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Torsional Lag in Wide Flanged Girders
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SUMMARY
The paper presents a study of torsional lag in wide flange girders. The influence of a number of
parameters is examined. A torsional lag effective with definition is suggested Simple expressions
are derived to enable the bending moment at any point in the flange to be calculated. It was found
that torsional lag can affect the position of maximum stress across the flange and this helps
explain some experimentally observed modes of failure.

RESUME
Ce memoire presente une etude du phenomene de trainage de torsion dans les poutres ä

semelle large. L'influence d'un certain nombre de parametres est examinee. Une definition de la

largeur efficace de trainage de torsion est proposee. Des formules simples, permettant de
determiner le moment flechissant en differents points de la semelle, sont developpees. Aussi, il a

ete observe que la zone de contrainte maximale est affectee par le trainage de torsion, ce qui
explique, en grande partie, certains modes de ruine observes experimentalement.

ZUSAMMENFASSUNG
Der Beitrag enthält eine Untersuchung der Torsionsverzerrungen in Breitflanschträgern, wobei
der Einfluss mehrerer Parameter studiert wurde. Eine mitwirkende Flanschbreite, welche die
Torsionsverzerrungen berücksichtigt, wird eingeführt. Einfache Formeln zur Berechnung des
Biegemomentes in beliebigen Punkten des Flansches werden abgeleitet. Es wurde festgestellt,
dass die Position der Maximalspannung im Flansch durch die Schubverzerrung beeinflusst
werden kann, was einige experimentell festgestellte Bruchverhalten erklärt.
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1. INTRODUCTION

Recent research on the interaction between buckling and shear lag has shown that in the
case of stiffener-induced buckling, a number of different phenomena interact to produce
the final failure mode [1,2]. These observations were based mainly on experimental
work with some attempts at numerically modelling such a mode of failure. The phenomena
were classified as:

(a) shear lag,
(b) the column P-A effect
(c) a 'bending lag', and
(d) anticlastic curvature.

This paper addresses the third of the above effects but also incorporates the fourth.
Reference to 'bending lag' can be traced back to 1971 [3] where it was called 'bending
reluctance' of the flange. By analogy with shear lag (which arises due to the finite
in-plane shear stiffness of a plate), 'bending lag', arises as a result of the finite
torsional stiffness of a plate. It is for this reason that in the remainder of this work it
will be referred to as torsional lag. Torsional lag is manifested in the tendency of the
longitudinal curvature of a flange plate to diminish with increasing distance from the
web.

The phenomenon of torsional lag would be important, for example, in shallow box girders
with wide stiffened flanges such as are occasionally used in bridge and offshore
construction. In such girders, flange failure can be initiated at a point remote from the
flange edges due to the interaction of all the phonemena listed above. An understanding
of the influence of torsional lag is necessary to explain such a mode of failure.

The double-webbed plate girder shown in figure 1 is considered. It is assumed to be
simply supported and the loads are assumed to be applied to the webs. The differential
equation for small deflections is solved analytically using trigonometric-hyperbolic
series. The loads are modelled using Fourier series. The analysis considers the effect
of a number of parameters including the aspect ratio, type of loading, degree of
orthotropy and the main girder stiffness.
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Fig. 1 Girder under consideration with plan view showing flange dimensions and

axis. The longitudinal stiffener dimensions are also shown.
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We consider the simplest case of a flange with no initial imperfections, yielding or
residual stresses in order to provide an understanding of torsional lag without the
interaction of other effects which would complicate the issue; such interaction will be
considered in future work. In-plane forces due to overall bending of the girder and
their effect on the behaviour of the flange are also not considered here, thus leaving
bending stresses only. In this way we can show how the plate behaves when a curvature
is applied to its edges.

The analysis gives rise to two possible definitions of torsional lag effective width, one
based on longitudinal curvatures and the other on longitudinal moments. These are
considered in order to select an appropriate effective width.

2. BOUNDARY CONDITIONS

2.1 Support Conditions x=0,a
The girder ends are assumed to be simply supported. Thus the edges are assumed to
rotate out of their plane independently of the supports. The simple support assumption
also provides for zero vertical displacement of the edges of the compression flange.
The out-of-plane boundary conditions can thus be written

w o (2.1)
3zw

—z=0 (2.2)

2.2 Web-flange junction conditions y-4-b.-b
The flexibility of the web is taken such that it is reasonable to assume rotations in the
transverse direction independent of the web hence resulting in zero transverse moment.
The edges deflect to follow the vertical displacement of the web. The out-of-plane
boundary conditions can thus be expressed

"y -°y TTz ' D-1^ ° (2-3)

a3* a3w a*w
"Dy ^ - (D, + «xy) ~^ + EI —< - q(x) 0 (2.4)

3. DETERMINATION OF PLATE RIGIDITIES

The torsional lag effective width was found to be sensitive to the Variation in plate
rigidities and the way in which they are calculated. Little is available in the literature
on the accurate theoretical determination of plate rigidities for eccentrically stiffened
plates. Most of the work done in this area replaces the plate/stiffener combination by
an "equivalent" homogeneous orthotropic plate of constant thickness and then applies
orthotropic plate theory to the plate/stiffener combination. For such an approximation
to be applicable, the ratio of stiffener spacing to plate dimensions should be small
(B/b, B/a « 1).

The flange plate here is assumed to be stiffened in the longitudinal x-direction only.
The plate rigidities were calculated using the following approximate expressions:

Et3 Eth2 EIS Et3

^ \2( 1-ia,ia.1 fl-i/.u..l B ^12(l-i/xfy) (l-w-x^y) B y 12(l-i/xi'y)
(3.1)
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E(DT+Bt) vBt
Ey E VX V Vy (DT+Bt)

Gxyt3

12
+

GxyJ

AB

l/Et3
Dxy - Dl ~ 12(l-v2

x Bt

V^xEy
°*y 2(14vVxuy)
H DA + 2Dxy

In such cases where the orthotropy is caused by structural form, it may be difficult to
comply with Betti's reciprocal theorem and careful consideration is required when

evaluating rigidities, especially Dx.

•4. CALCULATION OF TORSIONAL LAG EFFECTIVE WIDTH

To provide an easy means of quantifying torsional lag and the way in which it is affected
by the various parameters of the problem, it is convenient to define a torsional lag
effective width. Two ways in which such an effective width can be defined are
considered here.

(a) Effective width based on the distribution of longitudinal curvature across the width
(i.e. the Variation of azw/axz with y). Mathematically, this can be written as follows:

J0 azw/dxz dy
bß

[azw/axz]y=b (*'a)
Hence no account is taken of the anticlastic curvature and the definition gives the
effective width which would sustain a constant longitudinal curvature across the width
equal to the maximum curvature. Substitution of the derivatives of w into the above
definition gives three expressions for the effective width for:

Hz > DxDy
H2 DxDy
Hz < DxDy

(b) Effective width based on the distribution of longitudinal moments across the width
(i.e. the Variation of Mx with y at a given cross-section). Mathematically, this can be
written as follows:

Jo Mxdy

In this case the effective width is that width of plate which would sustain a constant
bending moment equal to the actual moment in the plate. Substitution of the derivatives
of w into the above definition yields three expressions for the effective width for:

Hz DxDy
Hz < DxDy

It can be seen that due to the presence of an anticlastic curvature the effective width
values obtained from the first definition will be slightly higher than those obtained from
the second. From the viewpoint of both analysis and design, we are mainly interested in
the moment and not the curvature that the section can sustain and thus it seems more
logical to adopt the second definition. This has been done in the remainder of this work
as the first does not give an effective section in the usual sense.
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The concept of a torsional lag effective width is illustrated in figure 2. The torsional
lag effective width ratio ß is then defined as be/b.

web web

5.

5.1

Fig. 2 The torsional lag effective width concept.

PARAMETERS INFLUENCING TORSIONAL LAG

Aspect ratio
As in the case of shear lag, the aspect ratio was found to be one of the most important
parameters influencing torsional lag. The importance of this parameter can be seen in
figure 2 which shows plots of effective width at mid-span vs aspect ratio (b/a) for three
different degrees of stiffening and under a centrally applied point load. The curves can
be seen to be similar to those in the shear lag literature.
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Fig. 3 Variation of effective width with aspect ratio.

5.2 Degree of orthotropy
The amount of stiffening was found to be a very important parameter in influencing
torsional lag. Unlike shear lag where it was sufficient to specify the ratio of stiffener
to plate areas per unit width of plate, it is necessary here to specify the flexural
characteristics of the stiffener/plate combination. The torsional rigidity H was found to
be the most important orthotropy parameter governing torsional lag. The effect of the
transverse flexural rigidity is not negligible as it enters into the calculation of the
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torsional rigidity. Figure 3 shows the effect of orthotropy for three aspect ratios. The
effective width is evaluated at mid-span under a point load. The important effect of the
degree of orthotropy is clearly apparent from this figure.
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Fig. i Variations of effective width with torsional rigidity.

5.3 Web stiffness

The effect of web stiffness can be measured using the non-dimensional parameter
(EI/Dxa). This effect was found to be very small in the central ränge of (EI/Dxa),
and negligible outside this ränge, as can be seen from figure 4 for three different
aspect ratios. A point load at mid-span is assumed. These curves seem to take the
shape of a very flat S. It is important to note here that the web stiffness has a very
marked effect on the magnitude of the moment in the flange.
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Fig. 5 Variation of effective width with web stiffness.
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5.4 Type of loading

The distribution of applied load on the girder has a significant effect on the torsional
lag effective width in the same way as is the case with shear lag. Two types of loading
were considered here; a centrally applied point load and a uniformly distributed load.
The point load results in the most pronounced torsional lag effect. Figure 5 shows the
Variation of torsional lag effective width with aspect ratio for the two types of loading.
This is shown for an isotropic and an orthotropic plate.
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Fig. 6 Variation of effective width with type of loading.

6. DISTRIBUTION OF LONGITUDINAL BENDING MOMENT ACROSS THE WIDTH

The availability of a torsional lag effective width enables the peak bending moment in the
flange at the web-flange junction H^x to be calculated. However, tests on plate
girders in which failure was induced by stiffener buckling [1,2] have shown that the first
stiffeners to fail were those situated at about the quarter width. It is therefore
necessary to have an estimate of the longitudinal bending moment in parts of the flange
remote from the web-flange junction. These moments may be obtained using the following
formulae:

Mx - "max

**x - *Wx

1.35/3-0. 36-(0.630-0. 73)

-0. 710+O 10+( 9. 26(3-1. 62

y z Y 4-

b. -(0.62/3-0.61) .b.

y" 2 y' 4

b. -(6.960-2.22) b.

for ß > 0.225 (6.1)

for ß < 0.225 (6.2)

Figure 6 shows a comparison between the distributions of longitudinal moment obtained
from these approximate expressions and those obtained from the closed form Solution.
The agreement can be seen to be excellent. Slight inaccuracies arise, however, for
very small values of effective width 'ß < 0.1) but these usually fall outside the practical
ränge.

The magnitude of the bending moment in the flange under the assumed loading conditions
is very sensitive to Variation in the web stiffness; the greater the web stiffness, the
smaller the longitudinal moment in the plate and for nearly all practical web sizes is
very small. However, at ultimate load the effect of such a moment distribution is not
insignificant as it will be exaggerated by the P-A effect, large deflections and the
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presence of imperfections. The combination will initiale a failure at a location remote
from the web for certain geometries and indeed this is what happened in the test model
of references [1,2].

10

» x
ß 0.880

x exacr
— approximate

max

3 0.385

ß 0 085

1 0 1 0

Fig. 7 Comparison between the exaet and approximate expressions
for the distribution of bending moment across the flange.

Given that the web provides no rotational restraint to the flange, a simple expression
may be derived for the maximum bending moment (i.e. at the web/flange junction) by
considering the overall equilibrium of the girder and making use of the torsional lag
effective width. This is given by:

(l-Df/DxDy)M

""^ zg + ^d-Df/DxDy) ] (6.3)

It is then possible by using expressions (6.1) or (6.2) to calculate the flange bending
moment at any point.

7. CONCLUSION

The paper has presented for the first time a comprehensive study of the phenomenon of
torsional lag. The case of an elastic flat orthotropic plate forming the flange of a
girder was used for the purposes of this study. The way in which a proper
understanding of torsional lag can help explain some experimental observations has been
discussed. In the case of flange failure by stiffener-induced buckling, torsional lag is
thought to be of particular importance in explaining the observed mode of failure.

A definition of torsional lag effective width has been suggested as a means of quantifying
torsional lag. The effect of the aspect ratio, the degree of orthotropy, the type of
loading and the web stiffness was studied. It was found that the torsional lag effective
width was sensitive to the first three parameters while variations in web stiffness had a
negligible effect when the latter was greater than the flange stiffness, as is usually the
case. The degree of orthotropy needs to be measured in terms of the rigidities of the
plate and not simply as the ratio of stiffener to plate areas. The orthotropy parameter
of interest was found to be H/Dx.
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Shear lag effective width is used in conjunction with the overall bending of the girder
with the flange acting as a compression or tension member. By contrast, the torsional
lag effective width is used in conjunction with the bending of the flange plate itself
(together with any stiffeners); i.e., the flange is acting as a bending member when
considering torsional lag.

The way in which the torsional lag effective width is applied in the analysis was
demonstrated. Simple expressions for the evaluation of the longitudinal bending moment
at any point across the flange have been given.

APPENDIX

Solution of the governing differential equation

The small deflection differential equation of an orthotropic plate in bending is

a*w a*w a*w

°* i^ + 2H Jx^ + °y 1^ q(x>y) (A>1)

and if only edge loading is applied the equation reduces to its homogeneous form

a*w a*w a*w

°x tt + zh rnr» + °v rr ° (a.2)^* ax* ax2ayz ™ ay*

the general Solution takes the form

mrrx
w sjjjj F(y)sin — (A.3)

and Substitution of this into the governing differential equation results in the following
characteristic equation

Dx F(y) -2H
mw

a

z

F"(y) + DyF""(y) 0 (A.A)

where a' denotes differentiation with respect to y.
The roots of this equation depend on the relationship between Dx, Dy and H and three
situations arise:

1. H2 > DxDy for a torsionally stiff and/or flexurally soft bridge deck
2. H2 DxDy for an isotropic bridge deck
3. Hz < DxDy for a torsionally soft and/or flexurally stiff bridge deck

Symmetry of the plate geometry and its loading requires the Solution to be an even
function of y and this reduces the number of unknown constants from four to two.

The boundary conditions at the edges x 0,a are satisfied by the choice of Solution
while the other two boundary conditions at the web/flange junction are used to determine
the constants in the general Solution. The three cases give three different solutions and
these are presented here.

Case 1. Hz > DxDy

The roots of the characteristic equation in this case are all real and are given by
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»1,2, S,-
— (H±*) — r, «
Dy a l>z.3t*

(A.5)

where vf /fa2 - DxDy

and hence the deflection surface is given by

w =TL sin (Ai coshc^y + Azcosha2y) (A.6)

The condition that My 0 at y b gives the relationship between Az and A±;

coshoc2b ((J/-2Dxy)
A, —— —r" A (A.7)1 COShOjX HH-2Dxy

Z

and the second condition of equilibrium of the edge gives A2 in terms of the known

parameters of the problem which reduces to

(Y-2Dxy)z

1(UH2DXy)

2*
+ r2(^2Dxy)sinha2b +

(gH2Dxy)
EI -

cosha2b tanho^b

vm (A.8)
- q(x) O

This gives the deflected surface of the plate on substituting back into the expression for
w.

Case 2. Hz DxDy

The differential equation in this case has two roots:

Ttm 'H mn
± — raa y' Dy

The deflection surface then takes the form

-JL
imrx rniry

A1 coshocy + A2 sinhoty

(A.9)

(A.10)

The condition that My 0 at y b gives the relationship between A2 and Ax:

2Dy mrrb

UDi-Dy)
tanhab BiA2 (A.ll)

and the second condition of equilibrium of the edge gives A2 in terms of the known
parameters of the problem which reduces to
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t a J
-Dyr3 (BiSinhotb + — sinhab + —7- coshab)

nnrb

a

1 nnrb
+ (Dx + 4E>Xy)r(Bisinhab + — sinhab + coshab)* r a (A.12)

2Dy mrr
——— EI — coshab
DA-Dy a -q(x) O

This gives the deflected surface of the plate on substituting back into the expression for
w.

Case 3. Hz < DxDy

The roots of the characteristic equation in this case are imaginary and are given by

»1,2,3,4 - *
a

'H /fc2 -DxDy

Dy Dy Dy
± i

Dx Hz

Dy
"

I>£

* <i")±U)

(A.13)
mir

where n jj- Dy DyJ
c

Dx H

Dy Dy

and hence using the trigonometric representation of complex numbers, the deflection
surface is given by

-Jl a (AiCoshny cosfy + A2sinhny sin£y) (A.14)

The condition that My 0 at y b gives the relationship between A2 and Ax:

\/ DxDy-H2 cosfb + 2Dxy tanhnb sin£b
1 _ v^DxDy-H2 tanhrib sin£b -21)^ cos£b A, B.A, (A.15)

and the second condition of equilibrium of the edge gives A2 in terms of the known
parameters of the problem which reduces to

A2 1—1 sin I
1 coshab | / DxD^ (Bj^ - r2)-D1(B1r1 + r2) tanhnb cosfb

+ |/t>xDy (rx + Bxr2) - Dx( r1-B1r2 1 sin£b + EI — (BiCOStb + (A.16)

tanhrib sin£b | -q(x) =0

This gives the deflected surface of the plate on substituting back into the expression for
w.

NOTATION

a
2b
2be

length of flange plate
width of flange plate
effective width of flange plate
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t thickness of flange plate
D depth of stiffener
B spacing of stiffeners
T thickness of stiffener
E Young's modulus
w Poisson"s ratio
w lateral deflection
Dx flexural rigidity in x-direction
Dy flexural rigidity in y-direction
H effective torsional rigidity
J torsional constant for a stiffener
Mjj moment in x-direction
My moment in y-direction
M total applied bending moment at a section
q(x) loading applied to main girder in x-direction
I second moment of area of web (main girder)
I8 second moment of area of stiffener about centroid of plate/

stiffener section
h distance from plate mid-plane to centroid of plate/stiffener

section
A1,A2 constants of integraton
ß effective width ratio be/b
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