Zeitschrift:	Bulletin de l'Association suisse des électriciens						
Herausgeber:	Association suisse des électriciens						
Band:	47 (1956)						
Heft:	11						
Artikel:	Experimentelle und theoretische Untersuchung der Erdschlussüberspannungen in isolierten Wechselstromnetzen, sowie der Eigenschaften von Erdschlusslichtbogen						
Autor:	Berger, K. / Pichard, R.						
DOI:	https://doi.org/10.5169/seals-1058208						

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 18.01.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

DE L'ASSOCIATION SUISSE DES ELECTRICIENS

ORGANE COMMUN

DE L'ASSOCIATION SUISSE DES ELECTRICIENS (ASE) ET DE L'UNION DES CENTRALES SUISSES D'ELECTRICITE (UCS)

Experimentelle und theoretische Untersuchung der Erdschlussüberspannungen in isolierten Wechselstromnetzen, sowie der Eigenschaften von Erdschlusslichtbogen

Von K. Berger und R. Pichard, Zürich

621.316.99 : 621.3.014.31

Da die Erdschlussversuche im 8-kV-Netz der Elektrizitätswerke des Kantons Zürich in Aathal [1]¹) (1929), sowie diejenigen im 50-kV-Netz der Bernischen Kraftwerke A.-G. [2] in Mühleberg (1945) keine gefährlichen Überspannungen ergeben haben, hat die Forschungskommission des SEV und VSE für Hochspannungsfragen (FKH) in ihrer Versuchsstation bei Gösgen die Eigenschaften des Lichtbogens in freier Luft, in Öl und in rissigen Isolatoren untersucht und die Resultate mit den Voraussetzungen für das Aufschaukeln der Netzspannung nach der Theorie von Petersen [3] (1917) verglichen. Es hat sich gezeigt, dass selbst beim intermittierenden Erdschluss jede einzelne dieser Voraussetzungen nur sporadisch erfüllt wird. Die Wahrscheinlichkeit der Erfüllung aller der von der Petersen-Theorie zugrunde gelegten Voraussetzungen ist deshalb so klein, dass der Fall des vollen Spannungsaufschaukelns wegen seiner ausserordentlichen Settenheit jede praktische Bedeutung verliert. In den weitaus meisten Erdschlussfällen überschreiten die grössten auftretenden Spannungen gegen Erde den doppelten Scheitelwert der verketteten Netzspannung nicht.

A. Einleitung

Seit der Publikation der Theorie von Petersen (1917) [3], die für einen intermittierenden Erdschluss in einem isolierten Netz hohe Überspannungen durch Aufschaukelung des gesamten Netzpotentials voraussagt, hat sich ganz allgemein die Meinung verbreitet, aussetzende Erdschlüsse seien eine der schädlichsten Überspannungsquellen der Wechselstromnetze. Diese Meinung hat sich verstärkt, weil sie einerseits in der Literatur durch anerkannte Autoren [4, 5] unterstützt wurde, anderseits weil Erdschlüsse im Betrieb oft in Doppelerdschlüsse übergehen.

Es ist deshalb begreiflich, dass die Resultate der Erdschlussversuche im ausgedehnten 50-kV-Netz der Bernischen Kraftwerke, in welchen die höchsten Spannungen nur den 1,8fachen Scheitelwert der verketteten Netzspannung erreichten und somit relativ noch tiefer blieben als diejenigen des 8-kV-Netzes der EKZ in Aathal, zuerst als überraschend betrachtet wurden (Fig. 1). Man stellte zur Erklärung dieses Resultates fest, dass der Lichtbogen bei den Versuchen im BKW-Netz stabil gebrannt hätte, im Gegensatz zur Theorie von Petersen, die für das

¹) siehe Literatur am Schluss des Aufsatzes.

En 1929 les Entreprises Electriques du Canton de Zurich (EKZ) à Aathal [1]¹) et en 1945 les Forces Motrices Bernoises 5.A. (FMB) [2] à Mühleberg ont éffectué de nombreuses mesures de surtensions produites par une mise à la terre de leurs réseaux à 8 kV resp. 50 kV, dont le neutre est isolé. Les résultats n'ayant pas donné de valeurs dangereuses, la Commission de l'ASE et de l'UCS pour l'étude des questions relatives à la haute tension (FKH) a poursuivi ce problème dans son laboratoire près de Gösgen par des recherches expérimentales sur les propriétés de l'arc dans l'air libre, dans l'huile et dans un isolateur fissuré. Elle a confronté ces derniers résultats avec les conditions requises par la théorie de Petersen [3] (1917) pour l'obtention de surtensions élevées. Il ressort de cet examen que, même pour les arcs intermittents, ces conditions ne sont remplies que dans des cas fortuits et sporadiques. Ainsi, la probabilité pour que toutes ces conditions soient remplies au cours d'une mise à terre devient si faible que les surtensions maxima envisagées par la théorie de Petersen, dont la réalisation est extrêmement rare, ne méritent pas qu'on y attache trop d'importance. Dans la grande majorité des cas, on ne doit guère s'attendre à des tensions contre terre dépassant le double de la valeur de crête de la tension composée du réseau.

Aufschaukeln der Spannung einen intermittierenden Erschlußstrom voraussetzt.

Die Frage der hohen Überspannungen blieb also ohne Antwort. Deshalb wurde im Kreise der Forschungskommission des SEV und VSE für Hochspannungsfragen (FKH) der Wunsch geäussert, dieses Problem im Freiluft-Hochspannungslaboratorium der FKH in Däniken näher und gründlich zu untersuchen.

Das Vorgehen bei dieser Untersuchung war das folgende:

- 1. Bestimmung der Voraussetzungen für die Realisierung der Theorie von Petersen.
- 2. Bestimmung der Lichtbogeneigenschaften.
- 3. Durchführung von Erdschlussversuchen an einem künstlichen Netz (Modell-Netz) mit Lichtbogen in verschiedenen Medien: In Luft, in Öl und in einem Isolatorspalt.
- 4. Vergleich der Voraussetzungen Petersens mit den tatsächlichen Vorgängen bei mehrmaliger Wiederholung der Versuche und Feststellung, wie oft oder mit welcher Wahrscheinlichkeit das ganze Aufschaukeln der Spannung zu erwarten ist.

Das verwendete Modell-Netz war kein Drehstrom-, sondern ein Zweileiter-Einphasennetz. Wie die Theorie von Petersen zeigt, spielen sich die für das Aufschaukeln der Spannung entscheidenden Vorgänge nur in der kranken Phase ab, so dass das verwendete Modell für diesen Zweck genügte.

1,5 1,0 5 6 Uć 0,5 : A 0 20 n ó 40 60 80 100% SEV 24001 С

Fig. 1

Einige Resultate der Lichtbogenerdschlussversuche im 50-kV-Netz der BKW, Mühleberg 1945

a und b Oszillogramme der Spannung an der kranken (R), an den gesunden Phasen (S, T) und am Sternpunkt (N) gegen Erde bei verschiedener Netzausdehnung

- a kleiner Netzteil mit Erdschlußstrom von 6,5 A
- b grosser Netzteil mit Erdschlußstrom von 93 A
- c Summenhäufigkeitskurven der auf den Scheitelwert der verketteten Betriebsspannung bezogenen höchsten aufgetretenen Spannungen (ü).
- 1 Gesunde, der kranken nacheilenden Phase (S)
- beim Ausschalten 2 Gesunde, der kranken nacheilenden Phase (S) beim Einschalten
- 3 Gesunde, der kranken voreilenden Phase (T) beim Ausschalten
- 4 Gesunde, der kranken voreilenden Phase (T)

		beim Einschalten
5	Kranke Phase (R)	beim Ausschalten
6	Sternpunkt (N)	beim Ausschalten
7	Sternpunkt (N)	beim Einschalten
n	100 % = 49 Erdschlüsse	

u_p Scheitelwert der Phasenspannung

B. Erdschlussvorgang im isolierten Drehstromnetz

Im stationären Zustand des (festen) Erdschlusses ist die Polspannung der kranken Phase null; die Spannungen der gesunden Phasen sind gleich der verketteten Netzspannung. Der Erdschlußstrom ist dann gleich der vektoriellen Summe der kapazitiven Ladeströme der gesunden Phasen. Für eine rein sinusförmige Spannung mit Betriebsfrequenz von 50 Hz ist er gegeben durch: $I_{E50} = 3 \omega C_P U_P$, worin $\omega = 314 \text{ s}^{-1}$ die Kreisfrequenz, C_P die Kapazität einer Phase gegen Erde und U_P die Phasenspannung des Netzes bedeuten. zweite ist wichtig, weil sie kurz nach dem Löschen massgebend ist für den Anstieg der wiederkehrenden Spannung zwischen Erdschlussphase und Erde und damit für das Wiederzünden.

Die beiden Schwingungen f_1 und f_2 sind schwach gedämpft; ihre Abklingverhältnisse δ_1 und δ_2 , d. h. die Verhältnisse einer Amplitude zur vorhergehen-

SEV 24002

Fig. 2

Ausgleichs-Schwingkreise eines isolierten Netzes im Erdschlussfall

a Prinzipschema eines Drehstromnetzes

b Prinzipschema eines Zwei-Leiter-Netzes oder Ersatzschema eines Drehstromnetzes

c, e Schwingkreis beim Einleiten des Erdschlusses

d Schwingkreis beim Löschen des Erdschlusses

Tr Transformatoren; C_g Kapazität der gesunden Phasen; C_k Kapazität der kranken Phase; L_{Tr} resultierende Streuinduktivität aller Transformatoren des Netzes; L_g , L_k Induktivität der Leitungen (gesunde bzw. kranke Phase); f_1 , f_2 , f_3 Eigenfrequenzen; Z_1 , Z_2 , Z_3 Schwingungsimpedanzen

(Querkapazitäten zwischen Phasen, bzw. Ohmsche Widerstände, die den kapazitiven Kupplungsfaktor bzw. die Dämpfung bestimmen, sind einfachheitshalber nicht eingezeichnet)

Zwischen dem Normalzustand des Netzes und dem stationären Erdschlusszustand treten Ausgleichschwingungen auf, deren Eigenfrequenzen bei jedem Zünden des Lichtbogens mit f_1 und f_3 , und bei jedem Löschen mit f_2 bezeichnet sind (Fig. 2). Die Schwingung f_3 besitzt die höchste Frequenz (Wanderwellenspiel); sie ist relativ stark gedämpft und klingt rasch ab; sie spielt für das Aufschaukeln der Spannung nur eine unwesentliche Rolle. Wichtiger sind die Schwingungen f_1 (in 50-kV-Netzen 200...800 Hz) und f_2 (in 50-kV-Netzen 400...1200 Hz): Die erste, weil ihr Strom, der ein Mehrfaches des 50-Hz-Ladestromes beträgt, sich diesem überlagert, in jeder Ausgleich-Halbperiode den gesamten Erdschlußstrom durch null gehen lässt und dabei dem Lichtbogen eine Möglichkeit zum Löschen gibt. Die den der anderen Polarität betragen ---0,8...--0,9 pro Halbperiode. Da die resultierende Leitungsinduktivität bei vermaschten Netzen klein ist gegenüber derjenigen der speisenden Transformatoren, darf das Wellenspiel der gesunden Phasen vernachlässigt werden.

C. Theorie von Petersen

Petersen stellte 1917 fest, dass es beim aussetzenden Erdschluss Fälle gibt, in welchen das Potential des gesamten isolierten Netzes (d. h. seine mittlere Spannung gegen Erde) im Rhythmus der 50-Hz-Halbperioden zu einem Mehrfachen der Phasenspannung aufpendeln kann. Fig. 3 stellt vom Moment t_2 an den Ablauf dieses Vorganges dar. Die Bedingungen, die erfüllt werden müssen, damit dieses Aufschaukeln zustande kommt, sind die folgenden:

- 1. Regelmässiges Zünden des Erdschlusslichtbogens in der Nähe jedes positiven und negativen 50-Hz-Scheitelwertes der Phasenspannung der kranken Phase (Zünden in t2, t3, t4 ..., Fig. 3).
- 2. Regelmässiges Löschen des Erdschlusslichtbogens beim regelmassiges Löschen des Erdschutsshentbogens beim ersten Strommulldurchgang, welcher der Zündung, infolge der Ausgleichschwingung mit der Frequenz f_1 , folgt (Löschen in t'_2 , t'_3 , t'_4 ..., Fig. 3).

Die beiden Bedingungen sind nun sehr schwer zu erfüllen. Die erste verlangt nämlich einen ganz bestimmten Verlauf der Durchschlagfestigkeit der Zündstrecke (Kurve F). Ist diese Festigkeit zu hoch, so löscht der Erdschluss endgültig; ist sie zu tief, so setzt eine verfrühte Zündung ein, die das mittlere Netzpotential wieder reduziert. Die zweite Bedingung verlangt eine sehr rasche Verfestigung der Zündstrecke sofort nach dem Löschen, denn die

Annahme von Peters und Slepian: $(t_0...t_2)$ Zünden in t_0 und t_2 , Löschen in t_1 , Wiederzünden kurz nach jedem Stromnulldurchgang (t_0', t_0'', t_0'') zwischen t_0 und t_1 Annahme von Petersen (von t_2 an) Zün

den in t_2 t_8 , t_4	Löschen in $t_{2'}$, $t_{3'}$, $t_{4'}$
I, II, III	Phasenspannung im normalen Betrieb (u_P Scheitelwert);
u_{1}, u_{11}, u_{111}	Spannung gegen Erde der Phasen I, II und III;
$u_{\text{II-I}}, u_{\text{III-I}}$	verkettete Spannungen;
$u_k = u_1$	Spannung an der kranken Phase;
$u_{g} = u_{III}$	Spannung an der gesunden Phase, die den höchsten Wert erreicht;
u_{N1}, u_{N2}, u_{N3}	mittleres Netzpotential nach dem Löschen in t_1' , t_2' , t_3' ;
$u_{11m2}, u_{111m2}, u_{11m3}, u_{11m3}$	$_{111ms}$, Spannung an den Phasen II bzw. III im Moment des Löschens t_2' bzw. t_3' ;
$u_{z_0}, u_{z_2}, u_{z_3}$	Zündspannungen im Moment t_0 , t_2 , t_3 ;
$u_{A3}, u_{A3}, \dots, u_{a2}, u_{a3}$	Anfangsamplitude in t_2 , t_3 der Ausgleichsspannung mit Eigenfrequenz f_1 bzw. f_2 ;
$u_{L\ddot{o}2}, u_{L\ddot{o}3}$	Löschspannung nach dem Löschen in t_2' , t_3' ;
<i>i_E</i>	Erdschlußstrom;
iz2, iz3, iz4	erste Ausgleichsstromamplitude mit Frequenz f_1 infolge der Zündungen in t_2 , t_3 , t_4 ;
iz', iz", iz''	Ausgleichsströme mit Frequenz f_1 , nach den Nulldurchgängen in t', t", t'";
F	erforderliche elektrische Festigkeit der Zündstrecke;
C_{11}, C_{11}, C_{111}	Phasenkapazitäten gegen Erde;
f_{1}, f_{2}	Eigenfrequenzen der Ausgleichsschwingungen nach dem Zünden bzw. nach dem Löschen;
δ_1, δ_2	Abklingfaktor der Schwingung f_1 bzw. f_2 ;
k	kapazitiver Kupplungsfaktor zwischen Phasen;
q	Anzahl Halbperioden der Schwingung f_g bis zur nächsten Zündung;
x	bezogene Zunahme der Spannung der gesunden Phase III durch Anwachsen der Betriebsspannung
	von 1/2 u_p auf u_p

Erläuterung des Vorganges nach Petersen:

Im Moment t_2 bricht die Spannung der kranken Phase plötzlich von u_{Z2} auf 0 zusammen und nimmt die Spannungen der gesunden Phasen um den Betrag ku_{Z2} mit. Durch Erdung der kranken Phase müssen die Spannungen der gesunden Phase die stationären Werte der verketteten Spannungen erreichen, um welche sie mit der Ausgleichsfrequenz f_1 schwingen. Die Anfangsamplitude u_{A2} dieser Schwingung ist durch die Differenz zwischen dem Momentanwert der betreffenden gesunden Phase kurz nach dem Zünden und demjenigen der Kurve u_{II-I} bzw. u_{III-I} gegeben.

Eine Halbperiode von f_1 später (in t_2') geht der Erdschlussstrom durch null, währenddessen die Ausgleichsspannung ihren Scheitelwert von anderer Polarität ($u_{A2} \delta_1$) erreicht, der sich den Momentanwerten der verketteten Spannung u_{II-I} und u_{III-I} überlagert. Die Spannungen der beiden gesunden Phasen sind in diesem Moment mit u_{IIm2} und u_{IIIm2} bezeichnet. Da der Lichtbogen laut Voraussetzung in t_2' löscht, fliesst nach t_2' kein galvanischer Strom nach der Erde und die vorhandene Ladung des ganzen isolierten Netzes bleibt konstant. Diese Ladung ist gleich der Summe der Ladungen der einzelnen Phasen ($C_1 \ 0 + C_{II} \ u_{IIm2} + C_{III} \ u_{IIIm2}$) und auch gleich dem Produkt des mittleren Netz-Potentials mit der totalen Netzkapazität

wiederkehrende Spannung steigt dann mit der Frequenz f_2 rasch an. Diese Löschspannung erreicht oft 75...95 % der vorhergehenden Zündspannung. Eine vorzeitige Rückzündung während der Löschschwingung würde das Aufschaukeln wieder abbauen.

Wenn die Bedingungen 1 und 2 während mehrerer Halbperioden (4...10 oder mehr) ohne Lücke erfüllt sind, lässt sich die maximal erreichte Höhe des Gesamtnetzpotentials (u_{Nmax}) für vollkommen isolierte Drehstromnetze durch die folgende allgemeine Formel [6] errechnen:

$$u_{Nmax} = u_P \frac{1 - \frac{2}{3} \,\delta_1 \left[(1 - k) - \delta_2^{\varphi} \left(\frac{1}{2} + k \right) \right]}{1 + \frac{2}{3} \,\delta_1 \left[(1 - k) + \delta_2^{\varphi} \left(\frac{1}{2} + k \right) \right]} \quad (1)$$

Die an der (der kranken voreilenden) gesunden Phase höchste auftretende Spannung gegen Erde $(u_{g max})$ bestimmt sich durch:

$$u_{g max} = \frac{3}{2} u_{N max} + \chi u_P \qquad (2)$$

und diejenige an der kranken Phase $(u_{k max})$:

$$u_{k\,max} = u_{N\,max} \left(1 - \delta_2^{\ \varphi}\right) + u_P \left(1 + \delta_2^{\ \varphi}\right), \quad (3)$$

$$\text{venn} \quad \left|\frac{1}{\delta_1}\right| \geq \frac{2}{3} \left(1-k\right) \left(1+|\delta_2|\right) \left|-\left|\delta_2^{\varphi}\right|\right|$$

(wobei φ eine ungerade Zahl ist)

oder

We

٦

$$u_{k\,max} = (u_{N\,max} - u_P) (1 - \delta_2),$$
 (3a)

enn
$$\left|\frac{1}{\delta_1}\right| \leq \frac{2}{3} (1-k) (1+|\delta_2|) - |\delta_2^{\varphi}|$$

(in diesem letzten Fall ist die Löschspannung am grössten).

In diesen Formeln sind:

- u_P der Scheitelwert der Phasenspannung des Drehstromnetzes
- δ_1, δ_2 das halbperiodige Abklingverhältnis der Schwingungen f_1 und f_2 $(\delta_1 \text{ und } \delta_2 \text{ sind stets negativ}; ihr absoluter Be$ trag ist etwas kleiner als 1)

 $[u_{N2} (C_{I} + C_{II} + C_{III})]$. Sind die Phasenkapazitäten untereinander gleich, so wird

$$u_{N2} = \frac{u_{11m2} + u_{111m2}}{3}$$

Die Kurven der Betriebsspannungen I, II und III sind somit von t_2' an um u_{N2} verschoben. Die Spannung der kranken Phase u_k schwingt dann von null aus um die stationäre verschobene Kurve I mit der Frequenz f_2 und der Anfangsamplitude u_{a2} . Da es sich hier um einen Ausgleich der Phasen untereinander handelt, betragen die Spannungsamplituden dieser Schwingung am den gesunden Phasen stets die Hälfte derjenigen an der kranken Phase und haben die umgekehrte Polarität. Eine Halbperiode der Frequenz f_2 nach t_2' erreicht die Spannung der kranken Phase die Löschspannung $u_{Lö2}$, die von der Erdschlußstelle ohne Rückzünduung ausgehalten werden muss.

Im Moment t_s findet die nächste Zündung statt, weil die Spannung u_k die Durchschlagsfestigkeit F der Zündstrecke erreicht. Der Vorgang verläuft dann wieder wie zwischen t_2 und t_s . Nach t_s' nimmt das mittlere Netzpotential den Wert u_{NS} an, der höher ist als u_{N2} . Der Absolutwert der Spannung u_N steigt von Halbperiode zu Halbperiode der Betriebsspannung asymptotisch bis zum Grenzwert $u_{N max}$, der durch Gl. (1) gegeben ist.

- k der mittlere kapazitive Kopplungsfaktor zwischen kranker und gesunder Phase, mit Wer ten von 0 (für einadrige Kabel), 0,1...0,25 (für Freileitungen)
- φ die Anzahl Halbperioden der Frequenz f_2 zwischen Löschung und nächster Zündung des Erdschlusslichtbogens $\left(\varphi \approx \frac{f_2}{f_{50}} - 1,5\right)$
- χ ein von u_{Nmax} und δ_2 abhängiger Faktor, der zwischen 0 (in den meisten Fällen) und maximal 0,5 (bei $\delta_2 = -1$) variiert.

Gegenüber diesen allgemein gültigen Formeln nimmt nun Petersen in seiner Berechnung an, die Schwingung f_2 sei bei der nächsten Zündung schon abgeklungen, das heisst:

$${\delta_2}^{arphi} pprox 0$$

Er erhält so die vereinfachten Formeln:

$$u_{g max} = u_P \frac{3}{2} \left[\frac{1 - \frac{2}{3} \delta_1 (1 - k)}{1 + \frac{2}{3} \delta_1 (1 - k)} + \frac{2}{3} \chi \right] \quad (4)$$

$$u_{k \max} = u_P \frac{2}{1 + \frac{2}{3} \delta_1 (1 - k)}$$
(5)

und drückt sie folgendermassen aus [3]²): An der gesunden Phase:

$$V_{\ddot{u}m} = 1.5 \ E_{pm} \ \frac{2.5 \ K_{11} + 1.5 \ K_{12} - K_{11} \ d}{0.5 \ K_{11} + 1.5 \ K_{12} + K_{11} \ d} \tag{6}$$

An der kranken Phase:

$$3 E_{pm} \frac{K_{11} + K_{12}}{0.5 K_{11} + 1.5 K_{12} + K_{11} d} \quad (7)$$

wobei $V_{\ddot{u}m} = u_{gmax}, E_{pm} = u_P, d = 1 + \delta_1,$

$$\frac{K_{12}}{K_{11}+K_{12}}=k, \quad (\chi=0)$$

2) [3], S. 565, Gl. 28 und 29.

				Tabelle 1
	= (K ₁₁ : K	$\frac{1/4}{12} = 3$)	$k = (K_{11} : K$	= 1/6 K ₁₂ = 5)
	$\delta_1 = -0.9$ $(d = 0.1)$	$\begin{vmatrix} \delta_1 = -0.8 \\ (d = 0.2) \end{vmatrix}$	$\delta_1 = -0.9$ $(d = 0.1)$	$\delta_1 = -0.8$ $(d = 0.2)$
$\frac{u_{gmax}}{u_P} = \frac{V_{\ddot{u}m}}{E_{pm}}$	3,96	3,50	4,50	3,90
$\frac{u_{kmax}}{u_P}$	3,64	3,33	4,0	3,60
u _{Nmax} u _P	2,64	2,33	3,0	2,60

Diese Resultate sind etwas höher als diejenigen mit Berücksichtigung von δ_2^{φ} . Logischerweise ist anzunehmen, dass die Zündung bei einer maximalen Spannungsbeanspruchung der Zündstrecke stattfindet, z. B. wie in Fig. 3. d. h. wenn φ eine ungerade ganze Zahl ist. Somit wird δ_2^{φ} negativ und u_{Nmax} laut Gl. (1) kleiner.

D. Formel von Rüdenberg

Rüdenberg macht diejenige Annahme, die theoretisch zu den grössten Überspannungen führt. Sie läuft physikalisch darauf hinaus, dass die Zündungen nicht bei einem Maximum der Spannungsbeanspruchung der Zündstrecke, sondern bei einem Minimum der Schwingung f_2 stattfinden, d. h. eine Halbperiode von f_2 früher oder später als in Fig. 3. Ferner betrachtet er die Schwingung f_2 als völlig ungedämpft ($\delta_2 = -1$). Mit diesen Voraussetzungen wird φ eine gerade Zahl und dadurch $\delta_2^{\varphi} = +1$, so dass die Gleichungen (1) und (2) folgende Form annehmen:

$$u_{Nmax} = u_P \frac{1 - \frac{\delta_1}{3} (1 - 4 k)}{1 + \delta_1}$$
(8)

$$u_{gmax} = u_P \frac{3}{2} \left[\frac{1 - \frac{\delta_1}{3} (1 - 4 k)}{1 + \delta_1} + \frac{2}{3} \chi \right] \quad (9)$$

 δ_1 bleibt hier negativ, absolut etwas kleiner als 1. Sofern k und χ vernachlässigt werden, stimmt die letzte Gleichung (9) mit der Formel von Rüdenberg [4]⁴) überein, die lautet:

$$E_{c} = \frac{\sqrt{3}}{2} \cdot \frac{1 + \frac{u}{3}}{1 - \ddot{u}} E$$
 (10)

wo $E_c = u_{gmax}$ die maximale Spannung an den gesunden Phasen, $E = \sqrt{3} u_P$ die verkettete Betriebspannung und $\ddot{u} = -\delta_1$ das Abklingverhältnis (Absolutwert) des Ausgleichvorganges mit Frequenz f_1 bedeuten.

Mit $\ddot{u} = |\delta_1| = 0.9$ gibt diese Formel für die höchste Spannung der gesunden Phase den 11,3-fachen Scheitelwert der verketteten Betriebsspannung, d. h.

³) [3], S. 566, Tafel 1. ⁴) [4], S. 424, Gl. 40. den 19,5-fachen Scheitelwert der Phasenspannung. Ferner würde die maximale Spannung der kranken Phase eine Halbperiode der Frequenz f_2 vor den letzten Zündungen laut Gleichung (3) ($u_{kmax} = 2 u_{Nmax}$, weil $\delta_2^{\varphi-1} = -1$) 26 u_P erreichen. Die Voraussetzung Rüdenbergs, wenn sie prinzipiell auch möglich ist, hat aber nur äusserst wenig Chancen sich zu verwirklichen; denn man kann sich eine Zündstrecke kaum vorstellen, die die Spannung 4...26 u_P aushält, aber etwa 1 ms später bei nur 2 u_P zündet [weil dann in Gl. (3): $\delta_2^{\varphi} = +1$] und nach etwa 3 ms beim ersten Stromnulldurchgang löscht, um in der folgenden ms die Spannung von 2...24 u_P wieder auszuhalten. Ferner sollte dieser Vorgang sich regelmässig bei jeder 50-Hz-Halbperiode 20...30mal wiederholen!

Deshalb entspricht die Formel von Rüdenberg einem Fall, der bei einem Erdschluss praktisch nie vorkommt.

E. Theorie von Peters und Slepian

Peters und Slepian [7] (1923) setzen voraus, dass der Erdschlußstrom nicht bei den Nulldurchgängen des Ausgleichvorganges f_1 , sondern erst bei demjenigen der Betriebsfrequenz löscht, wie dies in Fig. 3 im Moment t_1 dargestellt ist. Die Löschbedingung ist dann sehr günstig, weil die wiederkehrende Spannung zwischen den Lichtbogenelektroden, deren Kurve (sofern die Ausgleichschwingung f_1 ganz abgeklungen ist) entsprechend der verschobenen 50-Hz-Sinuslinie die Nullinie tangiert, relativ langsam ansteigt. Die Spannungen der drei Phasen sind von dem Löschmoment an, wegen der bleibenden Aufladung des Gesamtnetzes, 100% asymmetrisch. Tritt nun die nächste Zündung eine Halbperiode später beim Scheitelwert der Phasenspannung der kranken Phase auf (im Moment t_2 , Fig. 3), so fällt diese Spannung in einem Sprung von 2 u_P plötzlich auf null. Die Spannungen an den gesunden Phasen, die kurz nach dem Zünden den stationären Wert der verketteten Spannungen, d.h.

in diesem Moment $\frac{3}{2}$ u_P, betragen sollten, schwingen

mit Frequenz f_1 um diesen Wert mit einer Anfangsamplitude von 2 u_P (1-k). Sie erreichen im Moment t'_2 : $u_{\text{III}m^2} \approx \frac{3}{2} u_P + 2 u_P (1-k) \delta_1$, gleich-

gültig, ob der Lichtbogen bei diesem Stromnulldurchgang löscht oder wiederzündet. Die durch die Dämpfung der Ausgleichschwingung f_1 und durch die kapazitive Phasenkopplung bewirkte Verminderung der Überspannung [$|(1-k) \, \delta_1| < 1$] wird jedoch einerseits durch das Anwachsen der verketteten Spannung von 1,5 u_P auf $\sqrt{3}$ u_P während des Umschwingens des Ausgleichvorganges f_1 , ander-seits durch die allenfalls über 100% betragende Spannungsasymmetrie vor dem Zünden zum Teil kompensiert. Somit sind Spannungen von annähernd 3,5 uP an der der kranken voreilenden gesunden Phase zu erwarten. Zündet der Lichtbogen wieder kurz nach t₂ (im Gegensatz zur Theorie von Petersen) und löscht er erst beim 50-Hz-Strom-Nulldurchgang, so kann sich der Vorgang wiederholen, und mehrmals die gleichen Spannungshöchstwerte geben,

nämlich etwa 2 u_P in der kranken Phase und etwa 3,5 u_P in den gesunden Phasen. Die Voraussetzung von Peters und Slepian, die nur eine einmalige Erfüllung der Bedingung 1 der Petersen Theorie, und anstelle der Bedingung 2 das einmalige Löschen unter viel günstigeren Umständen verlangt, wird praktisch oft erfüllt. In Fig. 16 ist ein gemessenes Beispiel ersichtlich.

F. Experimentelle Untersuchungen in der Versuchsstation der FKH

Der Lichtbogen allein, sowie der Erdschlusslichtbogen des Modell-Netzes wurden in folgenden Medien untersucht:

- 1. In ruhender Luft
- 2. In ruhendem Öl
- 3. Im Porzellanspalt eines rissigen Isolators.

1. Lichtbogen in ruhender Luft

a) Bestimmung der Lichtbogeneigenschaften

Zweck dieser Versuche war die Abklärung folgender Fragen:

- α) Grösse der Lichtbogenspannung bei Stromstärken von 20...700 A, 50 Hz, in Funktion der Bogenlänge.
- β) Verlauf des Lichtbogenstromes in der Nähe des Nulldurchganges.
- γ) Wirkung einer Kapazität parallel zum Lichtbogen.
- Allfällige Bestimmung charakteristischer Lichtbogenkonstanten.

Zur Erreichung dieses Zieles wurde die folgende Versuchsanordnung eingerichtet: Zwischen einer festen und einer an einem langen Pendel befestigten

Tr speisender Transformator; P Pendel mit Lichtbogen; L Drosselspule; C Kapazität parallel zum Lichtbogen; KO Kathodenstrahloszillograph; u Lichtbogenspannung; U_0 Leerlaufspannung; U_w wiederkehrende Spannung bei offenem Pendel; i Lichtbogenstrom; I_0 Strom bei geschlossenem Pendel beweglichen Elektrode wurde der Lichtbogen innerhalb von 2,2 s über eine Strecke von 7 m auseinander gezogen. Währenddessen wurden Spannung und Strom mit einem Kathodenstrahl-Oszillographen gemessen (Fig. 4). Die Speisung erfolgte über die Transformatoren der FKH aus dem 50-kV-Netz der Aare-Tessin A.-G. für Elektrizität, Olten (Atel). Der Lichtbogenstrom, der durch stark induktive Impedanzen (Drosselspule und Transformatoren L) begrenzt wurde, betrug je nach dem Versuch 19A, 35A und 116A bei einer Leerlaufspannung U_0 von 31 kV (entsprechend der maximalen Phasenspannung eines 50-kV-Netzes) und 670 A bei 9,4 kV. Als weitere Varianten wurden verschiedene Parallelkapazitäten zum Lichtbogen, nämlich 0,004 µF (Anlage allein, ohne zusätzliche Kapazität) oder 0,5 und 1 µF (zusätzliche Kapazität entsprechend etwa derjenigen der Erdschlussphase eines Netzes) untersucht. Grosse Parallelkapazitäten C gaben mit den Strombegrenzungsdrosselspulen eine leichte Resonanzerscheinung, so dass die stationäre wiederkehrende Spannung U_w zwischen den Elektroden, nach dem endgültigen Erlöschen des Lichtbogens, etwas höher war als die Leerlaufspannung U_0 ohne Zusatzkapazität. Sämtliche Daten und Konstanten der Kreise sind in Tabelle II zusammengestellt.

Um die rasch veränderlichen Einzelheiten trotz der relativ langen Gesamtdauer des Lichtbogens erfassen zu können, wurden die Vorgänge auf verschiedene Arten oszillographiert:

- αα) Einmalige Aufnahme mit langsamer linearer Zeitablenkung (Dauer 2...3 s).
- $\beta\beta$) Vier kurzdauernde (24 ms) Aufnahmen mit rascher linearer Zeitablenkung im Laufe der Pendelbewegung: Je eine bei den Elektrodendistanzen von 18, 168, 346 und 620 cm (Kurven I, II, III, IV).
- yy) Aufnahme mit wiederholter linearer Zeitablenkung während 150...300 ms, bei Auslösung einige Perioden vor dem endgültigen Löschmoment.
- $\delta\delta$) Aufnahme der Lichtbogencharakteristik u = f (i) bei den Elektrodendistanzen von 18, 168, 346 und 620 cm (Kurven I, II, III, IV).
- εε) Aufnahme des dem Lichtbogen überlagerten Stosses (Spezial-Versuch) mit rascher logarithmischer Zeitablenkung (Zeitkonstante RC = 400 μs).

Einige ausgewählte Oszillogramme sind in den Figuren 5...9 reproduziert und werden hier kurz kommentiert.

Fig. 5, Versuchsgruppe (VG) 1

Oszillogramm-Art $\alpha \alpha$: In der Mitte des regelmässigen Spannungsanstieges durch die Elektroden-

Tabelle II

Daten der Versuchsstromkreise bei den Versuchen der FKH

		Ein-	Versuchsgruppe (VG)							
Grösse	bol	heit	1	2	3	4	5	6	.7	8
Leerlaufspannung	$\begin{array}{c} U_0\\ I_0\\ Z\\ L\\ C \end{array}$		31 19 1630 5,2 0,004	31 19 1630 5,2 0,5	$31 \\ 19 \\ 1630 \\ 5,2 \\ 1$	31 35 890 2,8 0,004	31 35 890 2,8 1	31 116 267 0,86 0,004	31 116 267 0,86 1	9,4 670 14 0,045 0,004
Eigenfrequenz $\frac{1}{2\pi \sqrt{LC}}$	f_0	Hz	1100	99	70	1500	95	2700	170	12000
Stationäre wiederkehrende Spannung gemessen bei offenem Pendel	Uw	kV	31	37,1	46,5	31	38,3	31	33,5	9,4

entfernung bricht die Lichtbogenspannung *u* plötzlich auf die Hälfte ihres Wertes zusammen. Dies kann nicht auf eine plötzliche Verkürzung der Lichtbogenlänge zurückgeführt werden, denn der Lichtbogen war, abgesehen von einer leichten Welligkeit, fast geradlinig. — Im Laufe der ganzen Lichtbogendauer treten keine Überspannungen auf.

 $C_{Fig. 5}$ Spannung *u* und Strom *i* des Lichtbogens in ruhender Luft VG 1: $U_0 \approx U_w = 31 \text{ kV}, I_0 = 19 \text{ A}, C = 0,004 \mu\text{F}$ *a* Aufnahme-Art $\alpha \alpha$, b Art $\beta \beta$, c Art $\delta \delta$ Lichtbogenlängen (b und c): *I* 18 cm; *II* 168 cm; *III* 346 cm; *IV* 620 cm

Weitere Legenden siehe im Text

Art $\beta\beta$ zeigt die abgerundete Trapezform der Lichtbogenspannung bei annähernd sinusförmigem Strom. — Unstetigkeiten des Stromes oder der Spannung sind beim Nulldurchgang nicht sichtbar.

Art $\delta\delta$: Die Lichtbogencharakteristik ist nur zwischen Spannungs- und Stromscheitelwert negativ; bei abnehmendem Strom ist sie stets positiv.

Fig. 6 Spannung u und Strom i des Lichtbogens in ruhender Luft VG 2: $U_0 = 31$ kV, $U_w = 37$ kV, $I_0 = 19$ A, C = 0.5 μ F Aufnahme-Art $\beta\beta$ Weitere Legenden siehe im Text

Fig. 6, VG 2, Art $\beta\beta$

Die Wirkung der Parallelkapazität ist hier deutlich zu erkennen. Schon bei 18 cm treten die charakteristischen kurzen Strompausen bei jedem Nulldurchgang auf (i, Kurve I). Während der Pause nimmt die Parallelkapazität den Strom auf; deshalb steigt die Spannung, bis die Wiederzündung (bei geringer Spannung) stattfindet. — Bei 346 cm (Kurven III) werden Strom- und Spannungskurven stark deformiert; die kurzen Strompausen sind nicht mehr sichtbar, aber die Steilheit der Stromkurve ist nach dem Nulldurchgang wesentlich flacher als kurz vorher, wobei der Differenzstrom zwischen Drosselspule und Lichtbogen die Kapazität auflädt. Der Lichtbogenwiderstand nimmt also nach dem Nulldurchgang zuerst stark zu, reduziert sich aber wieder allmählich, sobald die durch steigende Spannung wachsende, im Lichtbogen eingeführte Energie diesen genug aufgeheizt hat. Kurz darauf gibt der Kondensator seine aufgespeicherte Ladung in Form einer Stromspitze wieder in den Lichtbogen zurück.

Fig. 7, VG 3

Die Strompausen bei den Nulldurchgängen sind in den Aufnahme-Arten $\alpha\alpha$ und $\beta\beta$ gut zu erkennen, jedoch verschwinden sie gegen Ende der Lichtbogendauer. (Die leichten Abweichungen abwechslungsweise oberhalb und unterhalb der Nullinie kommen vom Übersetzungsfehler des Stromwandlers).

Die Strom- und Spannungskurvendeformation ist gleich wie in Fig. 6; die rasche Entladung der Parallelkapazität kommt am besten in der Lichtbogencharakteristik (Art. $\delta\delta$) Nr. 3285 zum Ausdruck. — Die Spannungsspitzen, die im OszilloSpannung immer ähnlicher einem Durchschlag zusammenbricht. Zuletzt endet der Vorgang mit einer Schwebung der gedämpften Eigenschwingung f_0 mit der betriebsfrequenten Spannung. Aus diesen Oszillogrammen sieht man die ganzen Entwicklungsstadien

Fig. 7 Spannung u und Strom i des Lichtbogens in ruhender Luft VG 3: $U_0 = 31$ kV, $U_w = 46$ kV, $I_0 = 19$ A, C = 1 µF Aufnahme-Arten: a $\alpha \alpha$, b $\beta \beta$, c $\gamma \gamma$, d $\delta \delta$ Weitere Legenden siehe im Text

nungskurven zeigen, wie die Versteifung des Lichtbogenwiderstandes nach den Nulldurchgängen von Halbperiode zu Halbperiode zunimmt, wie aber der Widerstand durch die gleichzeitige Erhöhung der der Lichtbogenspannung, die aus der konstanten Spannung sich zuerst in eine abgerundete Trapezform umwandelt und dann, bei immer höher und ausgeprägter werdenden Anfangspitzen, in eine abwechselnde Folge von unvollkommenen Löschungen und plötzlichen Durchschlägen übergeht.

Fig. 8

Der Vergleich der Versuche VG 4 und VG 5 lässt ebenfalls die Wirkung der Parallelkapazität in bezug auf Strompause, Strom- und Spannungskurven-

Fig. 8 Spannung u und Strom i des Lichtbogens in ruhender Luft a und b:

VG 4: $U_0 \approx U_w = 31$ kV, $I_0 = 35$ A, $C = 0,004 \ \mu\text{F}$

VG 5: $U_0 = 31$ kV, $U_w = 38$ kV, $I_0 = 35$ A, $C = 1 \mu F$ Aufnahme-Arten: a und c $\beta\beta$, b $\delta\delta$

Weitere Legenden siehe im Text

deformation deutlich ersehen. Die Vorgänge bei 35 A sind somit sehr ähnlich denjenigen bei 19 A.

Fig. 9, VG_6 und VG 7

Die Strompausen sind bei $1 \mu F$ Parallelkapazität im Oszillogramm Art $\alpha \alpha$ immer noch sichtbar. Jedoch spielt diese Kapazität hinsichtlich der Überspannungen keine wesentliche Rolle mehr; dies ist auch verständlich, weil der Kapazitätsstrom gegenüber dem starken Lichtbogenstrom verschwindet.

Die hier nicht wiedergegebenen Oszillogramme der VG 8 sind denjenigen der VG 6 sehr ähnlich; die Lichtbogenlänge erreicht in VG 8 3,5...4 m, und die Lichtbogenspannung beträgt etwa 30 V/cm (Scheitelwert).

Ein interessantes Resultat ergibt sich aus der weiteren Auswertung einiger Oszillogramme Art $\beta\beta$:

Bildet man z. B. das Produkt der Momentanwerte der Spannung mit denjenigen des Stromes, so bekommt man die Kurve der in den Lichtbogen eingeführten Leistung P_e :

$$P_e = u i$$

Diese Kurve ist immer positiv und tangiert die Nullinie. Ihre Grundfrequenz ist die zweifache Netzfrequenz (Fig. 10 und 11).

Bildet man anderseits den Quotienten aus Strom und gleichzeitiger Spannung, so erhält man die Kurve der Leitfähigkeit G des Lichtbogens

$$G=\frac{1}{R}=\frac{i}{u}$$

Die Leitfähigkeitskurve G ist immer positiv und > 0; sie sinkt erst nach dem Löschen auf null. Ihre Grundfrequenz ist ebenfalls die doppelte Netzfrequenz, aber die Leitfähigkeitskurve G ist gegenüber derjenigen der Leistung P_e verspätet. Dies kann z. B. durch die Temperatur erklärt werden, sofern die Leitfähigkeit G eine positive Funktion der Temperatur ist. Die Verspätung zwischen der Leitfähigkeitskurve (d. h. auch der Temperaturkurve) und der eingeführten Leistungskurve ist dann durch die in der Lichtbogen-Gassäule aufgespeicherte Energie bedingt.

Nennt man P_a die totale vom Lichtbogen durch Konvektion und Strahlung abgeführte Leistung, so gilt folgendes:

1. Ist die eingeführte Leistung P_e grösser als die abgeführte P_a , so wird die Differenz in Form von Wärme und Ionisation aufgespeichert; dadurch steigt die Temperatur und gleichzeitig die Leitfähigkeit. Umgekehrt, wenn P_e kleiner ist als P_a , kühlt sich der Lichtbogen ab und die Leitfähigkeit sinkt. Da beim Maximum und beim Minimum die Leitfähigkeit kurzeitig weder steigt noch sinkt, so ist in diesem Moment $P_e = P_a$. Somit sind die Schnittpunkte der beiden Leistungskurven bekannt.

2. Sofern angenommen wird, dass sowohl Leitfähigkeit G, als auch abgeführte Leistung P_a mit der Temperatur eindeutig steigen und fallen, so müssen sowohl ihre Maxima, als auch ihre Minima gleichzeitig auftreten.

3. Da der 100-Hz-Verlauf des Lichtbogens (Unstetigkeiten ausgenommen) von einem Zyklus zum nächsten im allgemeinen relativ wenig ändert und im *stationären* Lichtbogenzustand die zeitlichen Mittelwerte der beiden Leistungskurven gleich sind (Energie-Gleichgewicht), so müssen die positiven und die negativen Flächen ΔW zwischen den beiden Kurven P_e und P_a annähernd gleich gross sein. 4. Ferner geben zu jeder Zeit die Ordinatendifferenz zwischen den Kurven P_e und P_a bei Annahme einer gleich bleibenden Temperaturverteilung im Lichtbogenquerschnitt ein Mass für die Neigung der Temperaturkurve, und somit auch, jedoch kein lineares, für diejenige der Leistungskurve P_a .

Anhand dieser Betrachtungen kann die Kurve der abgeführten Leistung P_a aus den Kurven der abstand reduziert und mit P_{e1} , P_{a1} und G_1 bezeichnet.

Aus mehreren solchen Auswertungen stellt man nun fest, dass kein *eindeutiger Zusammenhang* zwischen abgeführter Leistung P_{a1} und Leitfähigkeit G_1 besteht; einer Leitfähigkeit von 0,5 cm/ Ω ent-

c und d: VG 7: $U_0 \approx 51 \text{ kV}, I_0 = 116 \text{ A}, C = 0,004 \mu\text{F}$ VG 7: $U_0 = 31 \text{ kV}, U_w = 34 \text{ kV}, I_0 = 116 \text{ A}, C = 1 \mu\text{F}$ Aufnahme-Arten: a und c $\propto \alpha$, b $\beta\beta$, d $\delta\delta$ Weitere Angaben siehe im Text

eingeführten Leistung P_e und der Leitfähigkeit Gnäherungsweise konstruiert werden. Einige Oszillogramme wurden so ausgewertet (Fig. 10 und 11). Um einen Vergleich zu ermöglichen, wurden Leistungen und Leitfähigkeit auf je 1 cm Elektrodensprechen z. B. die Werte der abgeführten Leistung P_{a1} von 0,2 kW/cm (bei kleinen Abständen) bis 2 kW/cm (bei grossen Abständen). Dieses Resultat lässt vermuten, dass der Lichtbogen verschiedene Zustände aufweisen kann, wie z. B. dünnen Kanal

mit hoher Kern-Temperatur und starker Stossionisation, wobei die Leitfähigkeit hauptsächlich durch eine grosse Zahl freier Elektronen bedingt ist, oder dicken Kanal mit relativ tiefer Kern-Temperatur, wobei der Strom vorwiegend durch die Bewegung geladener Moleküle (Ionen) gebildet wird. Die Abkühlung durch Konvektion drängt den Lichtbogen dauernd vom ersten Zustand in den zweiten, bis er, sobald die Feldstärke zu erneuter Stossionisation ausreicht, in den ersten Zustand zurückspringt.

Zum Beweis dieser Anschauung wurde ein zusätzlicher Versuch gemacht, wobei einem Licht-

bogen von 10...20 A ein 150-kV-Stoss überlagert wurde (Fig. 12). Bei kurzer Elektrodendistanz (30 cm) wurde der Lichtbogen sofort durchschlagen und erlosch, sobald der schwingende Stoßstrom abgeklungen war (Fig. 13a und b). Bei einer Länge von 3 m hielt der Lichtbogen dagegen die volle Stoßspannung während 20...40 µs aus. Erst nach dieser Zeit brach sein Widerstand sehr rasch von 9...17 Ω /cm auf etwa 1/100 Ω /cm zusammen (Fig. 13c und d). Die Feldstärke, die im Lichtbogen vor dem Stoss rund 100 V/cm betrug, erreichte während des Stosses (vor dem Durchschlag) 500 V/cm und sank dann während des Fliessens des 6000-A-Stossstromes auf 60 V/cm. Da die gemessene Spannung während der Stossentladung den überwiegend induktiven Spannungsabfall darstellt, wurde der oben genannte Lichtbogenwiderstand durch die Dämpfung des schwingenden Stoßstromes bestimmt. Das Fig. 10 Zeitlicher Verlauf der Leistungen und der Leitfähigkeit des Lichtbogens in ruhender Luft

- VG 3: $U_0 = 31 \text{ kV}$, $U_w = 46 \text{ kV}$ $I_0 = 19 \text{ A}$, $C = 1 \mu \text{F}$ Lichtbogenlänge 346 cm, Osz. Nr. 3204 (Fig. 7b, Kurve III)
- eingeführte Leistung pro cm
- Lichtbogenlänge P_{a1} abgeführte Leistung pro cm
- P_{m1} and P_{m1} mittlere Leistung
- G₁ Leitfähigkeit des Lichtbogens pro 1 cm
- ΔW_1 Änderung der in 1 cm Lichtbogen aufgespeicherten Energie, welche die abgeführte Leistung um ΔP_{a1} ändern lässt (Fläche zwischen P_{a1} und P_{a1})

Verhältnis einer Amplitude $(-a_2)$ zur vorhergehenden $(+a_1)$ ist bekanntlich in einem Schwingkreis gegeben durch:

$$-\frac{a_2}{a_1} = e^{-\frac{\pi}{\sqrt[4]{4Q^2-1}}}$$
, wo $Q = \frac{\sqrt[4]{\frac{L_s}{C_s}}}{R}$ und $e = 2,718...$

 C_s ist hier bekannt (1 μ F), L_s lässt sich aus der Eigenfrequenz des Stosskreises (13,5 kHz) bestimmen, somit kann R leicht errechnet werden.

Aus den Leistungskurven P_{e1} und P_{a1} lässt sich auch die Zeitkonstante der Lichtbogenträgheit fest-

> Fig. 11 Zeitlicher Verlauf der Leistungen und der Leitfähigkeit des Lichtbogens in ruhender Luft

VG 6: $U_0 \approx U_w = 31$ kV, $I_0 = 116$ A, $C = 0.004 \ \mu F$ Lichtbogenlänge 168 cm Osz. Nr. 3294 (Fig. 9b, Kurve II) Weitere Bezeichnungen siehe Fig. 10

Wechselstrom-Lichtbogen mit Stoss überlagert Schema der Anordnung

Tr Transformator; P Pendel; F Funkenstrecke; L Drosselspule (5,2 μ H); C, Stosskondensator (1 μ F); L, Induktivität des ganzen Stosskreises (145 μ H); KO Kathodenstrahloszillograph; u gemessene Spannung (am Lichtbogen); U₀ Leerlaufspannung (31 kV); U_w wiederkehrende Spannung bei offenem Pendel und gezündeter Funkenstrecke F (46 kV); U_s Ladespannung des Stosskondensators (150 kV); *i* Lichtbogenstrom; I₀ Wechselstrom bei geschlossenem Pendel (19 A) stellen: Ist ΔW_1 die aufgespeicherte Energie, d. h. die Fläche zwischen den beiden Leistungskurven,

Fig. 13 Wechselstrom-Lichtbogen mit Stoss überlagert Angaben siehe Fig. 12

und ΔP_{a1} die durch diese Energie verursachte Änderung der abgeführten Leistung P_{a1} , so wäre die Abfuhrdauer T der ganzen im Lichtbogen enthaltenen thermischen Energie (bei plötzlichem Aufhören der Leistung P_{e1} und unter konstant gedachter P_{a1}):

$$T = \frac{\Delta W_1}{\Delta P_{a1}} = 1...7 \text{ ms}$$

b) Lichtbogenerdschluss am Modell-Netz

Wie Fig. 14 zeigt, bestand das Modell-Netz aus zwei Kondensatoren, welche die Kapazität der kranken Phase und der gesunden Phasen darstellten und die von einem isolierten Einphasen-Transformator mit 33 kV verketteter Spannung gespeist wurden. Durch Öffnen des Pendels entstand an der

Tr Transformator; P Erdschlußstelle (Pendel); C_g , C_k Kapazität der gesunden bzw. der kranken Phase; L_{Tr} Streuinduktivität des Transformators; S Shunt mit Überspannungsschutz; KO Oszillographen; U_0 Leerlaufspannung am Transformator; u_k , U_{Pk} momentane bzw. 50-Hz-Polspannung an der kranken Phase; i_E , I_{E50} momentaner bzw. (bei geschlossenem Pendel) 50-Hz-Erdschlußstrom

zuerst fest geerdeten kranken Phase ein Lichtbogen-Erdschluss. Je nach den Versuchsreihen betrug die

Kapazität der kranken Phase $C_k = 0.5$ bzw. $0.25 \ \mu F$ und diejenige der gesunden Phase $C_g = 0.5$ bzw. 0,75 µF. Dadurch erreichte die Spannung der kranken Phase 16,5 kV bzw. 25 kV und der Erdschlussstrom 5 bzw. 7 A.

498

Die Resultate sind in der Fig. 15 ersichtlich: Oszillogramm Art aa gibt den ganzen Vorgang an. Im Oszillogramm Art $\beta\beta$ sind wieder die Strompausen zu Beginn des Lichtbogens bei 18 cm Abstand (Kurve I) sichtbar. Ferner kommt in der Kurve II der flache Stromanstieg nach dem Nulldurchgang, gefolgt von der raschen Stromzunahme kurz vor dem Spannungszusammenbruch deutlich zum Ausdruck.

Erdschluss am Modell-Netz mit Lichtbogen in Luft

 i_{E} Erdschlußstrom; u_{k} Spannung an der kranken Phase Netz-Daten:

 $\begin{array}{l} C_g \,=\, 0.75 \ \mu {\rm F}, \ C_k \,=\, 0.25 \ \mu {\rm F}, \ L_{Tr} \,=\, 0.26 \ {\rm H}, \\ U_0 \,=\, 33 \ {\rm kV}, \ U_{Pk} \,=\, 25 \ {\rm kV}, \ I_{E50} \,=\, 7 \ {\rm A} \end{array}$

a Aufnahme-Art $\alpha \alpha$, b Art $\beta \beta$ (Kurven I 18 cm, II 168 cm, III 346 cm) c und d Art $\gamma\gamma$ (1...6 Reihenfolge der Strahldurchläufe)

Weitere Bezeichnungen siehe Fig. 14

Das Ende des Vorganges ist im Oszillogramm Art $\gamma\gamma$ wegen der vielen Strahldurchläufe nicht mehr übersichtlich. Deshalb wurde das Oszillogramm Nr. 3379 in Fig. 16 umgezeichnet. (Die ersten Stromspitzen der vier letzten Spannungszusammenbrüche sind wegen des Ansprechens einer Schutzfunkenstrecke am Messkabel abgeschnitten). (in der negativen Halbwelle) höher liegen. Da aber nach dem Löschen keine Ladung mehr aus dem isolierten Netz hinausfliessen kann, bleibt das ganze System auf diese konstante Spannung aufgeladen. Unter Berücksichtigung der Lichtbogenspannung wird die Asymmetrie etwas kleiner als 100 % der Phasenspannung. Sofern die Ausgleichschwingung

Erdschluss am Modell-Netz mit Lichtbogen in Luft Umzeichnung des Oszillogrammes von Fig. 15 c

 $i_{\mathbf{g}}$ Erdschlußstrom; u_k Spannung an der kranken Phase; u_N Gleichspannung von der Restladung des Netzes herrührend f_1 und f_3 Eigenfrequenzen

Aus diesem und anderen Oszillogrammen stellt man fest, dass der Strom in keinem der untersuchten Fälle beim ersten Stromnulldurchgang gelöscht hat. Ein solches Resultat ist ohne weiteres zu erwarten, weil die Trägheitszeitkonstante des Lichtbogens gleich oder grösser ist als die Halbperiodendauer der Schwingung f_2 . Bemerkenswert ist auch die Spannungsasymmetrie, die am Ende des Erdschlusses auftritt. Sie kann ebensogut positiv wie negativ sein. Ihre Entstehung kann folgendermassen erklärt werden: Der Lichtbogen löscht normalerweise nur, wenn der kapazitive Erdschlußstrom durch null geht. Für den stationären Erdschlußstrom trifft dies zu, wenn die Summenspannung der gesunden Phasen, oder (da die Summe der Phasenspannungen = 0), wenn die Spannung der kranken Phase ein Maximum oder ein Minimum durchläuft.

$$I_{E50} = 0$$
 wenn $\frac{\mathrm{d}u_{Pk}}{\mathrm{d}t} = 0$

Da nun kurz vor dem Löschen (falls die Lichtbogenspannung vernachlässigt wird), das Potential der kranken Phase null ist, so muss in diesem Moment jenes des Stern- oder Mittelpunktes des Netzes um den Scheitelwert der Phasenspannung u_P tiefer oder

* Niederspannungsschutz der Strommessung angesprochen
 b Detail aus a mit vergrösserten Ordinaten

 f_1 beim Löschen noch nicht abgeklungen ist, kann die Asymmetrie grösser oder kleiner sein als 100 %, je nachdem, ob die Schwingung f_1 sich der Phasenspannung im Moment des Löschens addiert oder subtrahiert (Fig. 3, Löschmoment t_1). In den meisten Fällen ist die höchste auftretende Spannung durch diese Asymmetrie bedingt.

Fig. 16 zeigt auch, dass der Vorgang zuerst symmetrisch ist und erst gegen Ende asymmetrisch wird. Die Bedingung für die Entstehung der Asymmetrie verlangt, dass der Ausgleichstrom der Schwingung f_1 erst nach dem Nulldurchgang des 50-Hz-Erdschlußstromes abgeklungen ist, denn der Lichtbogen brennt dann während der ganzen nächsten Halbperiode weiter. Tritt hingegen der Zusammenbruch der Spannung bei kleinen Werten auf, d. h. so früh, dass der Ausgleichstrom vor dem 50-Hz-Stromnulldurchgang beendet ist, dann findet die Versteifung des Lichtbogenwiderstandes in jeder Halbperiode statt.

In sehr anschaulicher Weise zeigt Fig. 16 das Weiterbestehen der Leitfähigkeit der Lichtbogenstrecke in der ersten Periode der wiederkehrenden Spannung: Ein kleiner Nachstrom von etwa 0,5 A steigt mit der Spannung und zwar nach ihrem Scheitelwert noch weiter an und verschwindet erst, wenn die Spannung auf $\frac{1}{4}$ des Scheitelwertes gesunken ist (Fig. 15d, Oszillogramm 3378, Stromkurve, Ende des dritten und Anfang des vierten Strahldurchlaufes).

2. Erdschlusslichtbogen in Öl

Da, wie die im Abschnitt 1 beschriebenen Versuche deutlich zeigen, die ruhende Luft sich als Medium für das Aufschaukeln der Spannung nach der Theorie von Petersen nicht eignet, fragte es sich, ob bei einem Erdschluss in Öl die Bedingungen für die Erzeugung höherer Überspannungen erfüllt seien. In der gleichen Anordnung wie für die Versuche in Luft wurde das Pendel durch einen Schaltstift ersetzt, der den Boden eines Ölbehälters berührte und durch Gegengewichte herausgezogen wurde. Die wichtigsten Resultate wurden an den Versuchen mit Modell-Netz erzielt, bei welchen die Spannung der kranken Phase U_{Pk} 31 kV, 24 kV bzw. 6,6 kV und der 50-Hz-Erdschlußstrom I_{E50} 9,2 A, 7,2 A bzw. 1,9 A betrugen.

Wie erwartet, zeigen die Resultate, dass der Spannungszusammenbruch bei ausreichender Feldstärke zwischen den Elektroden bedeutend härter ist in Öl als in Luft. Ferner ist der Strom nach jedem Nulldurchgang bis zum nächsten Spannungszusammenbruch kaum messbar. Der ganze Vorgang bekommt somit den Charakter einer Folge von Zündungen und Löschungen des Lichtbogens, d. h. eines intermittierenden Erdschlusses (Fig. 18).

In Fig. 17 sind alle Messergebnisse zusammengestellt. Folgende Werte sind eingetragen:

1. Je die erste Zündspannung der drei letzten 50-Hz-Halbperioden vor dem endgültigen Löschen des Lichtbogens (u_{Zx}, u_{Zy}, u_{Zz}) , ausnahmsweise anderer früherer Halbperioden, z. B. der sechstletzten (u_{Zu}) .

Zusammenstellung der Resultate

Zu...Zx, Zy, Zz (Indizes) Zündungen des Lichtbogens in der sechstletzten...drittletzten, zweitletzten bzw. letzten 50-Hz-Halbperiode vor dem endgültigen Löschen. (Die Werte von Zx bzw. Zz sind links bzw. rechts von der Versuchs-Nr.-Ordinate eingetragen.)

 u_z Erste Zündspannung der 50-Hz-Halbperiode; u_z' , u_z'' , u_z''' ... u_g^{YIII} Zündspannung nach dem ersten, zweiten, dritten... achten Strom-Nulldurchgang mit Frequenz f_1 (z. B.: Versuch Nr. 51 u_{zz}'''); $u_{L\delta}$ Löschspannung, d. h. Spannungspitze (mit Frequenz f_2), die die Zündstrecke nach dem letzten Stromnulldurchgang mit Frequenz f_1 aushält; u_w wiederkehrende Spannung, d. h. höchste momentane Spannung an der kranken Phase nach endgültigem Löschen des Lichtbogens; i_z , n die erste Stromamplitude bzw. die Anzahl Eigenhalbperioden der Ausgleichsschwingung f_1 ; u_k_{max} höchste aufgetretene Spannung an der kranken Phase; U_X bleibende Gleichspannung; $U_{Pk}/\overline{2}$ Scheitelwert der 50-Hz-Spannung der kranken Phase

Angaben des Modell-Netzes siehe in den Fig. 14 und Fig. 2

Die Zündspannung nach dem ersten (ausnahmsweise nach dem 2. bis 8.) Stromnulldurchgang mit Frequenz f₁ (u_{Zx}', u_{Zy}', u_{Zz}', u_{Zx}'', u_{Zy}''...).
 Bie Löschspannung, d. h. die max. Spannung mit Fre-

3. Die Löschspannung, d. h. die max. Spannung mit Frequenz f_2 , welche die Elektroden ohne Rückzündung aushalten, bei den drei letzten 50-Hz-Halbperioden $(u_{L\delta})$.

4. Der Maximalwert der wiederkehrenden Spannung (u_w) .

 Die erste Stromamplitude der Ausgleichschwingung f₁ und die Anzahl Eigen-Halbperioden dieser Schwingung (iz, n).
 Die relative maximale Spannung der kranken Phase und

die relative bleibende Gleichspannung, bezogen auf den Scheitelwert der Phasenspannung

 $(u_{k max}: U_{Pk}\sqrt{2} \text{ und } U_N: U_{Pk}\sqrt{2}).$

7. Das Verhältnis Löschspannung zu Zündspannung $(u_{L\delta}: u_z).$

Fig. 18 Erdschluss am Modell-Netz mit Lichtbogen in Öl Angaben des Netzes: $U_0 = 40$ kV, $U_{Pk} = 30$ kV, $C_k = 0.24$ µF, $C_g = 0.72$ µF

a, b Zwei ausgewählte Oszillogrammbeispiele

 i_E Erdschlußstrom; u_k Spannung an der kranken Phase

Aufnahme-Art γγ (A Anfang, E Ende des Oszillogrammes; 1...6 Reihenfolge der Strahldurchläufe)

Der Kopf der graphischen Darstellung enthält die Konstanten des Modell-Netzes.

Auf Grund dieser Resultate stellt man folgendes fest:

1. Fig. 17 zeigt vor allem die grosse Streuung der Messwerte. Für die letzte Zündspannung (u_{Zz}) findet man z. B.:

bei $U_{Pk} =$	30	kV	$u_{Zz} =$	8	84	kV
bei $U_{Pk} =$	24	\mathbf{kV}	$u_{Zz} =$	13	73	kV
bei $U_{Pk} =$	6,5	kV	$u_{Zz} =$	2,8	315,4	kV

Über die Unregelmässigkeit der Zündspannung in Öl gibt auch das Oszillogramm Nr. 94 (Fig. 18a) ein wertvolles Bild: Beim dritten Strahldurchlauf (3, links) ist zuerst die Lichtbogenspannung annähernd null; dann steigt die Spannung mit Frequenz f_2 auf 35 kV, schwingt beinahe auf null zurück und bricht im Laufe des Wiederanstieges bei 11 kV zusammen, obschon die Ölstrecke kurz vorher die dreifache Spannung ausgehalten hat. Da nun die Zündungen keinem bestimmten Gesetz folgen, kann eine Reihe von regelmässigen Zündungen, wie die Aufschaukelungstheorie es verlangt, nur als Zufall auftreten; sie ist nur einer statistischen Berechnung zugänglich.

2. In bezug auf das Löschen beim ersten Stromnulldurchgang zeigen die Resultate deutlich, dass dieses Löschen in den meisten Fällen von einer Rückzündung schon bei tiefer Spannung gefolgt wird. Nur in 5%der Fälle, in welchen die erste Zündspannung gleich oder grösser ist als die Phasenspannung, erreicht die Zündstrecke nach dem ersten Stromnulldurchgang eine Festigkeit, die mindestens 74 % der ersten Zündspannung aushält. Das Verhältnis Lösch-spannung zu Zündspannung (sofern Zündspannung Phasenspannung) ist nur in 3 % bzw. 12,5 % (für $\overline{U}_{Pk} = 30 \text{ kV bzw. 6,5 kV}$ der Fälle höher als 0,74. In den wenigen Fällen, wo die Schwingung f_1 eine einzige Halbperiode dauert, handelt es sich um sehr schwache Schwingungen bei einer Zündspannung von einigen kV, deren Energie sofort im Lichtbogen verbraucht wird. Dabei erreicht auch die Löschspannung ein Mehrfaches der Zündspannung. Trotzdem alle Bedingungen zur Aufschaukelung für sich, wenn auch sporadisch und zufällig, erfüllt werden, so hat keine einzige der 200 gemessenen Zündungen zur ersten Stufe der Aufschaukelung (einmalige Erfüllung der Bedingungen 1 und 2) der Theorie von Petersen geführt. Diese erste Stufe wäre beinahe im Oszillogramm Nr. 96, Fig. 18b (5. Durchlauf) erreicht worden, aber eine verfrühte Rückzündung hat sie wieder abgebaut.

3. Die höchsten gemessenen Spannungen der kranken Phasen u_{kmax} werden, abgeschen von einigen Ausnahmen, durch die letzte bleibende Gleichspannungskomponente des Gesamtnetzes U_N verursacht; dies sieht man an der Differenz zwischen den beiden relativen Spannungen

 $u_{kmax}/U_{Pk}\sqrt{2}$ und $U_N/U_{Pk}\sqrt{2}$, die fast immer 1 ergibt.

3. Erdschluss durch rissige 45-kV-Isolatoren

Für diese Versuche, die einem üblichen Netz-Erdschluss wohl am nächsten entsprechen, wurde an dem unter Wechselspannung stehenden Modell-Netz der Erdschluss durch einen auf den positiven oder negativen Scheitelwert der betreffenden Phasenspannung synchronisierten Spannungsstoss von +310 kV eingeleitet. Dadurch entstand im unsichtbaren Porzellanriss des Isolators ein Lichtbogen, der das Porzellan zum Schmelzen brachte. Nach einigen Sekunden wurde der Erdschluss von Hand ausgeschaltet. Jeder Isolator konnte einen oder mehrere Erdschlüsse ertragen, bis er, bei gesprungenem Kopf, die Wechselspannung nicht mehr aushielt.

Das Modell bestand, wie bei den anderen Versuchen, aus dem speisenden Transformator, den beiden Phasenkapazitäten und zusätzlich aus einer 1 km langen Leitung, um die Absorption des Stosses durch die Phasenkapazität zu verhindern (Fig. 19). Die Versuche wurden bei einer Wechselspannung der kranken Phase U_{Pk} von 15 kV, 22 kV und 30 kV mit Erdschlußströmen I_{E50} von 4,5 A, 6,5 A und 9,1 A durchgeführt. Weitere genaue Daten des Netzes sind im Kopf von Fig. 21 zu finden.

 $C_k,\ C_g$ Kapazität der kranken bzw. der gesunden Phase; C_s Stossgenerator-Kondensator (0,13 µF); DF Doppelfunkenstrecke; Is Rissiger Isolator; KO Oszillograph; LF Löschfunkenstrecke; L_{Tr} Transformatorstreuinduktivität; $R_D,\ R_L$ Dämpfungs- bzw. Ladewiderstand des Stossgenerators; R_s Shunt zur Messung der grossen Stromstärken; Stw Stromwandler mit Schutz zur Messung der kleinen Stromstärken; Sy Synchronisiereinrichtung; Tr Transformator; $u_g,\ u_k$ momentane Spannung an der gesunden bzw. der kranken Phase; $U_{Pg},\ U_{Pk}$ Polspannung (50 Hz) an der gesunden bzw. der kranken Phase; U_0 Leerlaufspannung des Transformators; $i_E,\ I_{E50}$ momentaner bzw. 50-Hz-Erdschlußstrom

Die Oszillogramme, wovon einige in Fig. 20 reproduziert sind, und die mit einmaliger oder wiederholter Zeitablenkung aufgenommen wurden, geben den Spannungsverlauf der kranken und der gesunden Phase, sowie den Stromverlauf mit zwei verschiedenen Maßstäben an. Die mit a bezeichneten Oszillogramme enthalten den Beginn des Erdschlusses, diejenigen mit b den Zustand nach ungefähr drei Sekunden.

In Fig. 21 sind die Auswertungen der während der Erdschlüsse aufgetretenen Spannungen (Höchstwerte, Zündspannungen usw.) und Ströme eingetragen. Die Resultate seien hier kurz kommentiert:

Bei $U_{Pk} = 15 \text{ kV}$ löscht der Lichtbogen sofort nach dem Stoss, unabhängig von der Polarität (Oszillogramm Nr. 6657).

Bei $U_{Pk} = 22 \text{ kV}$ führt jeder Stoss (ausgenommen diejenigen, bei denen der Isolator die Stoßspannung aushielt) zu einem Erdschluss, der nicht mehr selbst löscht. Zu Beginn des Erdschlusses intermittiert der Lichtbogen. Im Oszillogramm Nr. 6665a sind kleine Strompausen bei jedem Nulldurchgang, auch bei Frequenz f_1 , sowie die zugehörigen kleinen Spannungszündspitzen ersichtlich. Später geht dann der Lichtbogen allmählich in einen konstanten Widerstand über, aber auch nach drei Sekunden wird die Ausgleichschwingung f_1 immer noch nach jedem Stromnulldurchgang leicht angeregt. Oszillogramm Nr. 6670 zeigt einen stark intermittierenden Erdschluss, der sich akustisch in einem pfeifenden Lichtbogen auswirkte.

Bei $U_{Pk} = 30 \ kV$ ist wie bei 22 kV die Intermittenz vorhanden, jedoch hat sie nie zum Aufschaukeln der Spannung, auch nicht zur ersten Stufe geführt (Oszillogramm Nr. 6679). Dies steht auch im Einklang mit den Zündspannungen, welche zeigen, dass die Festigkeit nach dem ersten Stromnulldurchgang mit Frequenz f_1 bei $U_{Pk} = 30 \ kV$ bzw. 22 kV nur 5...32 % bzw. 10...70 % des erforderlichen Wertes für das Aufschaukeln erreicht.

G. Schlussfolgerungen

Unter Berücksichtigung der experimentell bestimmten Faktoren (Trägheit der Lichtbogenleitfähigkeit in Luft, Streuung der Durchschlagspannung in Öl, Abnahme der Festigkeit eines durchgeschlagenen Isolators, usw.) die im Erdschluss für das Erreichen der höchsten Überspannungen massgebend sind, stellt man fest, dass das Aufschaukeln der Spannung nach der Theorie von Petersen äusserst wenig Chancen hat, sich praktisch zu verwirklichen. Wie die Versuche im künstlichen Netz nach Umrechnung auf ein Drehstromnetz zeigen, bleiben die höchsten auftretenden Spannungen gegen Erde in den weitaus meisten Fällen unterhalb des zweifachen Scheitelwertes der verketteten Betriebspannung in den gesunden Phasen und des 1,5fachen in der kranken Phase. Beim Einleiten des Erdschlusses ist in den gesunden Phasen mit dem 1,6fachen Scheitelwert der verketteten Spannung zu rechnen. Ausnahmsweise, wenn zufällig die erste Stufe der Aufschaukelung sich verwirklichen sollte, d. h. mit einigen %/00 Wahrscheinlichkeit, können die Spannungen das 2,4fache der verketteten Spannung in den gesunden Phasen und das Zweifache in der kranken Phase erreichen. Somit sind einzelne sehr seltene Ansprechen von üblichen Überspannungsableitern in isolierten Netzen bei Erdschluss möglich. Das Zustandekommen höherer Spannungen verlangt das gleichzeitige Eintreffen von so vielen an sich schon sehr unwahrscheinlichen Vorgängen, dass höhere Überspannungen im Betrieb nicht zu erwarten sind.

Je grösser der Erdschlußstrom, desto träger wird auch die Lichtbogenleitfähigkeit; deshalb sind Erdschlussüberspannungen im allgemeinen in grossen Hochspannungsnetzen relativ kleiner als in Netzen mit mittleren Betriebspannungen.

Diese Resultate stimmen mit jenen von Versuchen in Netzen überein, wobei höchste Spannungen gegen Erde vom zweifachen Scheitelwert der verketteten Betriebspannung im 8-kV-Netz in Aathal und vom 1,8fachen im 50-kV-Netz in Mühleberg gemessen wurden.

Bull. Ass. suisse électr. t. 47(1956), nº 11

Eine andere Ursache für Überspannungen wäre die Trennung des Erdschlusszweiges vom übrigen Netz durch den Schalter. Diese Ausschaltung, die derjenigen einer langen, leeren Leitung ähnlich ist, könnte unter Umständen zu etwas höheren Werten führen, die aber als Schaltüberspannungen zu gelten haben. Der Grund, warum oft Erdschlüsse in Doppelerdschlüsse übergehen, ist nicht in den hohen Überspannungen zu suchen, sondern im Zustand des Isoliermaterials des ganzen Netzes. Unter den ausserordentlich vielen Isolationsstellen werden sich stets einige latente schwache Stellen befinden,

	$U_0 = 30 \text{ kV}; U_{Pk} = 15 \text{ kV}; I_{E50} = 4,5 \text{ A}$ $C_k = 0.48 \text{ uF}; C_n = 0.48 \text{ uF}; L_T = 0.18 \text{ H}$	$U_0 = \approx 29 \text{ kV}; U_{Pk} = \approx 22 \text{ kV}; I_{E50} = 6,5 \text{ A}$ $C_0 = 0.24 \text{ uF}; C_0 = 0.72 \text{ uF}; I_0 = 0.18 \text{ H}$	$U_0 = 60 \text{ kV}$; $U_{Pk} = 30 \text{ kV}$; $I_{E50} = 1,9 \text{ A}$ C. = 0.48 µF. C_0 = 0.48 µF. $L_{T_c} = 0.44 \text{ H}$
	$f_{1} = 540 \text{ Hz}, f_{2} = 765 \text{ Hz}, f_{3} = 5,3 \text{ kHz}$ $Z_{1} = 614 \Omega \qquad Z_{2} = 870 \Omega \qquad Z_{3} = 63 \Omega$ $\delta_{2} = -0,84$	$f_{1} = 443 \text{Hz}, f_{2} = 886 \text{Hz}, f_{3} = 7,5 \text{ kHz}$ $Z_{1} = 500 \Omega, Z_{2} = 1000 \Omega, Z_{3} = 89 \Omega$ $\delta_{1} = -0.81, \delta_{2} = -0.87$	$f_1 = 346$ Hz, $f_2 = 490$ Hz, $f_3 = 5,3$ kHz $Z_1 = 916\Omega$, $Z_2 = 1300\Omega$, $Z_3 = 63\Omega$ $\delta_1 = -0.82$, $\delta_2 = -0.87$ 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c} $			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c} 250 \\ $			· · · · · · · · · · · · · · · · · · ·
0 <i>sev24021</i> № 66	48 50 55 60 61	62 65 70 75	P P

Erdschluss durch rissige Isolatoren

Zusammenstellung der Resultate

I Positiver Stoss in der positiven 50-Hz-Halbperiode

II	Positiver	Stoss	in	der	negativen	50-Hz-	Halbperiode
----	-----------	-------	----	-----	-----------	--------	-------------

u_{Pk1}	Momentanwert der 50-Hz-Spannung an der kranken Phase im Moment des Stosses;
$u_{z_1}, u_{z_2}, u_{z_3}$	Zündspannung in der ersten (beim Stoss), zweiten, dritten 50-Hz-Halbperiode;
$u_{z_1}', u_{z_1}'', u_{z_1}'''$	Zündspannung in der ersten 50-Hz-Halbperiode nach dem ersten, zweiten, dritten Stromnull-
	durchgang bei Frequenz f ₁ ;
u_{Zn}, u_{LB}	Erste Zündspannung einer 50-Hz-Halbperiode, bzw. maximale Lichtbogenspannung, nach etwa 3 s
	Lichtbogendauer;
u _{k max} , u _{g max}	höchste aufgetretene Spannung an der kranken bzw. an der gesunden Phase während oder nach
	dem Erdschluss (Stoss ausgenommen);
U_N	Bleibende Gleichspannung;
i	Stoßstrom;
iz1, iz2	erste Amplitude des Ausgleichstromes mit Frequenz f_1 infolge der Zündungen bei u_{z_1}, u_{z_2} ;
i_{Z1}', i_{Z1}''	Ausgleichstromamplituden nach den Zündungen bei $u_{z_1}', u_{z_1}'';$
n_1, n_2	Anzahl Halbperioden der Ausgleichschwingung f_1 infolge der Zündung bei u_{z_1} bzw. u_{z_2} ;
$U_{Pk}/2$	Scheitelwert der 50-Hz-Polspannung an der kranken Phase;
$U_0 \sqrt{2}$	Scheitelwert der Leerlaufspannung zwischen Phasen;
a Lichtbogen lö	ischt sofort nach dem Stoss;
b Isolator hält o	dem Stoss stand:

c Stark intermittierender Erdschluss (pfeifender Lichtbogen)

Weitere Bezeichnungen siehe Fig. 19 und Fig. 2

Fortsetzung des allgemeinen Teils auf Seite 517 Es folgen «Die Seiten des VSE»

Fortsetzung von Seite 504

Experimentelle und theoretische Untersuchung der Erdschlussüberspannung in isolierten Wechselstromnetzen, sowie der Eigenschaften von Erdschlusslichtbogen (Fortsetzung)

die wohl die geringe Beanspruchung durch die normale Phasenspannung ohne weiteres aushalten, die aber nicht mehr imstande sind, eine Prüfung während Minuten oder Stunden mit verketteter, oder eine Prüfung mit doppelter verketteter Spannung während z. B. einer Sekunde, zu bestehen. Solche unsichtbare Fehlerstellen in den «gesunden» Phasen kommen unfehlbar während des Erdschlusses zum Vorschein; sie erwecken dann oft zu Unrecht den Eindruck sehr hoher Überspannungen. Würde das gesamte Netz eine Wechselstromprüfspannung von der Höhe der Katalogwerte des Materials (mindestens 2,2 $U_n + 20 \text{ kV}$) bei jeder Witterung anstandlos und sicher halten, so würde

Literatur

- Literatur
 [1] Berger, K.: Untersuchungen mittels Kathodenstrahl-Oszillograph der durch Erdschluss hervorgerufenen Überspannungen in einem 8-kV-Verteilnetz. Bull. SEV Bd. 21(1930), Nr. 23, Dezember, S. 756...788.
 [2] Interner FKH-Bericht 10/46: Bericht über die Messung der Erdschluss-Überspannungen im 50-kV-Netz der BKW, Herbst 1945...Frühjahr 1946.
 [3] Petersen, W.: Der aussetzende (intermittierende) Erdschluss. ETZ Bd. 38(1917), Nr. 47, 22. November, S. 553...555, u. Nr. 48, 29. November, S. 564...566.
 [4] Rüdenberg, Reinhold: Elektrische Schaltvorgänge in geschlossenen Stromkreisen von Starkstromanlagen. 4. Aufl. Berlin: Springer 1953.
 [5] Fallou, Jean: Les réseaux de transmission d'énergie. p. 376. Paris: Gauthier-Villars 1935.
 [6] Interner FKH-Bericht A54/12b: Anhang zum Bericht über Versuche am Lichtbogen.
 [7] Peters, J. F. und J. Slepian: Voltages Induced by Arcing Grounds. J. Instn. Electr. Engrs. Bd. 42(1923), Nr. 8, August, S. 781...,792.
 [8] Willheim, R.: Das Erdschlussproblem in Hochspannungsnetzen. p. 85. Berlin: Springer 1936.

Adresse der Autoren:

Prof. Dr. K. Berger, Versuchsleiter der FKH, Seefeldstrasse 301, Zürich 8.

R. Pichard, Ingenieur der Forschungskommission des SEV und VSE für Hochspannungsfragen (FKH), Seefeldstr. 301, Zürich 8.

L'utilisation économique du bimétal dans des déclencheurs thermiques

Par J. Kirchdorfer, Aarau

621.316.925.44

Après un bref exposé des exigences posées aux déclencheurs thermiques et la justification de quelques simplifications admises, les conditions qui doivent être observées pour obtenir le total minimum des frais concernant le bimétal sont déterminées pour un travail d'ouverture prescrit.

Le constructeur qui établit le projet d'appareils ou d'instruments techniques est obligé, dans la grande majorité des cas, de rechercher un compromis avantageux entre les possibilités techniques et les frais que leur obtention nécessiterait. La solution de ce problème est déjà passablement difficile pour des appareils relativement petits, du fait des nombreuses combinaisons possibles et des influences réciproques des éléments constitutifs. D'autre part, l'importance extrême de ce problème oblige à rechercher, pour l'établissement de ce compromis, des formules qui permettent de déterminer la solution optimum, si possible d'une façon mathématiquement exacte. Pour que ces formules demeurent simples et que l'on puisse constamment tenir compte des relations qui interviennent, il faut nécessairement procéder à l'étude de problèmes partiels, ce qui permet de déterminer des conditions optima en utilisant certaines pièces d'un prix particulièrement avantageux, tout en maintenant l'ensemble de la disposition choisie. La recherche de l'utilisation économique du bimétal dans des déclencheurs thermiques, qui fait l'objet de la présente étude, est un bon exemple de solution pratique d'un tel problème de détail.

a) Généralités

Comme cela est le plus souvent le cas lorsqu'on cherche à obtenir une utilisation optimum, on a affaire ici à un problème nettement délimité par les prescriptions en vigueur et les spécifications d'exploitation, de sorte qu'il s'agit de déterminer avec Nach einer kurzen Darstellung der Anforderungen an Thermoauslöser und Diskussion einiger vereinfachender Annahmen werden die Bedingungen abgeleitet, die zur Erzielung minimaler Gesamtkosten für das Bimetall bei vorgegebener Öffnungsarbeit einzuhalten sind.

quel minimum de dépense ces exigences pourront être satisfaites.

Si nous considérons tout d'abord quelles sont les exigences posées aux déclencheurs thermiques, nous constatons que les principales sont:

- 1º Un fonctionnement durable.
- 2º Une bonne résistance aux trépidations.
- 3º La sécurité vis-à-vis des courts-circuits¹).
- 4º La possibilité d'une gamme étendue de courants nominaux.

Pour des considérations d'ordre essentiellement mécanique, ce sont les exigences 1º et 2º qui intéressent avant tout, tandis que les exigences 3º et 4º jouent surtout un rôle au point de vue thermique. Une influence réciproque existe toutefois du fait que ces exigences sont corrélatives. Ainsi, tandis que la durabilité du fonctionnement ou l'assurance que le déclenchement aura toujours lieu dans les limites imposées, quelles que soient les conditions de service, sont d'autant plus grandes que le chemin disponible pour le déclenchement est effectivement moins utilisé, la résistance aux trépidations diminue au contraire dans ce cas.

Pour parvenir à un compromis avantageux, le chemin disponible pour le déclenchement devrait être aussi grand que possible. A cette conclusion logique s'oppose toutefois l'exigence d'une grande

¹) Par sécurité vis-à-vis des courts-circuits, on entend ici la faculté de supporter les élévations de température, qui peuvent se produire jusqu'à l'instant de fonctionnement du coupe-circuit en amont, assigné au domaine d'efficacité du relais.