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Computer Analysis of Grülages Curved in Plan

Calcul par ordinateur des riseaux de poutres courbes dans le plan

Berechnung gekrümmter Trägerroste mittels Elektronenrechner

F. SAWKO
Professor of Civil Engineering
The University of Liverpool

List of Symbols

H-

E Young's modulus.
Poisson's ratio.

JS
C Rigidity modulus 2n+ i

I Flexural constant.
J Torsional constant.

a
?LL Ratio of flexural to torsional stiffness of a member.
GrJ

w Uniformly distributed load.

P Concentrated point load.

r Radius of curved member.
d Angle subtended by curved member.
<f> Angle defining position of point on curved member.

M Bending moment.
T Torsion moment.
Q Shearing force.
b, d Width and depth of rectangular member.

t Wall thickness of box member.

A Area of cell of hollow section.

a Depth to breadth ratio -j.
Mx Moment in x direction.

My Moment in y direction.
F. Vertical force.
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/n > /12 etc- FMxibihty factors for curved member.
5n i si2 e*c. Stiffness factors at end of 1 of curved member.
*n' hz e*c. Stiffness factors at end of 2 of curved member.
rmri2 e*c- Restraint factors for curved member.

y Angle of inclination at end of 1 of curved member with respect
to frame axes.

c cos y.
s siny.
c' cos (y + 9) 1 cosine and sine of angle of inchnation of end 2 of
s' sin (y + 8) J curved member with respect to frame axes.
F FMxibihty matrix of a member.
S Stiffness matrix of member.
/ Numerical factor from graphs.
k Multiplying factor for torsional constant.

Introduction

The problem of grillage analysis has always presented design engineers with
considerable analytical difficulties. This is due to the high statical indetermi-
nancy that these structures invariably possess. For a torsionless system this
would be approximately one for every internal node of the grid, and analytical
techniques using the "interacting force" principle have for a long time been the
only Solution. The success ofthe analysis has largely depended on the skill ofthe
Operator in setting up the simultaneous equations without arithmetie errors,
and utilising lines of symmetry and skew symmetry wherever possible to reduce
their number.

A torsionally stiff system, presented an even great obstacle for the analysis.
The interacting force method had to be abandoned and attempts were made at a
moment distribution analysis of grillages, using unit normal deformations at
joints with a series of propping forces. With this device the number of equations
was reduced to the set equal to that in the torsionless case at the expense of
considerable effort in hand Computing.

The advent of electronic Computers ensured not only an easy and accurate
Solution of the simultaneous equations, but enabled another great step forward.
Thus following the example of plane frame analysis Lightpoot and Sawko
[1, 2] demonstrated that an automatic setting up of slope deflection equations
could be achieved for any grillage irrespective of geometric arrangement of
members. Equations expressed the interrelation between nodal forces and the
corresponding displacements which consisted of two rotations about a mutually
perpendicular arbitrary set of in-plane axes and a transverse displacement. Thus
three equations were automatically set up at each node of the grillage for the
torsionless and torsionally stiff cases and were solved to produce first the un-



COMPUTER ANALYSIS OP GRILLAGES CURVED IN PLAN 153

known displacements and subsequently the bending moments, torsion moments
and shearing forces for each member of a grillage. The complete analysis was

programmed for the automatic Solution by electronic Computer, and only
required the geometry of the frame and loading as input parameters.

The original Computer programmes were successfully used for the analysis of
numerous bridge deck grülages, floor and roof system. The analysis was also

extended to cover the behaviour of grillages in the elasto-plastic ränge (Sawko
[3]) which permitted the investigation of the deterioration of load-deflected
characteristics up to collapse. In all cases, however, the geometry requirements
were such that all the members of a grillage had to be straight between their ter-
minating nodes. This restricted the analysis to grillages which were square,
polygonal, or skew in plan, and no facility existed for the treatment of curved
members. These sometimes occur in roof Systems, and are very common in
bridge deck grillages curved in plan, many of which are required at interchanges
,and elevated roundabouts with the new motorway Systems.

It is somewhat surprising, therefore, that so little has been published on the

analysed grillages curved in plan. Most attempts have been concentrated on the

analysis of single discrete curved members [4—7] or discrete girders intercon-
nected by rigid cross frames [8]. The onlywork on grillages consisting ofmembers

curved in plan interconnected by transverse diaphragms seems to have come
from Japan [9, 10]. In this work a series of cuts in cross members are made to
render the structure statically determinate and compatibüity equations are set

up to restore continuity to the system. This laborious hand method is imprac-
ticable for torsionally stiff grillages with large numbers of main end transverse

girders. Recently Coull and Ergin [11] have presented a series Solution for
isotropic slabs curved in plan, and demonstrated a sufficient degree of accuracy
of the method compared with perspex modeis. Their work is interesting but
somewhat hmited, since an isotropic slab is not the most efficient medium for
resisting the high torsion moments set up in curved structures.

It is clearly possible to analyse a grillage curved in plan by a number of
equivalent straight sections. This, somewhat dangerous procedure, as will be

demonstrated in the following paragraphs, is sometimes used indiscriminately
by Consulting engineers seeking rapid answers to their immediate problems.

The analysis of the curved grillage was attemped by the author for the West

Riding County Council (Yorkshire) for the curved decks of Lofthouse Inter-
change at the intersection of Ml and M62 motorways (Fig. 1). This consisted

of a number of prefabricated steel box girders with an insitu composite concrete

slab, which also acted as the transverse distributing medium in the bridge. Analysis

was required for the abnormal vehicle loading in the central and eccentric

positions for maximum transverse moments in the concrete slab and bending
and twisting moments in the curved longitudinal members respectively. The

analysis based on the straight segmental approximation corresponding to the

Joint numbering of Fig. 1 gave very reliable answers for moments in the longi-
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Fig. 1. Plan and section of Lofthouse Interehange South Roundahout Deck.

tudinal girders. Transverse moments in slab, however, were most difficult to
Interpret, since the resolved components of the longitudinal moments in the
transverse direction at the centre of the bridge were of the same order as transverse

moments printed out by the Computer. The deck was re-analysed by
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doubling the number of segment«, but this merely halved the inoluded angle.
and hence the resolved component, whilse also halving the transverse moments.
The dilemma was thus unresolved, and the designers adopted conservative
values for design purposes.

The above example demonstrated to the author the importance of investi-
gating the degree of approximation involved in simulating members ourved in
plan by a series of equivalent straight members. to deeide under what conditions

this treatment was reasonable.

Approximation in Curved Member Simulation

Fig. 15 shows a straight uniform member of the same section properties as

the ourved member with subtended angle. It was desirable to obtain a graphioal
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representation of the degree of error involved in the bending stiffness, torsion
stiffness and shearing stiffness at end [1] ofthe curved member. The percentage
errors, given by:

actual stiffness of _ stiffness of equivalent
0. _

curved member straight member
actual stiffness of curved member

are plotted in Fig. 2—4. Stiffness values of curved members, which will be dis-
cussed in the following section, are obtained in Appendix 1, and the
corresponding values for the equivalent straight member, in the same directions, in
Appendix 2. The evaluation of these errors over the whole ränge of values ofthe
included angle and factors was achieved by a short program written in ALGOL
60 for the Leeds University English Electric Leo-Marconi KDF 9 Computer.
Appendix 5 shows that the ränge of values of ac is approximately 0.6 at the
lower ränge, and increases with depth to width ratios fpr both box sections and
solid rectangular sections. For torsionally weak (I) sections it can be as high as
100 or more.

Figs. 2—4 indicate that the error involved in the straight member Simulation
is substantial even for included angles as small as 1 degree, and rises very ra-
pidly for larger angles. The Simulation, therefore is not a promising practical pro-
position if accurate values are required, and the need was feit for incorporating
the exact geometry of the structure for analysis with the exact thoeretical
treatment for members curved in plan.

Stiffness Factors for Members Curved in Plan

Attention will be confined to the analysis of grillages with members of a
constant radius of curvature which are by far the most common in practice,
although the proposed treatment is by no means restricted to these cases.

In the general analysis of circular bow girders, Pippard and Baker [4]
have encountered difficulties with a direct Solution involving three unknowns,
and have reduced the number to two, by considering the redundant forces in
the centre of the girder and obtaining the Solution in two stages by considering
Symmetrie and skew Symmetrie loading to determine the central forces, and
then calculating the fixed end moments and shears.

The same difficulty was experienced in an attempt at a direct determination
of stiffness factors at the ends of a curved member. Thus the author has adopted
an alternative approach of deriving the influence coefficients for the flexibility
matrix at end of 1 of the member, and inverting this to obtain the required
stiffness factors at end 1 (Appendix 1). The restraint factors, and stiffness
factors at and 2 were then simply obtained from consideration of statics. The
procedure involved the use of numerical values of 6 and et to form the flexibility
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coefficients, and the inversion of a 3x3 matrix, and both Operations were

carried out inside the Computer to yield numerical values of stiffness factors.

Fixed End Forces and Moments

The additional difficulty with curved members is the fact that fixed end

forces and moments cannot be obtained in a simple way as for a straight member

under any loading. Appendix 3 gives Pippard and Baker's Solution for a

uniformly distributed load, and this is plotted graphically in Figs. 5 and 6 for

Fixed-end moments doe to uniformly dlstrlboted lud w

/=2O0

H

Fig. 5. Values of fixed end moments in
a curved girder under uniformly dis¬

tributed load.

Fixed en

Angle I

Fig. 6. Values of fixed end torsions in
a curved girder under uniformly dis¬

tributed load.

quick reference. Treatment of point loads presents even more difficulty not so

much in the analysis (Appendix 4) as in the presentation of data in the form of
graphs or tables. In addition to the two variables 8 and a, the position of the

point load P varies along the beam. A füll ränge of values has been obtained by
the author, but their presentation would require considerable space. Some typical

results are presented in the form of influence hnes in Figs. 7—9 and these are

sufficiently representative of the whole ränge. As would be expected, large
values of 8 affect moments considerably over the ränge of <x. Shearing forces

(Fig. 9) are relatively insensitive to these charges. For small angles it is

sufficiently aecurate to induce only the effects of shearing forces and fixed end

moments based on a beam of equivalent length, and to neglect torsion effects.

This is unlikely to lead to excessive errors if the curve is flat. When 8 is large the
actual values can be calculated from the formulae in Appendix 4.
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Fig. 9. Influence lines for end reaction in
a curved girder with 8 30 degrees.

The Computer Programme

The programme for the analysis of grillages curved in plan has been written
in ALGOL 60 for the KDF 9 Computer at Leeds University Electronic Computer

Laboratory.
Formulation of the elastic analysis for an automatic Solution by the

electronic Computer is not new, and attention will be confined only to features of
interest.

The data for input consists ofthe properties of straight and curved members,
restraint conditions and loading. Curved members are specified by defining
Joint numbers that they connect, radius r, included angle 8, bending and
torsion constants / and J, whether the curvature is positive or negative (Fig. 13)
and the angle of inclination at end 1 of the member. Members with the same
section properties are specified in groups, and.it is not necessary to repeat the
data for each member separately.
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The Computer sets up the stiffness factors for the curved members with
respect to the local member axes, and transforms these, using different trans-
formation matrices at ends 1 and 2, to the arbitrary set of axes specified for the

grillage (Appendix 1). The stiffness matrix is then assembled in the usual way,
only one half of the non-zero band width being stored to reduce storage space

and subsequent Solution time. The Solution of equations is based on T. Bana-

chiewicz [11] square root method, which proved to be very fast and accurate

even for large sets of equations. The deflections are then used to calculate, for
each curved member, the bending and torsion moments at the two ends and the

shearing forces. For straight members only one value ofthe torsion is given.

Numerical Example

The bridge deck of the Lofthouse Interchange was re-analysed once the

Programme had been developed, and the results are plotted in Figs. 10—12.

Transverse members were formed by the reinforced concrete slab itself, which

is wedge-shaped in plan. A uniform member was assumed in its place, since the

discrepancies were very small. Account was taken of the reduction of stiffness

due to cracking of concrete over the central portion of the bridge.
The wheel loading of the abnormal vehicle was represented by equivalent
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Fig. 10. Lofthouse Interchange Distribution of moments in longitudinals and torsion
in transversals.
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point loads at the nodes of the curved grid. This did not lead to large errors in
longitudinal bending and torsion moments, and local wheel effects were
superimposed on the Computer Solution in design.

The author beheves, that the results so obtained are an accurate representation

of the actual stress conditions occurring in the bridge under the central
vehicle loading. He also feels that the analysis would be difficult, if not impos-
sible, by any other known method.

With the development of the Computer programme for grillages curved in
plan, another class of structure has been made amenable to a fast and reliable
Solution.
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Appendix 1

Stiffness and Restrain Factors for Member Curved in Plan

With reference to Fig. 13, end 1 of curved member 1—2 is released and unit
values of forces Mxl, Myl, Fzl are apphed in turn. The flexibility factors for

Fig. 13. Member curved in plan with
definition of positive (a) and negative (b) {$m) '^t\

curvatures.

®y" «Mx2 Idöwn]

Ftt|down)

|a) Positive curvature

tr<F©

Mx?X

fb) Negative curvature

member are given below, where the upper sign refers to positive, lower to negative

curvature of the curved member as defined in Fig. 13.

hi=Yl\ sin2^# + ^j I

o

+ Gj[l6+lshi2<
(1)
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B

/22 JJ/ ' + GJ|sma

izßö+isin2ö)+^7ßö-isin:

r3 C r3 C
f33 El \B^2i>d^ + Qj\(l-C0S'P'd'f>

0 0

^(iö-isin2ö)+^(|ö-2sinö + isin2ö

/12 + -jjtj] sin <£ coscf>dcb±-^-j\ sin<f>coscf>dcf>

r fl
EI\2:Bm*0\ + r II

QJ\2¦am'

/l3 ± jjTj sin2<^ + ^-j I cos<£(l •cos</>) dcf>

-i^-^H^H^^2'
123 Ej sin <f> cos

r fl 2:Sm'äEI\2

—-=-= | sin <£ (1 — cos <f>) d<f>

o

-^(l-cosÖ-^sir

EI

(1)

Thus for any factor a.=—— and subtended angle 8 flexibility factors can be

calculated numerically. The flexibility matrix for the member

F
fu fiz /l3]
fzi tzz ;23

fzi /32 /33_

is then inverted, giving numerically the stiffness matrix at end 1 ofthe member:

8
<Sn s12 s13

*21 ^22 *23

.S31 S32 S33.

The basic force displacement relationship for the curved member can then be

written as:
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~MX{ «11 «12 «13 ~XX ri\ rxz rxz X2

Mvl — «21 «22 «23 Vi + rZX ^22 ^23 yz

_3i_ _«31 «32 «33_ _21_ _r31 rZZ r33_ _Z2.

Mx2 ~»11 rzx ?3i~ ~X\ Hl h.z 'l3 ~x2

MVZ rlZ ^22 r32 yx + 21 22 23 yz
Kz JlZ ^23 r33_ -Zi-j _*31 "32 "33_ _z2_

or more briefly F12 Sx2 D1 + R12 D2,

F21 R21 Dx+S21D2,

(2)

(3)

where Si:i, R^ are the stiffness and restraint matrices respectively and Fx 2 and
D12 the forces and corresponding displacements at ends of 1, 2 of the curved
member.

The restraint factors ri:j are obtained from equüibrium consideration, by
applying unit displacements in turn to end 1 of the member.

Thus for 8x1 l only, all other displacements equal to zero,

-M-xl «11 > M-xZ ~ rXX'

-^"yl=«12> ¦W-yZ rVl'
*zX «13; -*22 rX3'

and from equüibrium:

M+1 Mx2 + Mxlcos8±Mylsin8 + Fzr{l-cosd) =0,
.'. ru — su cos 0 + s12 sin 0 + s13 r (1 — cosö),

M+1 My2-Mxlsin8+Mylcos8-F!1rsin8 0,

s12 cos 8+s13 r sin 8,.'. f\z — ±s11srn

FZH Fz2 + Fzl 0,

• • rXZ — «13-

the restraint matrix becomes:

«llc + «12« + «13r(l ~c)
-R12 s2X c + s22 s + s23 r (1 — c)

_«31C + «32«±«33»"(1-C)

i «ii« — «12 c + s13rs
+ s21s- ,c + s2ors

1 öo"! ö öqi) (/ ""r~ ooq / ö ^J
(4)

Stiffness factors at end 2 ofthe curved member are similar to the corresponding
factors at end 1, the only difference being those of sign in the off diagonal

terms. It is easy to show that:

$21 (5)

«31 «32 «33.

In assembling the stiffness matrix of the complete structure, equation (2)
has to be transformed to a general system of axes x', y', z' (Fig. 14). Thus every
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curved member will in general be inclined at an angle y at end 1 to the positive
direction of the x' axis. The inclination at end 2 will be (y + 8), due account
being taken of the curvature of member.

»•8

*».

la] Positive curvature
(b) Negative curvature

@ Fig. 14. Angles of inclination of the ends of

\l curved member related to general system of
¦^ axes. Positive (a) and (b) negative curvatures.

From static and geometric consideration, the force displacement relation-
ships for the curved member referred to the frame system of axes x', y', z' are:

Fx (Tx"18x2 21) D[ + (Tr1 R12 T2) D'2,

Fi (Tf1 R2131) D[ + (3,-1 S21T2) D2,
(6)

where 31

cosy siny 0

— siny cosy 0

0 0 1

and T2

cos (y + 8) sin(y + 0) 0"

-sin(y-|-0) cos(y + 0) 0

0 0 1

The final equation can be written in the form:

^1' 8'12D[+R',2D'2,
F2 R21 Dx+S'21 D'2,

C S-y\ Ji S CS-t2 + S S22 S C«Six "r (C S J Si2 — SCS22 CS-i3 — S £03

(7)

where S[2

S2i

«"«ll + 2«C«12 + c2«22 o 61g -r* Ooq123

S*

(c')2sn + 2 5' c' s12 + (s')2s22 s' c' sxl + [(s')2 — (c')2] s12 — s'c' s22 c' s13+s' S23

(« «11 — 25 C 5x2+ (c «22 « «13 — c «23

«33

^2
cc rlx — sc r21 — cs r12 + ss'r22 es'rlx — ss'r21 + cc'r12—sc'r22 cr13 — sr23
sc'rlx + cc'r21—ss'r12 — cc'r22 ss'rxl + cs'r21 + sc'r12 + cc'r22 sr13 + cr23

c r. "« '"api s r%T+c r.

The coefficients of the four 3x3 matrices are Symmetrie about the leading
diagonal, and c, 5 stand for cos y, sin y, and c', s' for cos (y + 8), sin (y + 8) respectively.

In this form the equations are suitable for an automatic setting up process
and Solution inside the Computer, yielding at each Joint three displacement D'
in terms of the reference axes of the frame. Member forces are then determined
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from the following equations:

F1 S12T1Di+R12TzD^

F2 R21T1D1 + S21T2D2;
(8)

where

and

Sxz 21

R12T2

CSi-\ — 8S-\2 8^Xl ¦ ^^12

C öoi ""™" o ooo 8 ooi T~ C «22

C Ggi ~~ ö og2 ö Ogl "1 C O32

«,•>

!>83_

crii — «»'12 «rn + cri2 r:
C 7"2i — S r22 S 7*21 + C" ^"22

cr3i-«r32 srsl+cr3Z r,

It is usually unnecessary to calculate the corresponding matrices for forces

at end 2 of the member, since these are obtained far more simply from statics.

Thus with reference to Fig. 14 it follows immediately that

Mx2 -Jfxlcos0 + Jkf!,1sin0± .F21 r (1 - cos l

My2 + Jfalsin0-Mi/1cos0 + .F21rsin0.
(9)

The force system for every curved member is thus defined by five values -
bending and twisting moments at ends 1 and 2 of the member and shearing

force.

Appendix 2

Stiffhes Factors for an Equivalent Straight Member

With reference to Fig. 15, stiffness factors for a straight member connecting
ends 1 and 2 of member curved in plan can be determined by any of a number of
Standard procedures. A flexibility approach parallel to the one adopted in

Appendix 1 is outlined here, since it makes the procedure easy to follow.

oow

Fig. 15. Simulation of curved member by an equivalent straight
member.

End 1 of the member is released, and unit values of forces Mx, My, Fel are

apphed in turn. It is most convenient to use x', the distance along the member,

as a variable, rather than positional angle cb.
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Thus:

2rsin(0/2)

f11=1LLin%dx' + -^jL
2rsin(0/2)

"' J 1 r O • 2
ö T •cos—dx =-=rT2sm'i—+ 7r7sm(Z Hi 1 Z Cr«/

27-sin(fl/2) 2rsiri(fl/2)

/22=¥IJcos-^ +_jsm_da. _sm0 + _2sin2-:
0 0

2rsin(0/2)
r3 8 „0/33=^JV) !<fo;' Äl3m2' (10)

r u r .0/12 + "ety sin0sin — + -^-= sin0sin—,
Mj 1 2 (x J 2

/l3 ± r¥l
r2

9. Hin 8,
9.'

/23 =~^7smösm2'

The inverse of the fiexibility matrix for any values of r, a. and 0 gives
numerically the corresponding stiffness factors at end 1 of the member.

Appendix 3

Uniformly Distributed Load over Girder Curved in Plan

The circular are bow girder has been solved by Pippard and Baker [4]
(p. 413), and their notation is modified to comply with that used previously in
Fig. 16. Values of moment, torsion and shearing force at any point defined by

Fig. 16. Uniformly distributed load on curved girder.

angle <i> are:

M 2wr2

T 2w;

i^|(ar4cos<£<(a-T-l)sin^ — <x»cos2 "2 2

(<x + l)0-(a-l)sin0
-4sin^>|(a-)-l)sin2 —agCos^

-1

(a+l)0-(a-l)sinö
(11)

Q =2wrcf>.
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Thus end moments at ^ 0/2 (i. e. end 1) become:

My 2wr2

Mx 2wr2

F„ 2wr-

0f. 0 0 01

4,C,OS-^{(ot.+ l)sm.-^-r-^COS^>

:+l)— («— l)sinl
0 f, I

¦ 0 0
4smgUa+l)sm-5 —r^cos;

(a+l)-(a-l)sin<

Values of Mx a.nc\My are plotted in Figs. 5 and 6 respectively.
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Appendix 4

Point Load on Girder Curved in Plan

Pippard and Baker [4] give the Solution to a curved girder under a single

point load in two steps. Values at the centre of the girder are first calculated,

F„ldown

Hdown) * Fig. 17. Point load on a curved girder.

and resolved for end moments torsions and shears. Thus, with the notation of

Fig. 17 the central values are:

(« +1) cb' sin cf> + (cc -1) sin gSin f-2a (cos cb - cos^J
M0 Pr- (<x+l)0-(a-l)sin0
F., (13)

Pr
(a +

+ ¦

cos cb sm -l -^sineb'-cbA + 4 a sin ^sin^- («-l)<f> sin 0•

(a+l)02 + (a-l)0sin0-4a(l-cos/

2J, =Pr~ F
cf>' —sin cb'—^(0 —2sin^ cosec-

The end moments and force at end (1) become:

aß Q

My MftCos- + T0sin- + Forsin-,

Mx -Mnsin-+ T0cos--F0rll-cos-\, (14)
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and at end (2):

My M0 cos-- T0 sin--F0r sin- -Pr sin.

Mx M0sin- + Tncos--F0r\l

K =Fn-P.

¦cos- Pr(l-coscb'), (15)

Appendix 5

Flexural and Torsional Properties for Hollow and Solid Sections

Hollow Box Sections

For fabricated steel boxes, wall thickness t is very small compared to dimen-
,sions of section

Thus: "h+'tH'M).
J <LA2t \b2d2t

perimeter (b + d)

If dfb=a, and li for steel 0.3,

11111EJ
GJ

2.6
02

l+O

a a

0 0.65
0.5 1.14
1.0 1.74
3.0 5.21
5.0 10.42

Solid Sections

J k db3 for a > 1
bd3

Thus for u, concrete =0.15,

kbd3 for a < 1.

I »ö>»>'
0.192,

1
for a < 1.
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Values of k are given by Timoshenko [12]

a tx

0 0.58
0.5 0.84
1.0 1.36

3.0 6.58
5.0 16.50
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Summary

The paper describes the development of a Computer program for the
analysis of grillages curved in plan. The basic structural element is a curved member,

treated in terms of its "exact" stiffness and restraint factors, which are
derived in the Appendix. Results of analysis of a bridge deck curved in plan for
the Lofthouse Interchange (an intersection of MI and M62 Motorways,
Nr. Leeds) are presented.



170 P. SAWKO

Resume

La presente communication se rapporte ä la description d'un programme de
calcul electronique des reseaux de poutres courbes dans le plan. L'eiement de
base du Systeme est une piece courbe que l'on considere du point de vue des
coefficients «exacts» de rigidite et d'encastrement qui lui sont assocMs; ces
coefficients sont determines dans l'Appendice. On presente les resultats du calcul du
tablier d'un pont courbe dans le plan destine a l'echangeur de Lofthouse
(intersection des autoroutes Ml et M62, au nord de Leeds).

Zusammenfassung

In dieser Studie wird die Entwicklung eines Rechnerprogramms für die
Analyse von im Grundriß gekrümmten Trägerrosten beschrieben. Das
Grundelement ist ein gekrümmter Stab, der mit den genauen Stab- und Kreuzsteifig-
keiten, welche im Anhang abgeleitet sind, behandelt wird. Die Ergebnisse der
Analyse einer im Grundriß gekrümmten Brückenfahrbahn für die Lofthouse
Interchange (eine Kreuzung der Autostraßen M1 und M 62, Leeds) hegen ebenfalls

vor.
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