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Reliability and Risk Function for Deteriorated Structures
Fiabilité et risque des structures endommagées
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SUMMARY

Some important stochastic degradation models are reviewed and the methods for determining relevant reliability
characteristics are given. The concepts for updating reliability characteristics by inspection results are reviewed.
Two exemples, one forcarbonation of concrete and subsequent spalling of the concrete cover due to corrosion
and another for load-induced fatigue illustrate the methodology.

RÉSUMÉ

Quelques modèles d'endommagement sont rappelés et les méthodes de détermination des caractéristiques
stochastiques importantes sont présentées. Les principales idées concernant l'utilisation des résultats d'inspection

lors de l'analyse de fiabilité sont rappelées. Deux exemples illustrent la méthologie: l'un sur la carbonisation
du béton avec prise en compte de la détérioration de la surface par corrosion; l'autre concernant la fatigue induite
par des charges.

ZUSAMMENFASSUNG

Einige wichtige Schädigungsmodelle und Methoden zur Festlegung massgebender Zuverlässigkeitscharakteristiken
werden dargestellt. Ein Konzept zur Berücksichtigung von Inspektionsergebnissen im Rahmen einer

Zuverlässigkeitsanalyse wird erläutert. Anhand je eines Beispiels für die Karbonatisierung von Beton mit

nachfolgendem Abplatzen der Betondeckung infolge Korrosion und für lastinduzierte Ermüdung wird die
Methodik veranschaulicht.
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1 INTRODUCTION

Explicit consideration of durability aspects of building structures is still a non-classical task of
engineering, especially in a probabilistic context Neither is the understanding of the various
physical and/or chemical degradation phenomena as developed as, for example, structural
mechanics nor can the classical design concepts for mechanical adverse performance states be

directly applied In fact inspection and maintenance are integral parts of the means to achieve

durability In the following some basic terminology and notions are given first Then a flexible
model for damage accumulation and computational tools for the treatment of deteriorating
components are presented with due consideration of inspection and repair Special emphasis is

given to the calculation and interpretation of the risk function

2 BASIC TERMINOLOGY AND NOTATIONS

Let X(t) be the vector of uncertain quantities possibly depending on time in a deterministic or
stochastic manner Then a limit state is defined as g(x(r)) 0 and, by convention, g(x(r)) < 0
defines the set of failure states Exceeding a limit state is understood as the transition of the
structure into a state with a given utility loss for example the loss associated with unserviceability
or structural collapse Hence, structural reliability is defined as

R(t) P(g(X( r)) > 0) for all r f [0,t] (1)

The time dependent failure probability is F(t) 1 — R(t) If T denotes the random time to failure,
an equivalent formulation is

R(t) P(T > t) (2)

and this is the formulation most suitable for durability considerations A structure is said to be
reliable if R(t) exceeds a given value Ro(t) Alternatively a limiting value can be placed on the risk
or hazard function defined as

or by R(t) exp[- f p(r) dr] (3)

Here, f(r) is the probability density of the time to failure p(r) if multiplied by a time interval At,
obviously is the failure probability related to that time interval and to the "population" of
structures still existing at time t or the interval failure probability (failure rate) conditional on the
event that the structure has survived up to r

3 A FLEXIBLE DAMAGE ACCUMULATION MODEL

A special though flexible type of failure model is when a "demand" process causes "capacity"
reductions whose magnitude typically depends on the magnitude of the demand process These
capacity reductions accumulate Failure occurs when the total capacity reduction exceeds some
preselected value or if the demand exceeds the capacity Abrasion of the pavement on roads due to
passing vehicles or the development of cracks in vessels due to variable stresses are typical
examples The simplest but practically important formulation is [1]

^ f(Z(t),X(t)) (4)

where Z(t) is some damage indicator and X(t) the demand process Obviously, the damage
increment per time unit is proportional to a function of the total damage at time t and the demand
at that time If, in particular,
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^l g(Z(t))h(X(t)) (5)

the differential equation can be separated and integrated

Zf),ËSrT=Î h(X(r))dr (6)
Z(to) t0

®(Z(t)) - *(Z(t0)) Y(t0.t) (7)

from which

Z(t) * V(to,t) + *(Z(t0))] (8)

Here, Y(to,t) is a random variable obtained by integration of the random process h(X(r)) If
h(X(r)) is strictly non—negative, the damage indicator is monotonically increasing Of central
importance is the additive character of the right—hand side of eq (6) as it allows the application of
the law of large numbers and even the central limit theorem under certain conditions For example,
assume that X(r) is a stationary and ergodic process and h(X(r)) has finite variance Then, for
large t the following approximation can be found for the random variable Y(t) Y(to,t)

Y(t) ~ E[h(X(r))] (t—t0) (9)

In this asymptotic version the time—variation of the demand process is no more present

There are a number of prominent applications a few of which are presented below with y(0) 0

For example, let g(Z(t)) 1 and h(X(t)) X(t) where X(t) has mean // and a covariance function
described by the variance a2 and the correlation length r« Then, Z(t) is a Gaussian process with
mean t /i and variance t to a1 It is clear that this model is suitable for the abrasion of a road
pavement in time Also, the corrosion depth of steel surfaces in splash zones can be described with
this model In both cases /; and a may also be random functions of spatial coordinates Next, let
g(Z(t)) Zm(t) and h(X(t)) X"(t) X>»'2(t) One finds in making use of eq (9)

ln(Z(t)) - ln(Z(t0)) s /»x„t for m 1 (10a)

^L_ (Zi-m(t) + Zi-m(t0) » /rx„t for m 2,3, (10b)

If one now interprets the function Z(t) as crack length and X(t) as the effective stress range we
have, apart from some constants, precisely the formula for Paris-Erdogan's crack propagation law
For m 2, Z(t) has a lognormal distribution Further, let g(Z(t)) C/Z(t) and h(X(tj) X(t)
One determines

*/rt (n)
If, on the other hand, g(Z(t)) (Ci/Z(t)+Ci) and h(X(t)) X(t), then

ln(l + C: Z(t)/Cj) %/it (12)

Inspection shows that the last two results describe the carbonation depth of concrete after
continuous attack of carbon dioxide from the concrete surface according to [21 and [3] with X(t)
the randomly varying humidity of the outer concrete layer which changes the diffusion "constant"
accordingly Both models appear to have certain physical deficiencies but it is out of the scope of
this paper to discuss those
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More general models can be generated by solving less specialized stochastic differential equations
but we can not pursue this any further Experience shows that it frequently is not the randomness
of the time—variant demand process but the (time-invariant) uncertainty in the parameters in
these equations, at least if t can be considered as large Therefore, it is admissible to ignore the
variability of the right—hand side of the equations in many cases

4 FAILURE CRITERIA AND FAILURE EVENTS

The computation of R(t) under sufficient general conditions for the process X(t) and the shape of
g( is by no means trivial and considerably more involved than simple time—invariant reliability
problems The same is true for the risk function The state function most frequently is formulated
in the so—called damage indicator space but it is also possible and sometimes necessary to use
other formulation spaces If damage accumulation is strictly positive and the damage indicator
formulation is chosen one has to solve

R(t) P(T < t) P(g-i(X(t),Z(t)) -1 < 0) (13)

Application of FORM/SORM [4] yields

R(t) ~ $( iE(t)) (14)

where iE(t) is the so-called equivalent safety index defined by 4>(-^(t)) P(X(t) e V) where V
is the failure domain and $ is the standard normal distribution function The risk function can be
determined by

<*>

The last derivative term is nothing else than the so—called parametric sensitivity factor available in
most FORM/SORM computation schemes [5] ip is the standard normal density

The reliability calculation is much more involved if the failure criteria cannot be formulated in the
damage indicator space A typical example is failure due to instable crack propagation Changing
notations to the ones usual in this area and assuming linear—elastic fracture mechanics a crack
grows "stable" as long as there is Kk > K(r) C Sm ^(^(r)) with Kk the fracture toughness,
S(r) the far field stress in the component and a(r) the actual crack length which grows
proportional to the effective stress ranges AS(r) raised to the power of m according to eq (10) C
and m are material constants It is clear that failure, i e crack instability can also occur when a(r)
is still moderate but S(r) is large The difficulty lies in the fact that one is not interested that the
component is in a failure state at some time but in the event when this occurs for the first time
Unfortunately, very few solutions exist for this problem and those are widely of asymptotic nature
A relatively general method is the so—called outcrossing approach for which certain regularity
conditions concerning the disturbance and the damage accumulation process must be assumed Let

v+{t)= l.ml/i)P({g(X(r),Z(-),q)>0}n{g(X(r+ 0),Z(r + if),q) < 0}) (16)
il-0

be the outcrossing rate with g(X(r),Z(r),q) the structural state function and q an uncertain
time—invariant parameter vector If the disturbance process is sufficiently mixing, i e becomes
independent for two times r and t + i) when û - x, the reliability function can be shown to be

R(tlq) - exp(-/i/+(rlq) dr] (17)
0

For the technical details of the calculation of the outcrossing rate we must refer to the literature
[6]
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5. UPDATING BY INSPECTION OBSERVATIONS

The above failure models are as mentioned distinct from the failure in classical reliability as they
directly adhere to the physical damage accumulation process For the estimation of their
parameters not only failure times can be used but also measurable damage indicators and the
disturbance (loading) parameters as well as material parameters which frequently can be measured
independent of the damage state of the component This enables reliability updating after
inspection by use of Bayes' theorem Let ti be the first inspection time and denote by B the set of
observations collected up to and during inspection Then, the updated reliability is.

B contains events of the type (X(ti) < x(ti) + e) or {Q < q + ^}, where x and q are the
observations and e and S the corresponding measurement errors (error vectors). Again
FORM/SORM techniques facilitate numerical calculations [7]

6. EXAMPLES FOR RELIABILITY AND RISK FUNCTIONS

As a first approach the time—variant carbonation process according to eq (12) with constants
Ci b„/a and Ca Da.b c0/a is studied where Dv.b is the diffusion coefficient of carbon dioxide
for concrete, c0 the concentration of carbon dioxide in the air, a the amount of carbon dioxide for
complete carbonation and bB a parameter which collects the retarding effects Db-a and b& are
taken as uncertain with given distributions With the exception of c0 the parameters can be related
to concrete strength and the specific exposure conditions The limit state function is formulated
according to eq (13) by assuming that regional carbonation is a necessary condition for
longitudinal cracks and subsequent spalling of the concrete cover due to corrosion Failure is
assumed to occur when a certain percentage o of the reinforcement is reached by the carbonation
front In the following n is chosen to be 0 3 Furthermore, concrete cover and a model uncertainty
parameter are considered as random variables [8]

Fig. 1 shows results of the reliability calculations The risk function /i(t) is given for a concrete C15
under outdoor conditions but not subjected to rain with cover of 25 mm and 30 mm respectively
The dotted line represents the probability of failure PfM It is seen that up to a certain time the
risk function is essentially zero At this time the carbonation front reaches the reinforcement and
failure is most probable. Beyond this time the risk function decreases reflecting the fact that the
carbonation front has not reached the reinforcement before for a reduced population Therefore
inspections are most effective if they are performed just before this "discontinuity point" It follows
that the planning of inspections must be affected by the characteristics of the risk function
Further on the quantification of the actual degradation state is of special importance As visual
inspections rarely are reliable sampling strategies should be developed on the basis of an
optimization of the amount and the timing of inspections

If structural components experience cumulative damage due to fatigue they have to be inspected
and if necessary repaired The risk function shows a somewhat similar behavior as shown in figure 2
which is based on Paris—Erdogan's crack propagation law and the crack instability criterion
mentioned just below eq (15) Again it is first increasing and then moderately decreasing beyond a

certain point in time It is worth noting that cost considerations specify about the same time as the
optimal first inspection time (see [9]) The inspection results can be used to update the knowledge
about the structural state resulting in new risk and failure probability functions (dashed lines). In
the example the observed crack length was larger than estimated a priori which results in a more
rapid increase of both functions However, at this optimal inspection time the risk function and
failure probability have reached rather large values (1 e Pp(ti) s 0 3 which may be considered as
to high so that earlier inspections might be required for safety reasons It thus is shown that both
the risk and the failure probability function provide the necessary information for planning
inspection times and possible maintenance actions
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Figure 1 Hazard rate and failure probability Figure 2 Hazard rate and probability of fatigue failure
for carbonation of concrete C15
cover Ci= 25 mm and Cr= 30 mm

of a component in a steel structure
reliability updating after 22 years
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