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Lateral Buckling of Beams without Axial Loads

Deversement lateral des poutres sans forces axiales

Trägerkippen ohne Axialkraft

S. 0. ASPLUND
Sweden

Axial Buckling

Lateral buckling can be analyzed by extending the same argumentation
as was used for simple beams in S. 0. Asplund, Structural Mechanics: Classi-
cal and Matrix Methods, Prentice-Hall, Englewood Cliffs, 1966. Letters N
and F below refer to chapters in that book.
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Fig. 1. Polygon angle breaks. Fig. 2. Moment polygon.

Shortly, a polygon 0123, Fig. 1, is defined by abscissa intervals A x
[x0XxX2x23\D (diagonal matrix) between its end-points, and by its corner
ordinates [z^]* (a column vector, * denotes transposition). The slopes A of the
polygon sides and their corner angle breaks — B, see Fig. 1, are given by

d A (Ax)~*dz, -B d*(Ax~1)dz -Xz. (1)

X is the second order difference Operator corresponding to the differential
Operator d2\dx2. When a simple beam is loaded by transverse loads P, Fig. 2,

the angle-breaks — XM of its moment polygon equal the beam loads P. By
inversion of — X we find M and the moment influence coefficients Ml

-XM P, M -I-XP CP, C -X-1 Mi because M MlP, (2)
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The force transformation C transforms structure loads P into member
forces M. Its transpose (7* is the displacement transformation that transforms
member deformations m into structure displacements p, or

p C*m. (3)

In this case the flexibility matrix /, transforming member forces M into
member deformations, is a three diagonal matrix. The influence of both
bending and shear deformations may be included in /. In a dense member
subdivision / can be approximated by a one-diagonal matrix.

m fM, p C*m C*fM C*fCP. (4)

Thus a beam with deflections p will carry in bending the loads

pB (C+fC)-1? XFXp, F f-1. (5)

Whenever a one-diagonal approximation for / is satisfactory, F also will
be one-diagonal and X FX a five diagonal band matrix that can be rapidly
inverted.

We assume that the segments of the beam are subjected to axial forces H
(a diagonal matrix). These, acting against the corners of the deflection polygon
p, will carry a ''bar-chain load" of

PH XHp, XH -d* (HjA x)d. (6)

XH being a three-diagonal band matrix. For a continuously variable compression

that has the values H (a diagonal) at the bar-chain joints we write

XH HX. (7)

In case of a constant compressure force, H in (7) should denote its scalar
magnitude.

Finally, side Springs of spring constants 8 connected to the joints between
the beam segments, will carry the "side-spring load" of

Ps=Sp. (8)

For separate Springs 8 is a one-diagonal matrix, but by making 8 a three-
or five-diagonal matrix representing a connected spring action, an elastic body
side support can be closely approximated.

To sum up, the beam carries altogether the transverse load P PB +
PH + PS, that is,

(XFX + XH + S)p P. (9)

In our present study concerning buckling we can omit the transverse
loads P. The homogeneous equations in p

(A-\'B)p 0, A=XFX + S, B -XH (10)

for A' 1 generally have no Solution ^ + 0, but when the axial forces are varied
by a factor A', (10) may have non-trivial Solutions p for discrete "eigenvalues"
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of A'. When A is invertible we premultiply (10) by A~XX

(C-XI)p 0, C A-1B, X= 1/A'.

We call A' or 1/A the (elastic) buckling safety.
The numerical computation of eigenvalues and eigenvectors by an iterated

vector method will be explained in the treatment of lateral buckling below.
On p. 67 in S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability,

2nd Ed., McGraw-Hill, New York, 1961, a continuous column is exemplified
with a buckling force of 14.9i£//Zf. Treating that case by subdividing the
column into 12 segments and applying the present beam theory, results in a

buckling load of H 15.2 EIßl. This value was obtained by introducing a

very stiff spring at Joint 5.

H L«

Hcr 0.237, TG 0.233
12 3 4 5 6 EI 1 13 H

'-l1 ' 4^

Hcr=±14, 7T2-50/62 13.7
H M 2 6 2H EI 50 13 H
-*-p?—i—i—i—i—i—p»—i—i—i—•^T!"-

6-1m „]

4'1mr< 12 * 8-1m

Bück, mode—

Stn 2H

Zero .curvature—x

Curvature

Fig. 3. Continuous column. Fig. 4. Column, half in tension.

Testing the problem of Fig. 4 with an axial load at the middle, 7, of the
column 1 to 13, creating equal tensions and compressions in both column
halves, revealed that the tensioned half of the column remains straight. This
result is singular, compare Fig. 5. We further observe that the eigenvalue
problem of Fig. 4 has two equal and opposite dominant roots.

The problem of Fig. 5 also has two nearby dominant buckling loads and
modes. One is indicated in the figure. The part in tension, 1 to 6, is also bent.

H .1 2 6 2H 13 H

~tf —— :r
5-1m 7-1m

2H
ModeNot straight

Fig. 5. Column partly in tension.
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Fig. 6. Boundary conditions.

Various Boundary Conditions

In our treatment of plane beams, both beam ends are fundamentally
considered as hinged, but other end conditions can be imitated in several ways.
An elastic left end clamping can be obtained by adding as in Fig. 6, two
perfectly rigid beam segments 12 and 23 and by installing a side spring of proper
stiffness at 2. Making this spring perfectly rigid produces füll clamping of the
beam at 3.
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A continuous beam in serveral spans can be reproduced by installing very
rigid Springs at the supports, for instance at 5 and 7, Fig. 6. A free end at 8

can be obtained by inserting zero flexibility in an added beam segment 89.

In the following treatment of lateral buckling other boundary conditions
than hinged ends can be treated by similar devices to those just explained.
Therefore what is just said needs not to be repeated in the subsequent dis-
cussion of lateral buckling.

Bending and Twist of a Beam in Space
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Fig. 7. Beam in space, general case.

Consider an unloaded beam, Fig. 7, whose centroid CG, Fig. b or d, is along
the z-axis. A prineipal axis of inertia of the cross sections is directed along
the vertical z-axis. We subdivide the beam into members as in Nc. Transverse
horizontal loads Py at the member joints cause moments Mz CPy, C= —X'1,
and deflect the centroid by v CfzCPy. Hence, bending carries the horizontal
loads XFzXv with Fz f~1. Vertical bending carries the vertical loads XFyXw.

In a doubly Symmetrie beam, Fig. b, Joint rotations of r about the centroid
will deflect the beam flanges by v= ±\hr. These deflections cause the beam
flanges to carry loads Pyr= ±XFwX-\hr that combine into a couple Rw

hPyr X2FwX(l/4)h2r XFrXr. The bending stiffness Fw f~1 is calculated

for one flange, using the bending stiffness \EIZ. We denote (l\±)h2EIz
by ECw Fr of dimension tm4, see (Fx3), I.e.

Saint-Venant's torque is by (Füll): M=GJr' thus R M'' (GJr')''. For
variable GJwe write R= —XGJr with XGJ — d*G J A x~xd, where GJis
Saint-Venant's torsional stiffness. Constant GJ makes R= —GJXr.

A cross section element of area AAat the distance a from the center of
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twist will be stressed by a HjA, Fig. c, H being the compressive force, Fig. a.
This stress on the element will form an angle of ar' with its normal and have
a shear component of aar' A A. All such shears will carry a torque of

M -\oa2r'dA -Hi\r', i2 \a2dA\A (11)

and torque loads of M' —il(Hr')'. For this we shall add i\XHr to the left
hand side of (12).

After the beam is displaced by r, v, w, the y- and z-coordinates of the
centroid will be v + rz0 and w — ry0 by Fig. d. When axial loads Hk are applied
to the beam joints we find by (Ni3) that further loads of P*1 XH (v + rz0)
and PZH XH (w — ryQ) can be carried by bar-chain action, see Ni.

Spring supports, Fig. e, connected to the centroid at the member joints
have stiffnesses Sr, Sy, Sz. They carry the loads Srr, Sy(v + rz0), Sz(w — ry0).

We collect all beam loads found into the following matrix equation Kp P
~XFrX + XH i2 - XGJ + Sr (XH + Sy) z0 - (XH + Sz) y0

(XH + 8y)z0 XFZX + XH + S„ 0

-{X* + S.)y0 0 XFyX + XH + Sz

R (12)

The elements in the second and third columns of the first row are added
by symmetry or by Maxwell's theorem.

Eq. (12) can be readily used for analyzing a beam for buckling in bending
and twist, but that will be here bypassed because the purpose of the present
paper is the lateral buckling of beams.

Par

Forked lb)
ends

XH(v + l.hr)--*'

XHlv-4-hr)-"

(a) Simple support

Fig. 8. Lateral buckling.

Lateral Buckling of Beams

A beam can buckle under vertical loads, also in the absence of axial loads
on the beam, Fig. 8. A transversely loaded beam failing by twist and lateral
deflection will be analyzed. We shall assume that the beam is simply supported
and held vertical by forks or equivalent devices at the supports.
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We subdivide the beam into segments of non-uniform lengths Ax in such

a manner that the vertical loads P act at the segment joints. When the beam
deflects by v the loads P will move along laterally by v, so no moment load
will be added to the beam when it deflects. In case the load is applied on a
seat fixed to the beam at a height of a above its center of gravity, torque
loads Par caused by the rotation r of the cross section are to be added to
the right-hand side of the governing Eq. (12). The vertical loads P induce
bending moments M CP= — X_1P in the beam if it is simply supported
or other expressions if it is statically indeterminate. Many complicated support
conditions can be simulated by M CP.

The moments M induce compressive forces of H M/h in the top flange
of a beam of depth h, and equal tensions in the bottom flange. The flange
forces ±H act on the deflection polygon corners having ordinates v + \hr
and v — \hr and angle breaks of —Xv — \hXr and — Xv + \hXr. For
balancing transverse loads of —HXv — \HhXr and HXv — \HXr are
required which are equivalent to an applied external torque of R= —HXvh
-MXv and a side force of V -\HhXr*2= -MXr.

For a doubly Symmetrie cross-section when all terms for axial loads and
spring supports vanish (12) thus reads

(13)XFrX-XGJ r ~o~ + aP -XM~ r
XFZX v 0 -XM 0 V

XFyX w P 0 0

where a and P are diagonal matrices. For a continuously variable M we
replace —XM by —MX. For constant GJ we can write XGJ GJX where
GJisa scalar. By the last row of (1) we definitely solve the vertical deflections

w (XFyX)~1P.
We assume that all loads P and moments M increase in the same propor-

tions A while the structure is loaded. The first two Eqs. (13) are homogeneous
in r [r*v*]*. Non-zero Solutions r exist only for discrete values of the multi-
plier A' called the eigenvalues of the problem

(^-A'jB)r 0, (14)

A ~XF„X-XGJ
XFX

B aP
-XM

-XM
0

r

When the load is smaller than that given by A' P and A' M where A' is the
lowest eigenvalue, the beam remains at r v 0. At that load the beam buckles
proportionally to a set of deflections r, v, called the buckling mode.

In order to find instead a highest eigenvalue we transform (14) by pre-
multiplication by ^4_1/A'

(C-XI)r 0, C A~1B, A l/A\ (15)

This is of course possible only if A is invertible.
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Our problem is now reduced to finding the highest (dominant) eigenvalue
of (C-XI)r. The buckling load of the structure will then be P/A, M/X. We
shall proceed to find A by applying the iterated vector procedure. In our
lateral buckling applications we often shall encounter the case that the dominant

and subdominant eigenvalues are equal or nearly equal and of opposite
signs. In such a case the usual iteration process must be modified to finding
each of these two eigenvalues.

As usual we begin iteration with a column vector r(0) of ones. After a suffi-
cient number of iterations the iterated vector r0 will contain only negligible
traces of the eigenvectors x3 and higher. Therefore we can write r0 axxx + a2 x2
where xx and x2 are normalized eigenvectors belonging to the dominant and
subdominant eigenvalues Xx and A2, and ax and a2 are proper multipliers
forming r0. The succeeding iterated vectors are rx Xxaxxx + X2a2x2 etc. To
take advantage of Rayleigh's quotient we form the scalar products r$r0 l0,
r* rx lx, etc. We can further assume that r0 has been normalized so that l0 1.

Observing that a:f xx xg x2 1 while x£ x2 0 we can summarize

»0 1 1 axxx i i a2 r*ro 1

rl
r2

3_

Ax

Af
A?

A2

AI
AI

a2x2 Ai A2

Af Af

Af A!_

a\_ r$rx
r$r2

_r*r3_

h
h
h

and construct the following products and differences

Af AI 2AXA2

Af AI Af + Aj
0 0 (A!-A2)2
A? AI AiA2(Ax + A2)

A? AI A?+Al
0 0 (K+\)(K-K)*

a\a\

\+K (h-hk)l(k-%)

-ll

'll

lo^2~

lxl2

}o I3 ~~ ll ^2_

28.

thus

(16)

Using a\ + a\ l0 1 we also transform

lx Xxa2 + X2(l-al), lx-X2 (Xx-X2)al,

l2 A2a2 + A2(l-a2), Z2-A2 (A2-A2)a2 2S(lx-X2).

Xl — 2SX2 l2 — 2 8lx with the Solution (for both roots),

Alj2 S± i~S2 + l2-2Slx. (17)

By retrograde Substitution it is easily seen that the expression under the
square-root sign, (£-A2)2, cannot become negative.

The dominant and subdominant buckling modes are
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xx rx — X2 r0, normalized,

x2 rx — Xxr0, normalized.

(18)

The following flow chart was used in the computations:
In, vectors of Ax, EIZ, GJ, and h. Form matrices X, C, fz, Fz, Fr, XFrX,

XGJ, XFrX-XGJ, XFZX, A. In, diag. a, col. P. Form matricesaP, M CP9

-MX, B, C A~1B. In, delimiter e. Make 1 0. Make start vector r0. Label
10. Normalize r0. Form rx Cr0, r2 Crx, l2 rgr2, (ljl2— 1)2> e2? Yes, r0 rx,
l l2, go to label 10. No, form rs Cr2,lx r0*rx,ls r0*r^,2 S (lz- lx l2)/(l2 - ll),
Xx 2 8+Sqrt(S2 +12 — 28lx), xx=rx — X2r0 normalized, x2=rx — Xxr0 normalized.

Out, Ax, EIZ, GJ, h, P, a, e, Xx, X2, xx, x2.
This method can be applied to beams with variable bending, warping, and

torsional stiffnesses, quite arbitrary loadings and diverse support conditions.
Its exactness can be verified on cases already calculated by way of differential
equations for constant stiffness and simple cases, see Timoshenko and Gere,
1. c, p. 253, p. 262, and p. 264.

-Fork

: X1 Value A (a) (b)
-101 6segm: ±43 ±122

Cont. TG; ±43 ±118

Fig. 9. Pure moment.

EIZ- 450 tm2 Fork1

0 01

[100 >t lOOXtJf

GJ (a) 7,5 tm2 099^
'

4'lm ,|099|j<

(b) 109 tm2
h/2 0,242 m

6m ^XtfTK

Pure moment /

For that purpose a beam of span 6 m, depth 0,5 m, constant stiffnesses
E Iz 4:50tm2, and GJ 1,5 tm2 (a), or 109 tm2 (b) was subdivided into members,

and loaded as in Fig. 9 by loads causing an almost pure moment of
A tm, or, Fig. 10, by a center load applied at midheight of the beam, or, Fig.
11, on its top flange.

Fork Fotk

M -x ^r =±39 ±108
±2- TG ±39+108

Fig. 10. Load at mid-depth.

J2 Forki (a) (b)
1 Sr - 26 90

H =2. TG 26 94

Forkl l°> lb)
1

ß, =-60 -130Z3) r«-
^*-TG

Fig. 11. Beam loaded on top flange.

Comparative results are indicated in the figures. TG denotes values in
Timoshenko and Gere, 1. c. In spite ofa rather rough subdivision into segments,
Fig. 9 to 11 show that all results by the presented theory agree well with
Timoshenko and Gere's.

We also consider a continuous beam of two spans, Fig. 12. The beam may
have the same properties as (b) in Fig. 9. Loads of 1 t applied on the top
flange at intervals of 1 m produce a continuity moment above the center
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support of —4,375 tm. The case can be treated using one of the spans only
with one end moment produced by an additional load of — 437,51 at a distance
of 0,01 m from the support, Fig. 13. The computations disclose two
eigenvalues, one for all loads multiplied by 50 and the other for the multiplier — 73.

The buckling deflections of top and bottom flanges are drawn in the figure.
The negative eigenvalue obviously can be used for a positive buckling load
that is applied to the bottom flange.

iFork Fork Fork.

%
±±±J_L7±J-J-J-J.

6-1 m ^n 6'im t
Fig. 12. Cont. beam, load on top flange.

Fork Forki \ i i i i i1 .It

I ilb)437.5 t

Buckling modes

°rn flon 5Q

5Q50
50

¦\o$

¦73

Fig. 13. Bückling modes.

Summary

Finite beam theory in the plane is concisely outlined and applied to the
axial buckling of beams under various boundary conditions. Finite beam

theory in space is briefly stated, also in order to prepare for lateral buckling
theory which is the main subject of the paper. An iterated vector method for
finding the dominant and subdominant eigenvalues is explained. The deduced

theory is verified on eight lateral buckling cases with known Solutions. An
application to a uniformly loaded continuous beam concludes the paper.

Besume

La theorie de la poutre finie dans le plan est esquissee brievement et appli-
quee au flambement des conditions aux limites variees. La theorie de la poutre
finie dans l'espace est rapidement exposee, aussi pour l'introduction a la
theorie du deversement lateral qui est le sujet de ce memoire. On y explique
une methode vectorielle iterative pour trouver les valeurs caracteristiques
dominants et sous-dominants. La theorie demontree est verifiee par 8 cas

connus de deversement lateral. Pour conclure, le memoire contient une
application de la poutre continue uniformement chargee.
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Zusammenfassung

Knapp umrissen und aufs axiale Knicken bei Trägern mit verschiedenen

Lagerungsbedingungen angewandt wird die endliche Trägertheorie in der
Ebene. Diese wird auch für den Raum als Vorbereitung fürs Kippen kurz
angetönt, was das Hauptanliegen dieser Abhandlung ist. Zur Auffindung
der Haupt- und Nebeneigenwerte wird ein iteratives Vektorverfahren
angegeben. Die abgeleitete Theorie wird an acht schon bekannten Kippfällen
geprüft. Die Abhandlung schließt mit einer Anwendung auf einen gleichmäßig
belasteten Durchlaufträger.
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