Zeitschrift:	Bulletin de l'Association suisse des électriciens			
Herausgeber:	Association suisse des électriciens			
Band:	40 (1949)			
Heft:	21			
Artikel:	Charakterisierung und einheitliche Berechnungsunterlagen der Gleichrichter mit Pufferkondensatoren			
Autor:	Verse, H.			
DOI:	https://doi.org/10.5169/seals-1056422			

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 18.01.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Charakterisierung und einheitliche Berechnungsunterlagen der Gleichrichter mit Pufferkondensatoren

Von H. Verse, Hamburg

Nach einer kurzen Betrachtung der Anwendungsgebiete der Gleichrichter mit Pufferkondensatoren wird deren Schaltung behandelt, wobei auch Vergleiche mit den in der Starkstromtechnik üblichen Gleichrichtern mit Pufferdrosseln gezogen werden. Der einphasige Einweggleichrichter wird als Grundschaltung ein-gehend behandelt, und die verschiedenen in der Praxis üblichen Gleichrichterschaltungen mit Pufferkondensatoren werden auf einfache Ersatzschaltbilder zurückgeführt. Anschliessend gibt der Autor eine einfache, einheitliche Berechnungsmethode mit den erforderlichen graphischen Unterlagen bekannt und führt ein Rechnungsbeispiel durch.

1. Allgemeines

Die Gleichrichter mit Pufferkondensatoren auf der Gleichspannungsseite stellen eine durch ihre Schaltungseigenart abgegrenzte Gruppe von Gleichrichterschaltungen dar. Sie kommen im üblichen Starkstromgebiet kaum zur Anwendung. Dagegen beherrschen sie unumschränkt das grosse Gebiet der Netzanschlussgleichrichter zur Anodenspannungserzeugung für die mit Elektronenröhren ausgestatteten Apparate der Fernmelde- und Hoch-frequenztechnik, für Messverstärker, Kathodenstrahloszillographen usw.; ferner dienen sie als typische Hochspannungs-Gleichrichteranordnungen bei Röntgenapparaten und bei Anlagen für kernphysikalische Forschungszwecke sowie als Gleichspannungsquellen für Hochspannungsprüfanlagen der Elektroindustrie und der elektrotechnischen Forschungsstätten. Darüber hinaus werden Gleichrichteranordnungen mit Pufferkondensatoren noch in bemerkenswertem Umfang als Signal- und Messgleichrichter (Diodengleichrichter) für mittel- und hochfrequente Spannungen benutzt.

Schon die einfache einphasige Grundschaltung zeigt alle charakteristischen Eigenschaften der Gleichrichter mit Pufferkondensatoren; für sie sollen bei allen Verwendungszwecken benutzbare Berechnungsgrundlagen der Schaltungselemente aufgestellt werden. Die bisher bekannt gewordenen Berechnungsverfahren sind auf spezielle Anwendungsgebiete beschränkt und machen von vereinfachenden Voraussetzungen Gebrauch, die jeweils auf den ausgewählten Anwendungsbereich zugeschnitten sind. Auch bei der nachstehenden zusammenfassenden Behandlung wird von nützlichen Vereinfachungen Gebrauch gemacht, jedoch beim Ansatz des einheitlichen Berechnungsweges nur in den Grenzen allgemeiner Gültigkeit.

Der mehrphasige Gleichrichter der Starkstromtechnik ist bekanntlich gekennzeichnet durch die periodische Kommutierung des Stromes von einer Gleichrichterstrecke auf die andere, so dass ein lückenloser Strom durch den Gleichstromverbraucher fliesst, und (im allgemeinsten Fall) durch eine Pufferdrossel im Gleichstromkreis zur Gleichstromglättung.

Die Gruppe der Gleichrichter mit Pufferkondensatoren unterscheidet sich demgegenüber grund-

L'auteur passe rapidement en revue les applications des redresseurs avec condensateurs, puis expose le couplage de ces appareils, comparé à celui des redresseurs avec bobines de réactance. Le redresseur monophasé à une direction représente le couplage fondamental et est traité en détail. Les autres couplages utilisés en pratique sont ramenés à de simples schémas de substitution. L'auteur indique ensuite une méthode de calcul simple et uniforme, avec données graphiques, ainsi qu'un exemple numérique.

sätzlich dadurch, dass in mehrphasigen Schaltungen keine Stromkommutierung von einer Gleichrichterstrecke auf die andere stattfindet. Der gleich-

Fig.1

Gegenüberstellung der zweiphasigen Einweggleichrichterschaltungen mit Pufferdrossel (links) und mit Pufferkondensator (rechts)

- Schaltbilder: T Transformator (sekundär zweiphasig); G Gleichrichterstrecke; D Pufferdrossel; C Pufferkonden-sator; V Verbraucher; 0...4 Potentialpunkte a) Schaltbilder:
- Verlauf der Gleichrichterspannungen u_{30} und u_{10} . $U_{\rm gm}$ erzeugte Gleichspannung (arithmetischer Mittelwert); ω Kreisfrequenz; t Zeit
- Verlauf des Sekundärstroms i2 durch eine Gleichrichter-C) strecke γ Brenndauer der Gleichrichterstrecke
- Verlauf der Gleichrichterströme i_{30} und i_{40} und des Gleichstromes $I_{\rm gm}$ (arithmetischer Mittelwert) d)
- Verlauf des Primärstromes i_1 des Transformators Belastungskennlinien: U_2 Sekundärspannung der einzelnen Gleichrichterstrecke; U_{gm} Gleichspannung; I_{gm} Gleichstrom (Belastung)

621.314.6

spannungsseitig angeschaltete Pufferkondensator ist dann das unumgänglich nötige Schaltungselement zur Aufrechterhaltung einer ununterbrochenen Leistungsabgabe an den Verbraucher.

In Fig. 1 sind die zwei Gleichrichtertypen beispielsweise in zweiphasiger Einwegschaltung einander gegenübergestellt, links die Schaltung der Starkstromtechnik mit der Pufferdrossel D, rechts die für Netzanschlussgeräte der Nachrichtentechnik benutzte Schaltung mit dem Pufferkondensator C. Aus dem grundsätzlich andersartigen Verlauf der Belastungskennlinien beider Schaltungen (Fig. 1f) ist ersichtlich, weshalb die Schaltung mit Pufferdrossel in der Starkstromtechnik benutzt wird, während für die Netzgleichrichter der Nachrichtentechnik und für ausgesprochene Hochspannungsgleichrichter der Schaltung mit Pufferkondensator der Vorzug gegeben wird. Im ersten Fall werden hohe Stromstärken und eine möglichst belastungsunabhängige Gleichspannung verlangt, während im zweiten Fall, wo nur geringe Ströme auftreten, das höhere Spannungsverhältnis $U_{gm}/\sqrt{2} U_2$ sowie das günstigere Kostenverhältnis Kondensator zu Drossel die Anwendung des Pufferkondensators empfehlen, und [der relativ höhere Spannungsabfall nicht wegen der meist konstanten Belastung stört.

Ebenso wie bei den Gleichrichtern mit Pufferdrossel lässt sich auch bei Gleichrichtern mit Pufferkondensator die Vollwegschaltung benutzen. Fig. 2 a zeigt die bekannte einphasige Vollweg-

Schaltungen für Vollweggleichrichter a) mit 2 Pufferdrosseln D/2; b) mit Pufferkondensator C: c) mit 2 Pufferkondensatoren 2C in Spannungsver-

Fig. 2

doppelungs-Schaltung nach Greinacher

schaltung (Graetzsche Schaltung) mit Pufferdrossel und Fig. 2b die gleiche Schaltung mit Pufferkondensator. In beiden Fällen sind die den beiden Wechselspannungshalbwellen zugeordneten Gleichrichterkreise in bezug auf den Gleichstromverbraucher V parallel geschaltet. Bei der Pufferkondensatorschaltung ist jedoch auch eine Reihenschaltung der beiden Gleichrichterkreise möglich (Fig. 2c); es ist dies die einphasige Spannungsverdoppelungs-Schaltung nach Greinacher.

Manche Hochspannungsgleichrichter besitzen Pufferdrossel und -kondensator gleichzeitig; bei kleiner Belastung verhalten sie sich wie eine Pufferkondensatorschaltung, bei grosser Stromentnahme bestimmt die Pufferdrossel das Verhalten [1, 2] ¹).

2. Die Grundschaltung

Fig. 3a zeigt die Grundschaltung, die einphasige Einwegschaltung (auch Hullsche Schaltung genannt). Der Ladekreis des Pufferkondensators C besteht aus der verlustlos gedachten Wechselspannungsquelle mit der sinusförmigen Spannung u_w , der Gleichrichterstrecke G und der Impedanz Z

a) Schaltung; b) Strom- und Spannungskurven bei Annahme eines unendlich grossen Pufferkondensators (Erklärungen im Text)

des Ladekreises, die sich im allgemeinsten Falle aus einer Induktivität L, einem Ohmschen Widerstand R und dem Eigenwiderstand der Gleichrichterstrecke zusammensetzt. Diese Ladeimpedanz Z nimmt den Spannungsunterschied zwischen der Gleichspannung u_g und der Wechselspannung u_w während der Kondensatorladung auf. Durch den Verbraucher V fliesst beständig der Gleichstrom i_g .

Bei unendlich grossem Pufferkondensator [3, 4] weist die Gleichspannung u_g keine Welligkeit auf und ist in jedem Augenblick gleich dem arithmetischen Mittelwert U_{gm} ; die Brenndauer γ der Gleichrichterstrecke muss deshalb symmetrisch zum Scheitelwert der Wechselspannungskurve liegen (Fig. 3b). Der von der Spannungsdifferenz $u_w - u_g$ durch die Gleichrichterstrecke getriebene Konden-

¹⁾ siehe Literaturverzeichnis am Schluss.

satorladestromstoss i weist keine Phasenverschiebung φ auf.

Bei nicht unendlich grossem Pufferkondensator ist die Gleichspannung im Takt der Aufeinanderfolge

von Kondensatorladung und -entladung wellig. Die prozentuale Welligkeit w sei nach Fig. 4 definiert als

$$w = \frac{1/2}{U_{gm}} \cdot 100 \tag{1}$$

Zu unterscheiden sind zwei charakteristische Fälle: Die Induktivität L des Ladestromkreises ist vernachlässigbar oder sie besitzt einen massgebenden Einfluss.

Im ersten Fall (Fig. 5) tritt im Gegensatz zum Fall der Fig. 3b eine stets voreilende Phasenverschiebung φ des Ladestromes *i* gegen die Spannung u_w auf.

Bei nicht zu vernachlässigendem Einfluss der Induktivität L tritt der in Fig. 6 gezeigte Fall ein, dass die Gleichspannung u_g zu Ende des Ladevor-

ganges über den zeitlich zugehörigen Augenblickswert der Wechselspannung u_w hinausschwingt [5, 6, 7] um den Betrag

$$\hat{U}_L = \left| L \frac{\mathrm{d}i}{\mathrm{d}t} \right|_{t=\frac{\gamma}{\omega}} \tag{2}$$

Auch hier liegt im allgemeinen eine Phasenverschiebung φ vor.

3. Die verschiedenen Gleichrichterschaltungen mit Pufferkondensatoren

Die grundsätzliche Wirkungsweise, sowie Stromund Spannungsverläufe der verschiedenen Gleichrichterschaltungen mit Pufferkondensatoren sind schon mehrfach beschrieben worden [4, 8, 9, 10, 11]. Sie seien als bekannt vorausgesetzt, und es soll hier lediglich gezeigt werden, dass man bei der Berechnung auf sehr einfache Ersatzschemata zurückgreifen kann. Zu diesem Zweck sind in Fig. 7 neben dem Schaltbild zwei, den beiden Halbwellen der

			Ersatzschema für :			
Nr.	Schaltungs- bezeichnung	Schaltbild	1. Halbwelle der Wechsel- spannung	2. Halbwelle der Wechsel- spannung		
1	einphasige Einweg-Schaltung	3 Ē	¢ I	0		
2	einphasige Vollweg- Schaltung					
3	zweiphasige Einweg- Schaltung					
4	Greinacher- Schaltung					
5	Villard- Schaltung] (ø til	ه		
6	Witka- Schaltung			ø []		
7	Villard-Schaltung mit Gleich- spannungszusatz		Ø,	¢ [©] *†		
8	n-stufige Kaskaden- Schaltung	SEV10405				

✤ Kondensator im Ladezustand;
 ↔ Kondensator im Entladezustand

speisenden Wechselspannung zugeordnete Spalten mit Ersatzschaltbildern angeführt, die jeweils den in der betreffenden Halbwelle dominierenden Vorgang charakterisieren. Anhand dieser Bilder ist auch die Kurvenform des wechselspannungsseitig aufgenommenen Netzstromes leicht zu beurteilen: Während die Schaltungen Nr. 2, 3, 4, 7 und 8 das Netz in beiden Halbwellen ungefähr gleichartig belasten, treten bei den Schaltungen Nr. 1, 5 und 6 unsymmetrische Wechselströme auf. Bei Schaltung Nr. 1 tritt sogar ein sehr ausgeprägter magnetischer Ausgleichsvorgang im Transformatoreisenkern auf [12]. Bei der besonders interessanten n-stufigen Kaskadenschaltung (angegeben von Greinacher, in die Praxis eingeführt von Cockroft, Walton und Bouwers [13, 14, 15]) überlagern sich in jeder Halbwelle n Kondensatorladevorgänge in bezug auf die Wechselspannungsquelle (Fig. 7, Nr. 8 für n = 3).

Wenn in den Schaltungen Nr. 5 bis 8 der Fig. 7 Kondensatorentladungen in Reihenschaltung mit der Wechselspannungsquelle stattfinden, so ersetze man in Gedanken den sich entladenden Kondensator durch eine feste Gleichspannungsquelle, um sofort einen ersten Überblick zu erhalten.

Für sehr hohe Gleichspannungen benutzt man neben der Kaskadenschaltung (Fig. 7, Nr. 8) auch eine Vervielfachungsschaltung, die aus gleichspannungsseitig additiv zusammengesetzten Teilgleichrichtern (vorzugsweise in Greinacherschaltung, Fig. 8) besteht [10, 16, 17]. Ferner sind noch die

Pyramidenschaltung nach *Schenkel* [18] und eine Transformator-Kaskade mit angehängten einfachen Gleichrichterstufen nach *Müller* [19] zu erwähnen.

4. Bisher durchgeführte theoretische Untersuchungen

Die verhältnismässig grosse Zahl dieser Arbeiten verbietet ihre eingehende Diskussion; es soll nur zu Informationszwecken eine knappe Übersicht gegeben werden. Entsprechend den in Anpassung an den Verwendungszweck getroffenen vereinfachenden Annahmen lassen sich die dem Autor zugänglich gewesenen Arbeiten in fünf Gruppen ordnen:

1. $C = \infty$

Für den Diodengleichrichter der Nachrichtentechnik liegen Angaben von Roder [3] für eine rein Ohmsche Ladeimpedanz Z = R (Fig. 3a) vor, ferner Untersuchungen von Meinke [20] für den Fall eines allein bestimmenden nichtlinearen Gleichrichtereigenwiderstandes $Z = \varrho$ (i). Auch Rothe und Kleen [21] sowie Kammerloher [22] behandeln dieses Thema.

Auf Leistungsgleichrichter beziehen sich die Untersuchungen von Ludwig [23] und Holzwarth [24] für $Z = \varrho$ (i) sowie die Angaben von Verse [4] für Z = R.

2. Z = 0

Roberts [25] und Waidelich [26] behandeln unter dieser Annahme Leistungsgleichrichter, wie sie für den Netzanschluss von Nachrichtengeräten usw. verwendet werden. 3. Z = R

Für Niederspannungsgleichrichter liegen die Untersuchungen von Kammerloher [22] (unter [21] auch angeführt) sowie von Sattler und Zwiesler [27] vor.

Den Problemen des Hochspannungsgleichrichters sind die Arbeiten von Jona [28], Jaeger, von Steinwehr [29], Boekels [30], Piesch [31] und Mehlhorn [14] gewidmet.

4.
$$Z = \varrho(i)$$

Dieses Thema wird ebenfalls von Piesch [31] behandelt.

5.
$$Z = R + j\omega L$$

Zu diesem für den leistungsstarken Hochspannungsgleichrichter bedeutsamen Fall finden sich die Betrachtungen von *Brenzinger* [5] und *Verse* [6, 7] vor.

Alle soeben angeführten Arbeiten beschäftigen sich entsprechend dem primären Bedürfnis der Praxis mit dem eingeschwungenen Betriebszustand des Gleichrichters, nur Jaeger und von Steinwehr [29] gehen auf die Einschaltverhältnisse einer einfachen Gleichrichterschaltung ein. Dagegen haben derartige Einschwingfragen beim Kaskadengenerator und ähnlichen Schaltungen stärkere Behandlung erfahren durch Greinacher [15], Jaggi [32] und Gerber [33].

5. Berechnungsunterlagen für die Grundschaltung

Die nachstehend gebotenen Unterlagen sind unter Beschränkung auf das Wesentliche auf das Bedürfnis des praktisch tätigen Ingenieurs abgestellt; der Verzicht auf gewisse Feinheiten und hohe Berechnungsgenauigkeit ist ohne weiteres tragbar und lässt sich in einem späteren Entwurfsstadium durch genauere Nachrechnungen ausgleichen.

Fast immer hat die Berechnung auszugehen von den bei Nennlast verlangten Werten: arithmetischer Mittelwert der Gleichspannung U_{gm} oder (bei Röntgenapparaten) entsprechender Scheitelwert \hat{U}_{g} , arithmetischer Mittelwert des Gleichstromes I_{gm} , Gleichspannungswelligkeit w und Spannungsabfall ΔU_{gm} bzw. $\Delta \hat{U}_{g}$. Hinzu treten mit Rücksicht auf den in Aussicht genommenen Gleichrichtertyp gewisse Forderungen bezüglich des Scheitelwertes \hat{I} des Gleichrichterstromes i bzw. der Brenndauer γ sowie hinsichtlich der Sperrspannung \hat{U}_{sp} .

Umständliche jedesmalige Auswertung trigonometrischer Beziehungen oder graphische Strombzw. Spannungskurvenkonstruktionen werden vermieden, wenn die einzige Annahme für allgemein gültige Berechnungsunterlagen getroffen wird, dass der zeitliche Verlauf des Gleichrichterstromes (Kondensatorladestromstoss) i eine Sinushalbwelle mit der Brenndauer als Basis ist [6]. Eigene Untersuchungen an Röntgenapparaten und Modellschaltungen [6] sowie von anderer Seite veröffentlichte Oszillogramme [5, 14, 34, 35, 36] zeigen, dass im allgemeinen der tatsächliche Ladestromstoss in seiner Kurvenform zwischen einer Dreieckkurve und einer Sinushalbwelle liegt. Das Kriterium der Näherungsqualität ist, dass die Verhältniszahlen \hat{I}/I_m und \hat{I}/I ($\hat{I} =$ Scheitelwert, $I_m =$ arithmetischer Mittelwert, I = Effektivwert) bei der tatsächlichen Stromkurve und der Näherungskurve befriedigend übereinstimmen. In Fig. 9 sind diese Verhältniszahlen für die drei vereinfachten Kurven-

Ersatz der Gleichrichterstromkurve durch einfachere Formen

Oben: Vereinfachte Kurvenformen; a) Dreieckkurven,
 b) Sinuskurve, c) Rechteckkurve, γ Brenndauer
 Unten: Strom-Verhältniswerte für die vereinfachten Kurvenformen a)...c); f Scheitelwert; I Effektivwert und
 Im arithmetischer Mittelwert des Gleichrichterstromes

formen a...c in Abhängigkeit von der Brenndauer γ dargestellt, anhand der im Bereich $0 \le \omega t \le \gamma$ bei einmaliger Kondensatorladung je Periode geltenden Beziehungen:

a.
$$i = \hat{I} \frac{\omega t}{\gamma}$$
$$\hat{I} = 4 \frac{180^{\circ}}{\gamma} I_{m} = I \sqrt{6 \frac{180^{\circ}}{\gamma}}$$
b.
$$i = \hat{I} \sin \frac{180^{\circ}}{\gamma} \omega t$$
(3)

$$egin{aligned} I &= \pi \, rac{180^\circ}{\gamma} \, I_m = I \, iggrvee \, 4 \, rac{180^\circ}{\gamma} \ i &= \hat{I} \ \hat{I} &= 2 \, rac{180^\circ}{\gamma} \, I_m = I \, \sqrt{2 \, rac{180^\circ}{\gamma}} \end{aligned}$$

c.

Die Kurvenform b ist danach ein befriedigender Ersatz für die tatsächlichen im allgemeinen zwi-

schen a und b liegenden Ladestromkurvenformen und auch noch für etwaige zwischen b und c liegende Gleichrichterströme brauchbar.

Für die Grundschaltung Fig. 3 lassen sich im allgemeinsten Fall (Induktivität und Widerstand im Kondensatorladekreis, Fig.4 und 6) nachstehende Beziehungen ableiten ²):

$$\hat{U}_{g} = \sqrt{2} U_{w} \cos\left(\frac{\gamma}{2} + \varphi\right) + \hat{U}_{L}$$
 (4)

$$u_{g min} = \sqrt{2} U_w \cos\left(\frac{\gamma}{2} - \varphi\right)$$
 (5)

$$U_{gm} = \frac{\hat{U}_g + u_{gmin}}{2} = \sqrt{2} U_w \cos \frac{\gamma}{2} \cos \varphi + \frac{\hat{U}_L}{2} \quad (6)$$

$$\frac{\Delta u_g}{2} = \frac{\hat{U}_g - u_{gmin}}{2} = \sqrt{2} U_w \sin \frac{\gamma}{2} \sin \varphi + \frac{\hat{U}_L}{2} \quad (7)$$

Da die Leerlauf-Gleichspannung

$$\hat{U}_{g0} = U_{gm_0} = \sqrt{2} U_w \tag{8}$$

ist, ergibt sich der Gleichspannungsabfall bei Belastung zu

$$\Delta U_{gm} = \sqrt{2} U_w - U_{gm} \qquad (9)$$

Der gleichspannungsseitige Aussenwiderstand ist

$$R_a = \left| \frac{U_{gm}}{I_{gm}} \right| \tag{10}$$

Der gleichspannungsseitige Innenwiderstand ist

$$R_i = \frac{\Delta U_{gm}}{I_{gm}} \tag{11}$$

Es interessieren folgende Verhältniswerte: relative Gleichspannung

$$\zeta = \frac{U_{gm}}{\sqrt{2} U_w} \tag{12}$$

relativer Gleichspannungsabfall

$$\xi = \frac{\varDelta U_{gm}}{U_{gm}} \tag{13}$$

relative induktive Überspannung

$$\sigma = rac{\hat{U}_L}{U_{gm}}$$
 (14)

Aus den Gleichungen (6), (11) und (14) folgt:

C

$$\zeta = \frac{\cos\frac{\gamma}{2}\cos\varphi}{1 - \frac{\sigma}{2}} \tag{15}$$

2) In üblicher Weise ist die Phasenverschiebung bei Voreilung des Stromes gegen die Spannung negativ gerechnet. Der Winkel φ wird auch als «Unsymmetriewinkel» bezeichnet [22] unter Bezugnahme auf die relative Lage der Brenndauer γ zum Scheitelwert der Wechselspannung.

Die Gleichungen (9), (12) und (13) führen zu

$$\xi = \frac{1}{\zeta} - 1 \tag{16}$$

Die Gleichungen (1), (7), (12) und (14) ergeben

$$w = \frac{1}{\zeta} \sin \frac{\gamma}{2} \sin \varphi + \frac{\sigma}{2} \tag{17}$$

Durch Auflösung der Gleichungen (15) und (17) nach sin φ bzw. cos φ und anschliessendes Quadrieren und Addieren gewinnt man eine den Unsymmetriewinkel φ nicht enthaltende Beziehung zwischen den gegebenen Grössen w und γ und den zu ermittelnden Grössen ζ , ξ und σ :

$$\left(\frac{1}{\zeta}\right)^{2} = \left(\frac{w - \frac{\sigma}{2}}{\sin\frac{\gamma}{2}}\right)^{2} + \left(\frac{1 - \frac{\sigma}{2}}{\cos\frac{\gamma}{2}}\right)^{2} \quad (18)$$

Beim Entwurf ist baldige Klarheit darüber erwünscht, ob ein annehmbarer Spannungsabfallwert ξ nur mit Unterstützung der Induktivität des Kondensatorladekreises zu erhalten ist oder ob diese keine wesentliche Rolle zu spielen braucht.

Diagramm zur Berechnung von Gleichrichterschaltungen ζ relative Gleichspannung; ζ relativer Gleichspannungsabfall; w Gleichspannungswelligkeit; γ Brenndauer

Diese Entscheidung kann leicht mit Hilfe der Fig. 10, die die Zusammenhänge der Gleichung (18) für den Fall $\sigma = 0$ aufzeigt, und anhand der in Fig. 11 skizzierten Anweisung getroffen werden.

Zur gegebenen Brenndauer γ und zum gewünschten Welligkeitswert w^* ergibt sich, wenn die Induktivität vorerst als vernachlässigbar angesehen wird, der Betriebspunkt 1 und damit die Verhältniswerte ζ_1 und ξ_1 . (Wäre w = 0, so ergäbe sich der Betriebspunkt 0 auf der Abszissenachse mit dem zugehörigen Wert ζ_0). Führt der sich ergebende ξ -Wert zu einem unerwünscht hohen Spannungsabfall, so muss man mit dem ζ -Wert hinaufgehen, z. B. auf den Wert ζ_2 . Dieser lässt sich, wie Fig. 11 zeigt, entweder erreichen durch Wahl eines Gleichrichtertyps mit derart höherer Spitzenstrombelastbarkeit, dass die Brenndauer auf den Wert γ_2 verringert werden kann, oder dadurch, dass bei unveränderter Brenndauer γ_1 durch Vergrösserung der Induktivität die relative Gleichspannung von ζ_1 auf ζ_2 angehoben wird. Diese Anhebung des relativen Gleichspannungswertes kann maximal bis zum Grenzwert ζ_{max} (Betriebspunkt G) getrieben werden. Der zu dieser Gleichspannungsanhebung nötige σ -Wert nach Gleichung (14) steigt dabei vom Betrag 0 für den Betriebspunkt 1 bis zum Höchstwert σ_{max} für den Betriebspunkt G. Es sei ein Beispiel gebracht:

Die Nennwerte der zu entwerfenden Gleichrichteranordnung seien: $U_{gm} = 100 \,\mathrm{kV}, \ I_{gm} = 20 \,\mathrm{mA},$ w = 15%; die Kreisfrequenz der Wechselspannung sei $\omega = 314/s$. In Aussicht genommen sei ein Gleichrichtertyp mit $\hat{U}_{sp max} = 250 \text{ kV}$ und $\hat{I}_{max} = 150 \text{ mA}$. Mit Rücksicht auf die höchste im Leerlauf auftretende Sperrspannung darf dann $\sqrt{2}$ U_w höchstens gleich 125 kV sein ($\Delta U_{gm} = 25$ kV, $\zeta = 0.8$, $\xi = 0.25$). Aus Fig. 10 ergibt sich hierzu $\gamma = 70^{\circ}$ für $\sigma = 0$. Hierfür ergibt sich nach Fig. 9 (Kurve b) ein Spitzenwert $\hat{I} \approx 160$ mA. Diese Überschreitung des zulässigen Gleichrichterstromwertes I_{max} zwingt zu einer Vergrösserung der Brenndauer. Aus Fig. 9 ergibt sich, dass bei $\gamma = 75^{\circ}$ gerade $\hat{I} = 150$ mÅ ist. Der damit verknüpfte Rückgang von ζ auf den Wert 0,78 (vgl. Fig. 10) muss durch eine passend bemessene Induktivität im Ladekreis kompensiert werden. Der erforderliche σ -Wert bestimmt sich anhand der durch Umformung von Gleichung (18) zu erhaltenden Beziehung

$$\sigma = 2\left(\sin^2\frac{\gamma}{2} + w\,\cos^2\frac{\gamma}{2}\right) - \sin\gamma\,\sqrt{\frac{1}{\zeta^2} - (1-w)^2} \tag{19}$$

mit den vorliegenden Werten $\gamma = 75^{\circ}$, $w = 15^{\circ}$, $\zeta = 0.8$ zu $\sigma \approx 0.03$.

Unter der getroffenen Annahme eines sinushalbwellenförmigen Verlaufes des Gleichrichterstromes ist, wie sofort ersichtlich,

$$\hat{U}_L = \omega L \hat{I} \tag{20}$$

Aus den Gleichungen (14) und (20) folgt

$$L = \frac{\sigma}{\omega} \cdot \frac{U_{gm}}{\hat{I}} \tag{21}$$

Bei unserem Beispiel ergibt sich der Induktivitätswert $L \approx 70$ H, der in der Grössenordnung der Streuinduktivität eines Hochspannungstransformators mit den hier benötigten Spannungs- und Stromwerten liegt. Der für die vorausgesetzte Welligkeit überhaupt erreichbare Bestwert ist $\zeta_{max} = 0.87$. Hierzu wäre bei $\gamma = 75^{\circ}$ eine Induktivität von etwa 380 H erforderlich.

Die notwendige Kondensatorgrösse ergibt sich, weil die dem Kondensator bei der Ladung zugeführte Elektrizitätsmenge gleich der bis zum nächsten Ladevorgang entnommenen sein muss, über die Beziehung

$$C \varDelta u_{\rm g} = I_{gm} T \left(1 - \frac{\gamma}{360^\circ} \right) {
m mit} \ T = \frac{2 \pi}{\omega}$$

und mit den Gleichungen (1) und (10) zu:

$$C = \frac{\pi}{w} \cdot \frac{1}{\omega R_a} \left(1 - \frac{\gamma}{360^\circ} \right)$$
(23)

Fig. 12 gibt einen Überblick über die hiedurch festgelegten zahlenmässigen Zusammenhänge. Für das hier behandelte Beispiel ist nach Gleichung (10) der Verbraucherwiderstand $R_a = 5 M\Omega$; die benötigte Kondensatorgrösse ist rund 10 000 pF.

Diagramm zur Berechnung von Gleichrichterschaltungen C Kapazität des Pufferkondensators; R_a Aussenwiderstand; w Gleichspannungswelligkeit; γ Brenndauer

Schliesslich muss noch der Widerstandswert im Kondensatorladekreis bestimmt werden, der den Ladestromstoss auf den Scheitelwert \hat{I}_{max} begrenzt. Dem Stromscheitelwert \hat{I} ist die treibende Spannungsdifferenz $\sqrt{2} U_w \cos \varphi - U_{gm}$ zugeordnet. Hat der strombegrenzende Widerstand rein Ohmschen Charakter, so gilt:

$$\hat{I} = \frac{1}{R} \left(\sqrt{2} \ U_w \cos \varphi - U_{gm} \right) \qquad (24 \, \mathrm{a})$$

Wird dagegen ein Hochvakuumgleichrichter zugleich auch als strombegrenzendes Mittel verwendet, so benützt man die Beziehung:

$$\hat{I} = K \left(\sqrt{2} U_w \cos \varphi - U_{gm} \right)^{\frac{1}{2}} \qquad (24 \,\mathrm{b})$$

Für diesen letzten Fall muss die Raumladungskonstante K bekannt sein, und es muss ausserdem nachgeprüft werden, ob die Sättigungsspannung des benützten Gleichrichtertyps so weit über dem Spannungswert $\sqrt{2} U_w \cos \varphi - U_{gm}$ liegt, dass der Gleichrichter tatsächlich nur im Raumladungsgebiet arbeitet. Den in den Gleichungen (24 a) und (24b) benötigten $\cos\varphi$ -Wert errechnet man aus Gleichung (15); er ist bei unserem Beispiel praktisch gleich 0,99. Nach Gleichung (24a) muss ein Ohmscher Strombegrenzungswiderstand $R = 160 \text{ k}\Omega$ gewählt werden. Zum Teil wird dieser Widerstand durch den auf die Oberspannungsseite des Hochspannungstransformators reduziert gedachten gesamten Wirkwiderstand des Wechselstromkreises gebildet. Der durch Gleichung (24b) beschriebene Bemessungsfall braucht im Beispielfall nicht in Betracht gezogen zu werden, da er fast nur bei den Niederspannungs-Netzgleichrichtern von Radioapparaten usw. verwirklicht werden kann.

Wird eine Gleichrichteranordnung in der Grundschaltung (Fig. 3a) ohne Zwischenschaltung eines Transformators direkt an eine vergleichsweise starke Wechselstromquelle angeschlossen, so ist der Effektivwert des aufgenommenen Stromes ohne weiteres mit Hilfe von Fig. 9 bestimmbar.

Bei zwischengeschaltetem Transformator kann an Hand von Fig. 9 der für die Auslegung der Sekundärwicklung massgebende Effektivstromwert I_2 ebenfalls sofort ermittelt werden; er ist für das behandelte Beispiel ($I_m = 20 \text{ mA}, \gamma = 75^\circ$) ziemlich genau $I_2 = 45 \text{ mA}$. Den Primärstrom I_1 kann man mangels genauerer Kenntnis des Ausgleichs-Magnetisierungsstromes nur schätzen. Unter der nicht abwegigen Annahme, dass der effektive Ausgleichsstrom etwa gleich I_2 ist (Übersetzungsverhältnis des Transformators vorausgesetzt zu $\ddot{u} = 1$), ergibt sich der effektive Primärstrom schätzungsweise zu $I_1 = \ddot{u} \sqrt{2} I_2$. Die nötige Transformatorleistung ist dann angenähert

$$P_T = rac{\sqrt{2}+1}{2} U_w \ I_2 = 1,2 \ U_w \ I_2$$

Im behandelten Beispiel ergibt sich hieraus eine Leistung von rund 4,8 kVA. Dieser im Vergleich zur abgegebenen Gleichstromleistung von 2 kW hohe Wert ist eine Folge der Einwegbelastung und der (für Pufferkondensatorschaltungen typischen) spitzen Kurvenform des Gleichrichterstromes.

6. Berechnung von Gleichrichterschaltungen höherer Ordnung mit Pufferkondensatoren

Die in Fig. 7 zusammengestellten Ersatzschaltbilder ermöglichen es, den Berechnungsgang einer komplizierteren Gleichrichterschaltung für jede der beiden Wechselspannungshalbwellen erforderlichenfalls auf den soeben behandelten Fall der Grundschaltung zu reduzieren. Dies eingehender zu zeigen, würde den Rahmen der vorliegenden Arbeit weit überschreiten, ohne grundsätzlich Neues zu bieten. Hinzuweisen ist auf den Umstand, dass bei allen Schaltungen mit mehrfacher Ladung eines Kondensators während einer Periode der Wechselspannung die Bestimmung der Kondensatorgrösse und des Gleichrichterstrom-Scheitelwertes aus dem arithmetischen Mittelwert des abgegebenen Gleichstromes einer gewissen Beachtung bedarf, während bei allen Schaltungen mit Spannungsverdoppelungs- bzw. -vervielfachungseigenschaften einer sinngemässen Benützung der Werte der Gleichspannungswelligkeit und der relativen Gleichspannung Aufmerksamkeit zu schenken ist.

Einen ersten Überblick über die zu erwartenden Betriebseigenschaften kann man verhältnismässig einfach unter den Voraussetzungen $C = \infty$ und Z = R gewinnen. Von dieser ersten Annäherung aus lässt sich durch genauere Berücksichtigung der tatsächlichen Kondensatorgrösse und der etwaigen Induktivität im Kondensatorladekreis eine exaktere Berechnung anstellen. Es zeigt sich, dass bei $C = \infty$ und Z = R das Betriebsverhalten aller Schaltungen, deren Netzstromaufnahme in beiden Halbwellen kurvenformgleich ist (Fig. 7, Schaltungen Nr. 2, 3, 4, 7, 8) abgekürzt durch die folgenden Beziehungen beschrieben werden kann [4]:

relative
$$\zeta = \frac{U_{gm}}{\sqrt{2} U_w} = k_1 \psi_1 (\gamma)$$
 (25a)

relativer Scheitelwert des Gleichrichterstromes

$$\frac{\hat{I}}{I_{m}} = k_2 \psi_2 \left(\gamma \right) \quad (25b)$$

relativer Effektivwert des Transformator - Sekundärstromes (pro Phase)

$$\frac{I_2}{I_{gm}} = k_3 \psi_3 \left(\gamma \right) \quad (25c)$$

Gleichrichterschaltungen

 γ Brenndauer; $\psi_1...\psi_4$ Berechnungsfaktor (siehe Text)

relative Transfor- matorleistung	$\frac{P_T}{U_{gm} I_{gm}} = k_4 \psi_4 (\gamma)$	(25d)
Höchstwert der re- lativen Gleichrich- ter-Sperrspannung	$rac{\hat{U}_{sp\ max}}{\sqrt{2}\ U_w} = k_5$	(25e)

lativen Gleichrichter-Sperrspannung

Durch Auswertung dieser Beziehungen an Hand der graphischen Darstellung Fig. 13 und der Tabelle I gewinnt man sehr rasch den gewünschten Überblick.

Werte der Konsta	inten k_1k_5	der Gleichu	ngen (25 ae)
------------------	----------------	-------------	-------------	---

				Tabelle I		
Schaltungs-Nr. der Fig. 7	<i>k</i> ₁	k2	k ₃	k_4	k_5	
2 3 4 7 8	1 1 2 2 2 n	$1,57 \\ 1,57 \\ 3,14 \\ 3,14 \\ 3,14 \\ 3,14$	1,110,792,222,222,222,22n	0,79 0,95 0,79 0,79 0,79	1 2 2 2 2	

Literatur

- [1] Duinker, D., M.: Siebkreise für Gleichrichter. Elektrotechn. u. Maschinenbau Bd. 55(1937), Nr. 32, S. 381...388.
- Verse, H.: Gleichrichtersysteme bei hohen Spannungen und bei hohen Stromstärken. Elektrotechnik Bd. 2(1948), Nr. 5, S. 143...146.
- [3] Roder, H.: Über die Wechselwirkung zwischen Diode und hochfrequenter Spannungsquelle bei der Gleichrichtung modulierter Hochfrequenz. Telefunken - Röhre Bd. (1942), Nr. 26, S. 65...95.
- [4] Verse, H.: Kurze Einführung in die Theorie der Gleichrichter mit Pufferkondensatoren. Elektrotechn. Bd. 69(1948), Nr. 1, S. 11...18.
- Brenzinger, M.: Innere Vorgänge in Ventil-Kondensator-[5] Schaltungen. Arch. Elektrotechn. Bd. 26(1932), Nr. 2, S. 99...110.
- [6] Verse, H.: Die Villard-Schaltung in stromrichtertechnischer Behandlung. Elektrotechn. u. Maschinenbau Bd. 61(1943), Nr. 23/24, S. 265...272.
- [7] Verse, H.: Vergleichende Betrachtung der Greinacherschaltung und der Villardschaltung mit Gleichspannungs-Fortschr. Röntgenstr. Bd. 69(1944), Nr. 5/6, zusatz. S. 221...228.
- [8] Grünewald, H.: Erzeugung und Verwendung hochge-spannten Gleichstromes. Z. VDI Bd. 79(1935), Nr. 46, 5. 1375...1385.
- [9] Roth, A.: Hochspannungstechnik. Wien, 1938.
- [10] Raske, W.: Die Erzeugung sehr hoher Gleichspannung. [In: W. O. Schumann: Fortschritte der Hochspannungs-technik. Leipzig, 1944] — S. 146 ff.
- [11] Verse, H.: Hohe Gleichspannung. Technik Bd. 2(1947), Nr. 5, S. 233...237 u. Nr. 6, S. 289...296.
- [12] Schilling, W.: Die Gleichrichterschaltungen. München/ Berlin, 1938.
- Bouwers, A. und A. Kuntke: Ein Generator für drei [13] Millionen Volt Gleichspannung. Z. techn. Phys. Bd. 18 (1937), Nr. 8, S. 209...219.
- [14] Mehlhorn, H.: Über die Greinacher-Ventilverviel-fachungsschaltung und ihre Verwendung zur Erzeugung hoher konstanter Gleichspannung. Wiss. Veröff". Siemens-Werk Bd. 21(1942), Nr. 2, S. 1...46.
- [15] Greinacher, H.: Über den Spannungsauf bau im Kaskaden-Generator. Helv. Phys. Acta Bd. 15(1942), Nr. 6, Seite 518....522.
- und H. S. Hubbard: 1 400 000-Volt-[16] Charlton, E. E. Constant-potential X-Ray Equipment. Gen. Electr. Rev.
- Bd. 43(1940), Nr. 7, S. 272...279.
 [17] Imhof, A.: Der Tensator, ein neuer Atom-Umwandlungs-apparat. Micafil-Nachr". Bd. —(1939), Juli, S. 10...18.
 [18] Schenkel, M.: Eine neue Schaltung für die Erzeugung
- hoher Gleichspannungen. Elektrotechn. Z. Bd. 40(1919), Nr. 28, S. 333...334.

- [19] Müller, Harald: Schaltungen zur Erzeugung hochgespannten Gleichstromes für Versuche. Arch. techn. Messen Z 43-1,2 und 3.
- [20] Meinke, H.: Das Richtkennlinienfeld einer Diode bei niedrigen und hohen Frequenzen. Telefunken-Röhre Bd. —(1941), Nr. 21/22, S. 250...264. — Die Leistungsbilanz einer Diode bei niedrigen und hohen Frequenzen. Telefunken-Röhre Bd. —(1941), Nr. 23, S. 297...315.
- [21] Rothe, H. und W. Kleen: Elektronenröhren als Schwingungserzeuger und Gleichrichter. Leipzig, 1941.
 [22] Kammerloher, J.: Hochfrequenztechnik Teil III, Gleich-
- [22] Kammerloher, J.: Hochfrequenztechnik Teil III, Gleichrichter, Leipzig, 1942.
 [23] Ludwig, E. H.: Die Stromspannungs-Charakteristiken Understandigener Clübkathodengleich-
- [23] Ludwig, E. H.: Die Stromspannungs-Charakteristiken kapazitiv belasteter Hochvakuum-Glühkathodengleichrichter. Arch. Elektrotechn. Bd. 32(1938), Nr. 9, Seite 607...621.
- [24] Holzwarth, H.: Zur Theorie der Netzgleichrichterschaltungen. Elektr. Nachr.-Techn. Bd. 19(1942), Nr. 11, S. 219...227.
- [25] Roberts, N. H.: The Diode as Half-Wave, Full-Wave and Voltage-Doubling Rectifier. Wirel. Engr. Bd. 13(1936), Nr. 154, S. 351...362 u. Nr. 155, S. 423...430.
- [26] Waidelich, D. L.: The Full-Wave Voltage-Doubling Rectifier Circuit. Proc". Inst. Radio Engr". Bd. 29(1941), Nr. 10, S. 554...558. Waidelich, D. L. und C. H. Cleason: The Half-Wave Voltage-Doubling Circuit. Proc", Inst. Radio Engr". Bd. 30(1942), Nr. 12, S. 535.
- [27] Sattler, H. und W. Zwiesler: Gleichrichtung mit unvollkommenen Gleichrichtern. Hochfrequenztechn. u. Elektroakustik Bd. 61(1943), Nr. 3, S. 71...74.

- [28] Jona, M.: Beitrag zur Theorie der Kondensatorapparate zur Erzeugung hoher Gleichspannung für Röntgenzwecke. Z. techn. Phys. Bd. 5(1924), Nr. 9, S. 405...412.
- [29] Jaeger, W. und H. von Steinwehr: Kondensator im Wechselstromkreis mit Ventil. Arch. Elektrotechn. Bd. 13(1924), Nr. 4, S. 330...348.
- [30] Boekels, H.: Die Pulsation bei Ventilgleichrichteranlagen. Arch. Elektrotechn. Bd. 25(1931), Nr. 10, S. 705...708.
- [31] Piesch, H.: Theorie der Greinacher-Schaltung. Arch. Elektrotechn. Bd. 30(1936), Nr. 4, S. 259...266.
- [32] Jaggi, M.: Untersuchung des Aufladevorganges im Kaskadengenerator zur Erzeugung hochgespannten Gleichstroms aus Wechselstrom. Bull. SEV Bd. 34(1943), Nr. 14, S. 386...399.
- [33] Gerber, Th.: Über den Spannungsaufbau im Kaskadengenerator und in ähnlichen Spannungsvervielfachern. Bull. SEV Bd. 38(1947), Nr. 22, S. 700...713.
- [34] Müller, K. W.: Eine Röntgenapparatur für 600 kV Röhrenspannung. Elektrotechn. Z. Bd. 52(1931), Nr. 27, S. 859...861.
- [35] Kaye, G. W. C. und G. E. Bell: Das Güteverhältnis von Röntgenapparaten verschiedener Typen. Fortschr. Röntgenstr. Bd. 53(1936), Nr. 5, S. 804...811.
- [36] Miram, P.: Über die Wirksamkeit der Siebketten von Netzgleichrichtern. Funk Bd. —(1939), Nr. 15, S. 393...397.
- Adresse des Autors:

Dr.-Ing. H. Verse, Heschredder 24, Hamburg-Fuhlsbüttel, Deutschland (Brit. Zone).

Technische Mitteilungen — Communications de nature technique

Österreichs 220-kV-Sammelschiene

621.315.1 (436)

[Nach H. Krautt: Österreichs 220-kV-Sammelschiene. Österr: Z. Elektr.wirtsch. Bd. 2(1949), Nr. 10, S. 229...241.]

In Österreich wird z. Zt. eine 220-kV-Freileitung von rund 210 km Länge errichtet, die durch die hier erstmalig ange-wandten konstruktiven Neuerungen und Montageverfahren, sowie durch die ungewöhnlich kurze Baufrist besonders bemerkenswert ist. Bekanntlich werden in Österreich grosse Anstrengungen gemacht, um den Bau des Grosskraftwerkes Kaprun in den Hohen Tauern zu fördern, das als Speicherkraftwerk die Wiederholung der in den letzten Wintern aufgetretenen Schwierigkeiten der österreichischen Stromversorgung vermeiden soll. Die im Bau befindliche Leitung soll für den Abtransport von etwa 200 MW von Kaprun nach Wien dienen. Da Kaprun etwa im Mittelpunkt der durch das österreichische Gebiet gedachten Längsachse liegt, wird die zu errichtende Leitung zu einem Bestandteil einer durch Österreich verlaufenden Staatssammelschiene. Es kommt somit der Leitung ausser der Aufgabe, den Energietransport Kaprun-Wien zu bewerkstelligen, auch die Auf-gabe zu, Abzweigungen zu den energiearmen Nachbarländern zu ermöglichen, um Österreich seiner Bestimmung als Ener-gieexportland zuzuführen. Der Verfasser, ein auch in schweizerischen Kreisen bekannter Fachmann für Freileitungsfragen, schildert ausführlich die Entwicklung der österreichischen Elektrizitätsversorgung von seinen Anfängen bis zum heutigen Verbundbetrieb und des Freileitungsnetzes, das seiner Aufgabe nur dann gerecht werden kann, wenn es eine längs des österreichischen Gebietes führende Höchstspannungs-Sammelschiene besitzt.

Die 220-kV-Leitung Kaprun-Wien führt in den Bundesländern Salzburg und Oberösterreich durch gebirgiges Gelände, bis sie die Transformatoren- und Schaltstation Ernsthofen erreicht, in welche 110-kV-Freileitungen, die die in den Wasserkraftwerken Oberösterreichs, Salzburgs, der Steiermark und Kärntens erzeugte Energie herbeiführen, münden. Der bereits in Betrieb stehende 160 km lange erste Abschnitt der Sammelschiene führt von Ernsthofen bis zum Unterwerk Bisamberg knapp vor Wien durch fast durchwegs ebenes Gelände. Die Trassenführung wurde solcher Art gewählt, dass sich der Anschluss an das geplante Donaugrosskraftwerk Ybbs-Persenbeug möglichst einfach herstellen lässt. Der erste Leitungsteil wurde nach längerer Bauunterbrechung im Jahre 1948 fertiggestellt und am 9. 1. 1949 dem Betrieb übergeben. Dieser Betrieb wird noch mit 110 kV geführt. Der Leitungsteil Ernsthofen-Kaprun wurde erst im Februar dieses Jahres in Angriff genommen und wird, was besonders bemerkenswert ist, trotz seiner 208,7 km betragenden Länge und des gebirgigen Charakters des Geländes noch dieses Jahr mit 220 kV unter Spannnug gesetzt werden. Die Arbeiten sind z. Zt. in Fluss; die in ihrem Zuge erfolgten Lösungen von Montagefragen werden Gegenstand eines weiteren Aufsatzes bilden. Der Baufortschritt ist zufriedenstellend und sichert die Einhaltung des festgesetzten Fertigstellungstermins.

Den 2 Leitungsteilen ist die folgende Anordung bzw. die Verwendung gleicher Bauteile gemeinsam: Es werden durchwegs Stahlmaste verwendet, die Regelspannweite beträgt hier wie dort 330 m. Es wird die Verlegung von 2 Drehstromsystemen in Aussicht genommen, von welchen jedoch vorerst nur eines montiert wird. Die Maste weisen Sechseck-Anordnung, somit die Tonnenform auf. In der laufenden Strecke werden für die Übertragungsleitung Stahlaluminiumseile verwendet. Sie haben einen Durchmesser von 28,1 mm, einen Gesamtquerschnitt von 451,8 mm², einen Aluminiumquerschnitt von 341,2 mm² und wiegen 1850 kg/km. Das an der Mastspitze angebrachte Erdseil ist ein Stahlseil von 95 mm².

Gespannt wird in der normalen Strecke das Übertragungsseil mit 7,6 kg/mm², in Rauhreifstrecken mit 6,3 kg/mm², das Erdseil mit 20 bzw. 16 kg/mm² bei — 5 °C und Normaleislast. Die normalen Tragmaste weisen eine Höhe von 41,35 m auf; das Längenprofil ergab die Möglichkeit bzw. Notwendigkeit der Verwendung von um 2 m gekürzten bzw. bis um 16 m verlängerten Masten.

Die Isolation des östlichen, vorerst mit 110 kV betriebenen Leitungsteiles erfolgt mit 7gliedrigen Ketten aus Vollkernisolatoren der genormten Typen VK 85, die des westlichen Teiles mit 13gliedrigen Ketten aus Kappenisolatoren. Die grösstenteils aus dem Ausland bezogenen Isolatoren und Armaturen bzw. die Leiterzüge sind in der gewohnten Weise gegeneinander abgestimmt. Während nun die Eisenmaste der östlichen Strecke nach den VDE-Bestimmungen entworfen und berechnet sind, wurde die westliche Strecke nach den im Entwurf vorliegenden neuen österreichischen Vorschriften ausgeführt. Die Maste der östlichen Strecke sind Stahl-