grunde.

Da im Leerlauf die Kondensatoradmittanz neben der Blindkomponenten b_o der spannungsabhängigen Admittanz der Asynchronmaschine auch noch die verhältnismässig grosse Admittanz b_d der gesättigten Eisendrossel kompensieren muss, wird die Kapazität bei Verwendung einer wirksamen Eisendrosselspule wesentlich grösser.

Admittanz der Eisendrosselspule, gemessen mit sinusförmiger Klemmenspannung.

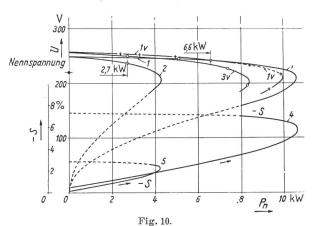
100,0101			
TIO	hal	10	II.
$\perp a$	nei	16	TT.

U Volt	I Amp.	Verluste P Watt	y _d 10-3 Siemens	g 10-3 Siemens	b _d 10-3 Siemens
100 150 180 200 220 240 260 280	1,06 2,45 4,08 6,05 9,43 14,4 21,5 30,0	33 77 126 208 406 700 1150 1820	18,3 28,2 39,2 52,2 73,5 104 143 185	3,3 3,4 3,9 5,2 8,4 12,2 17,0 23,2	18 28 39 52 73 103 142

Die aus dem Diagramm Fig. 8 abgelesene äussere Charakteristik ist in Fig. 10 aufgezeichnet. Die Kurve 1 entspricht einem erregenden Kondensator mit $C = 630 \mu F$; K = 3,47; $\cos \varphi = 1$; die entsprechende Kondensatoradmittanz ist in Fig. 8 mit b_{c5} bezeichnet. Die Kurve ly wurde unter denselben Bedingungen durch einen Belastungsversuch auf ohmsche in Stern geschaltete Widerstände aufgenommen. Trotzdem der Abweichung des Drosselspulenstromes von der Sinusform nicht Rechnung getragen wurde, ist die Abweichung der gemessenen Kurve 1v gegenüber der aus den normalen Versuchsdaten des Prüffeldes abgeleiteten Kurve 1 gering. Im Leerlauf ist die Stromverzerrung der Drosselspule am grössten; der Effektivwert der gemessenen Spannung ist deshalb um 3 % höher. Die beobachtete maximale Nutzlast ist etwas kleiner, weil der Leistungsfaktor nicht genau 1 war.

Leider wurde die oszillographische Aufnahme der Klemmenspannung unterlassen. Sie hätte auch bei Verwendung einer im Leerlauf hochgesättigten Eisendrosselspule eine befriedigende Kurvenform ergeben; denn die Kondensatorkapazität, welche aus der während des Belastungsversuches erfolgten Impedanzmessung an einer der drei Kondensatorengruppen ausgerechnet wurde, stimmte von Leerlauf bis zur maximalen Nutzlast mit dem Eichwert gut überein.

Der günstige Einfluss der Eisendrosselspule auf die Ausnützung des Generators wird durch einen Vergleich von Kurve 1 mit Kurve 2 deutlich. Kurve 2 zeigt den Verlauf der Klemmenspannung, wenn die Eisendrosselspule weggelassen und der Kondensator so gewählt wird, dass im Leerlauf die-



Belastung des durch Kondensatoren selbsterregten Asynchrongenerators.

		Kondensa		
Kurve	μF	K	Eisen- drosselspule	
1 und 1 v 2 3 v	630 247 630	3,47 1,36 3,47	mit ohne mit	$\begin{cases} \omega = 314 \\ n = 1500 \text{ U/min} \end{cases}$
1	4 Schlüp 5 "	fung zu 1 " 2		

Auswertung des Diagrammes Fig. 8. Aeussere Charakteristiken bei Betrieb mit bzw. ohne zur Asynchronmaschine parallel geschalteter Eisendrossel. K= relativer Wert der Kapazität; s= Schlüpfung (%) in Abhängigkeit der Wirklast. Netz $\cos\varphi=1$.

selbe Klemmenspannung sich einstellt. Verlangt man z. B., dass die grösstmögliche Nutzlast das 1,6-fache der Nennlast betrage, so würde bei $\cos \varphi = 1$ der Generator ohne Drosselspule 2,7 kW und mit Drosselspule 6,6 kW leisten.

Mit einer dem Zweck besonders angepassten Eisendrosselspule könnte die Wirkung noch gesteigert werden.

F. Aeussere Charakteristik für konstante Rotordrehzahl.

Die abgeleitete graphische Methode zur Bestimmung der äusseren Charakteristik setzt eine konstante Netzfrequenz voraus; d. h. es wurde angenommen, dass entweder von Hand oder selbsttätig die Drehzahl der Antriebsmaschine der negativen Schlüpfung des Generators entsprechend mit wachsender Belastung erhöht werde. Wird dagegen die Drehzahl der Antriebsmaschine konstant gehalten, so sinkt die Netzfrequenz mit wachsender Belastung. Die Kondensatoradmittanz sinkt proportional mit der Frequenz, die Blindkomponente der Generatoradmittanz würde bei gleichbleibender Spannung infolge der zunehmenden Sättigung mehr

als umgekehrt proportional der Frequenz steigen. Die Folge ist eine steiler abfallende Charakteristik mit einer kleineren maximalen Nutzlast.

Kurve 5av in Fig. 9 ist mit konstanter Drehzahl (ohne Eisendrosselspule) aufgenommen, während die Kurve 3av unter sonst gleichen Bedingungen mit konstanter Frequenz gemessen wurde.

Kurve 3v verglichen mit Kurve 1v in Fig. 10 zeigt ebenfalls den Unterschied zwischen einer Aufnahme mit konstanter Drehzahl und konstanter Frequenz für den durch eine Eisendrosselspule besser ausgenützten Generator. Der Einfluss ist beim schlecht ausgenützten, nur mit kleiner Schlüpfung arbeitenden Generator gering.

4. Selbsterregung des kompensierten Asynchronmotors im Moment des Abschaltens.

Ein rotierender, mit Kondensatoren kompensierter Asynchronmotor, welcher vom Netz getrennt wird, kann zum selbsterregten Generator werden, wenn sein Kondensator so gross ist, dass die Drehzahl des Motors über der kritischen Drehzahl ne, Gl. (12a), zu liegen kommt. Nach vollzogener Erregung sinkt dann die Spannung mit abfallender Drehzahl längs einer Kurve ab, die in Fig. 4 abgebildet ist. Die Maschine wird spannungslos, wenn die Drehzahl unter den Wert n_e gesunken ist. Die Kurven der Fig. 4 sind zwar statische Kurven; sie stellen den Zusammenhang zwischen Drehzahl und Klemmenspannung des erregten Generators im stationären Zustand dar. Um den Erregungsvorgang selbst und den Verlauf der Klemmenspannung bei schneller Drehzahländerung zu erfassen, müsste der komplizierte Schaltvorgang untersucht werden.

Für den Betrieb ist aber hauptsächlich wichtig, daran zu denken, dass die Spannung trotz des geöffneten Schalters noch einige Zeit fortbesteht und dass je nach dem Grad der Kompensierung die Spannung am Anfang über die Nennspannung steigt 1), und es ist wichtig zu wissen, wie hoch die Spannung im extremsten Fall steigt. Die grösste Spannung bei einem bestimmten Kompensierungsgrad bringt der leerlaufende Motor, dessen Drehzahl praktisch synchron ist und dessen mechanische Trägheit (kinetische Energie) so gross ist, dass der Erregungsvorgang schon vollzogen ist, bevor die Drehzahl merklich gesunken ist. Ueber diesen Fall gibt das im Abschnitt 3 B beschriebene Betriebsdiagramm Fig. 7 Aufschluss. Der gesuchte Betriebspunkt ist identisch mit dem Leerlaufpunkt als Generator, Kreispunkt A_{Lg} , und die gesuchte Spannung ist dargestellt durch die Strecke $\overline{D_L D_L}$ '. Für die Behandlung des Leerlaufes allein kann die Wirkkomponente g_o der Admittanz \mathfrak{y}_o vernachlässigt werden, und die Kurve k_3 fällt dann in die Abszissenachse (Horizontale durch A_o).

Im Diagramm Fig. 8 des 10 PS-Motors ist die Konstruktion derjenigen Leerlaufspannung angedeutet, welche sich nach dem Abschalten einstellt, wenn der Motor bei Vollast, Kreispunkt A_m und einer Klemmenspannung von 220 V auf cos $\varphi=1$ kompensiert ist. Die Kondensatoradmittanz ist b_{cm} , um welche Strecke der mit dem Admittanz-Kreis k_1 des Motors durchmessergleiche Kreis k_{4m} in horizontaler Richtung nach links verschoben ist. Der Kreis k_{4m} schneidet die Abszisse im Punkt D_m und die gesuchte Spannung ist gleich der Strecke $\overline{D_m D_m}$, gleich 275 V.

In diesem Beispiel ist also zur Kompensation auf $\cos \varphi = 1$ bei Vollast ein Kondensator von 113 μ F mit der relativen Grösse von K = 1,53 nötig (Voraussetzung für Selbsterregung $K \ge 1$), und die Spannung steigt auf das 1,25fache der Nennspannung. Wäre z. B. der Kondensator gerade so gross, dass er bei Nennspannung die Blindkomponente des Leerlaufstromes kompensieren würde, so wäre seine Admittanz auf den Wert b_{cmo} einzustellen, der relative

Wert der Kondensatorkapazität wäre $K = \frac{b_{\scriptscriptstyle cmo}}{b_{\scriptscriptstyle ou}} =$

1,15, und die Spannung würde ausgehend von der Nennspannung abklingen.

Ein einfacher Schutz gegen eine zu grosse Spannung am abgeschalteten Motor infolge Ueberkompensierung des Motors bietet sich von selbst, wenn der Kondensator über einen Autotransformator angeschlossen ist, welcher sich bei zunehmender Klemmenspannung sättigt und die Wirkung des Kondensators schwächt.

Anhang.

1. Literatur.

- G. Huldschiner: Ueber den Induktionsgenerator mit Kondensatorerregung. E. u. M. 1922, S. 155 (nach einem Aufsatz von U. Sordina, Elettrotecnica Mai/Juni 1921).
- Béthenod: Auto-amorçages des machines à rotor cylindrique associées à des condensateurs. Rev. gén. Electr. 1923 II, S. 307.
- E. Unger: Untersuchung der Stabilität des Betriebszustandes eines durch eine Kapazität erregten Asynchrongenerators und Errechnung der sich dabei einstellenden Klemmenspannung und Periodenzahl. Arch. f. Elektrotechn. 1927, Bd. 17, S. 590.
- N. Landesberg: Betrieb einer Asynchronmaschine als Generator in Parallelschaltung mit einem Kondensator. E. u. M. 1927. S. 847.
- F. Niethammer: Selbsterregung von Asynchronmaschinen und andern Maschinen. E. u. M. 1934, S. 61.

2. Konstruktion des Kreisdiagrammes einer Drehstromasynchronmaschine aus den Versuchsdaten.

An Hand von Fig. 11 wird die Konstruktion des Admittanzkreises einer Drehstromasynchronmaschine aus den Versuchsdaten ohne Beweisführungen kurz beschrieben. Der weniger gebräuchliche Admittanzkreis unterscheidet sich vom bekannten Stromkreis nur durch eine Maßstabsänderung, indem die Ströme durch die konstante Klemmenspannung (Phasenspannung), für welche das Stromdiagramm gezeichnet ist, dividiert werden.

Als Ordinate wird die mit der Phasenspannung phasengleiche Wirkkomponente der Admittanz (Konduktanz) und als Abszisse die um 90° nacheilende Blindkomponente der Admittanz (Suszeptanz) aufgezeichnet. Man trägt die Leerlaufadmittanz $\overline{OA_{\rm L}}$ und die Kurzschlussadmittanz $\overline{OA_{\rm K}}$ auf. Der Kreismittelpunkt Mi liegt auf der Mittelsenkrechten m

¹⁾ Bull. SEV 1933, Nr. 15, S. 342.

zur Verbindungsgeraden $\overline{A_{\rm L}\,A_{\rm K}}$. Der ideelle Leerlaufpunkt A_0 der reibungslosen, synchron laufenden Maschine liegt im Schnittpunkt einer um den Betrag,

$$g_{\mathsf{Rb}} = \frac{P_{\mathsf{Rl}}}{U^2}$$

welcher den Reibungsverlusten $P_{\rm Rb}$ entspricht, tiefer liegenden Horizontalen h mit dem Kreis. Zu dieser Horizontalen wird unter dem Winkel 2α

$$\operatorname{tg} \alpha = \frac{R_1}{\omega} \underbrace{I_{\mathsf{L}} \cdot R_1}_{L_1} \cong \frac{I_{\mathsf{L}} \cdot R_1}{U_{\mathsf{p}}}$$

eine Gerade gezogen, welche die Mittelsenkrechte m im

 S_{Rb} S_{Rb} S

Fig. 11. Admittanzkreis einer fremderregten Asynchronmaschine; Klemmenspannung konstant. s= Schlüpfung (%).

50 %

Kreismittelpunkt schneidet. Diese Gerade ist so zu legen, dass die Strecke $\overline{Mi\,A_{\rm L}}$ gleich lang wie $\overline{Mi\,A_{\rm 0}}$ wird, was leicht zu erreichen ist, weil die beiden Kreispunkte $A_{\rm 0}$ und $A_{\rm L}$ sehr nahe beieinander liegen. Zur Konstruktion der Leistungsgeraden und der Schlüpfungsgeraden ist die Kenntnis des Unendlichkeitspunktes $A_{\rm O}$ nötig, für welchen die Schlüpfung $s=\infty$ ist. Man zieht durch $A_{\rm 0}$ unter dem Winkel α gegenüber der Horizontalen eine Gerade, welche die Ordinatenachse im Punkte E schneidet. Die durch den Kreismittelpunkt gezogene Horizontale schneidet den Kreis in den Punkten F und G. Der Strahl $\overline{E\,F}$ schneidet den Kreis im gesuchten Punkt A_{∞} . Das Resultat wird etwas genauer, wenn

man den totalen Streukoeffizienten $\sigma = \frac{\overline{U\,F}}{\overline{U\,G}}$ abliest und den

Winkel β ausrechnet, welchen der gesuchte Strahl \overline{FA}_{∞} mit der Horizontalen bildet; es ist

$$tg \beta = \frac{tg \alpha}{\sigma}$$

Der ebenfalls gebräuchliche, totale Streukoeffizient τ

$$\tau = \frac{\mathbb{P} \sigma}{1 - \sigma}$$

ist gleich

$$\frac{\overline{UF}}{\overline{FG}}$$

Die folgenden Verbindungsgeraden ermöglichen das Ablesen von:

Gerade A_0A_∞ : der zwischen Stator und Rotor verschobenen Leistung bzw. des Drehmomentes in synchronen Watt.

» $A_0 A_K$: der mechanischen Leistung des Rotors.

» A_L A_K: der mechanischen Leistung der Kupplung der Rotorwelle.

Zur Konstruktion der Schlüpfungsgeraden g_s zieht man von einem beliebigen Kreispunkt H aus Strahlen nach dem ideellen Leerlaufpunkt, dem uKrzschlusspunkt und dem Unendlichkeitspunkt. Jede Gerade parallel zu HA_{∞} ist eine Schlüpfungsgerade. Um für einen beliebigen Kreispunkt A_1 , z. B. im motorischen Arbeitsgeibet (dünn ausgezogener Kreisteil), die Betriebseigenschaften der Maschine ablesen zu können, zieht man von A_1 aus einen Strahl senkrecht zur Linie $\overline{A_0Mi}$, und man findet

 $\overline{A_1K} \cdot m_A \cdot U^2 =$ Drehmoment des Rotors in synchronen Watt.

 $\overline{A_1L} \cdot \mathbf{m_A} \cdot U^2 = \begin{array}{c} \mathrm{Mechanische} & \mathrm{Leistung} & \mathrm{des} \\ \mathrm{Rotors.} \end{array}$

 $\overline{A_1 M} \cdot m_{\mathsf{A}} \cdot U^2 = ext{Mechanische Leistung der Wellenkupplung.}$ $m_{\mathsf{A}} = ext{Maßstab des Diagrammes in Siemens pro}$ $ext{Millimeter.}$

Der Strahl $\overline{A_1 H}$ schneidet die Schlupfgerade im Punkt R.

Die Schlüpfung s_1 ist gleich $\dfrac{\overline{Q\,R}}{\overline{Q\,N}}$. Die entsprechende Kon-

struktion für einen Kreispunkt A_2 im generatorischen Arbeitsgebiet (dick ausgezogener Kreis) ist ebenfalls angedeutet.