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Numerical Analysis of Anchoring Effects in Structures
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SUMMARY
The shear behaviour of reinforced concrete beams with various types of vertical shear reinforcements

and for different load arrangements, modelling the action of headed anchors installed in
the tension zone, is numerically analysed by a non-linear finite element program based on a
smeared crack approach taking into account non-linear fracture mechanics. Factors affecting the
ultimate shear strength are discussed with respect to the numerical analysis and the overall
structural response.

RÉSUMÉ
Le modèle mécanique d'affaiblissement de contrainte après fissuration du béton en traction, ainsi
que la résistance-même en traction de ce matériau constituent le base du modèle de discrétisation

des fissures dans une analyse par éléments finis. Ce concept est ultilisé dans l'analyse du
problème du cisaillement de poutres en béton armé sous différentes positions de la charge, celle-
ci cheminant dans la matière au moyen des éléments d'armature ancrés dans le béton et les
étriers. Les facteurs qui influent sur la résistance ultime à l'effort tranchant sont discutés à la
lumière du respect des dispositions énoncées par la Norme au sujet des techniques d'ancrage.

ZUSAMMENFASSUNG
Es wird der Einfluss von durch Kopfbolzen in die Betonzugzone eingeleiteten Lasten auf das
Schubtragverhalten von Stahlbetonbalken mit unterschiedlichen Schubbewehrungen untersucht.
Die Studien werden mit einem nichtlinearen FE-Programm durchgeführt, das auf dem Konzept
der verschmierten Risse unter Berücksichtigung der nichtlinearen Bruchmechanik beruht. Die das
Schubtragverhalten beeinflussenden Faktoren werden diskutiert.
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1. INTRODUCTION

The shear strength of reinforced concrete beams is almost exclusively studied for the cases where the
loads are applied through plates directly onto the top beam surface. However, in modern structures
the loads may partly be applied by means of high-tech metal anchoring elements placed in the bottom
part of the beam. The influence of this load application by means of anchoring elements on the shear

strength of beams without shear reinforcement has been extensively studied by Eligehausen et al.
[3]. Their principal conclusion was that on an average the shear failure load is reduced by 10% when
the entire load is applied by means of anchoring elements placed in the bottom, tensile zone. The

same conclusion was verified by Cervenka et al. [2] in a finite element analysis of reinforced concrete
beams with no shear reinforcement.

The present analysis is accomplished by the FE program AXIS, developed at the Institut für Werkstoffe

im Bauwesen, University of Stuttgart. The goal was to study the influence of loads introduced
into the bottom zone on the shear strength of beams with different vertical shear reinforcements.

2. SCOPE OF ANALYSIS

The analysis concerns reinforced concrete beams falling in shear. The dimensions of the T-beam
(Fig. 1) and the shear span ratio A — a/d 2.8 are chosen in order to ensure a shear-tension failure
and to avoid a shear-compression (for small A) and bending failure (for large A). The principal goal
is to investigate the influence of different load arrangements for various stirrups cross-sections on
the shear strength. Three different loading cases may be distinguished from Fig. 2, in which load
case a represents a beam with concentrated loads applied on the top surface. Load case b represents
the application of 20% of the total loads by means of anchoring elements placed in the bottom zone.
Load case c is analysed for the sake of direct comparison with load case b, with the same shear span
ratio and load proportions, but with loads placed on the top surface. Each of this three loading cases

was applied on a beam with five different stirrups configurations (no stirrups; two-legged <f>6, <j>8,

if)10 and four-legged <f>8 stirrups, each at a spacing s 0.15m). The longitudinal reinforcement ratio
pw 2.38% is taken as constant in order to preclude the influence of its variability on the results.
Yielding point for all stirrups is fsy 350A/Fa and for bending reinforcement fy 450MPa.

In the bottom part of the web, headed studs with anchoring length hv 100mm are located. The
stud spacing s 0.30m is chosen in order to avoid mutual effects of neighbouring studs [3]. The
loads applied on the studs are proportional to the loads applied on the top surface, and are smaller
than the concrete cone failure load of 55.0kN (according to [3]).

Only the effects of static loading are considered. The loads are increased gradually. Load increments
are not equal, and depend on the employed arc length iterative procedure, which is a displacement
controlled analysis. Effects of repeated, dynamic or reversed loading were not studied.

3. FE ANALYSIS: MATERIAL MODEL

3.1 Concrete Parameters

Reinforced concrete is a highly nonlinear structural material. Prior to crushing or tensile failure, in
the FE program AXIS, concrete is considered as a hyperelastic material, for which the stress-strain
relations are of the form:

a*j J21 JzYij (1)

where the initial elastic constants are replaced by scalar functions F(Ii, J?, J3) associated with the
first invariant Jj of the stress tensor and the second and third invariants J2, J3 of the deviatoric
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stress tensor. The nonlinear isotropic elastic stress-strain relation prior to crushing or tensile failure

is modelled by a quadratic parabola in compression and by linear loading in tension. A linear
strain softening is assumed after crushing and after tensile failure (Fig. 3). The scalar functions
F(Ii, J2, J3), developed from Kupfer's biaxial experimental data are established to include the variable

peak strengths in compression or tension, depending on the total state of stress. The crack is
initiated after the principal stress exceeds the tensile strength. The softening modulus in tension

Et is based on nonlinear fracture mechanics and calculated according to the crack band theory of
Bazant and Oh [1] :

* - * I* - m
1 ~

in which Le is the width of an element, or the square root of the area assigned to an integration
point. The value Lch, called characteristic length is assumed to be a material property dependant
on the fracture energy Gj, modulus of elasticity E and the direct tensile strength fct-

In the present analysis, the material properties are characterized by only three material parameters,
with the following values: uniaxial compressive strength fc 30MPa, Poisson ratio v 0.17 and
fracture energy Gj 66N/m. The direct tensile strength fct is assumed to be a function of the
compressive strength:

fa 0.269/c0-666 ==> fct 0.269(30.0)°'666 2.60MPa (3)

The values of the initial tangent modulus and softening modulus in compression are assumed as:

E 5015x/7c [MPa] => E 27500MPa (4)

Ecc -Ec/8.0 =4- Ecc -3500MPa (5)

3.2 Shear transfer across the crack

Employing a smeared crack approach, the FE program AXIS has the options for both the fixed
crack model based on orthotropic concepts and the rotating crack model based on nonlinear elasticity
relations in principal coordinates. In the fixed crack model, the mechanisms of shear transfer accross
the crack due to aggregate interlock or dowel action is simulated by reducing the value of the shear
modulus corresponding to the crack plane according to the following expression:

G ßGm,uai ^2(1 + v)

In the program, the shear retention factor ß can be assumed as constant or variable. For a variable
ß value the following expression derived by Kolmar [5] is utilised:

In —
c, {ß — 0.005\ ß — 0.005\

ß —£- ci 7-° + 5.0 q]Q^5 * 10-°-2-5(-öäifi-) (7)

in which em (given in °/00) is the strain perpendicular to the crack and ß < 0.02 is the reinforcement
ratio related to the considered finite element.

4. RESULTS OF THE NUMERICAL ANALYSIS

The influence of différent crack models on the load displacement behavior of one analysed beam (load
case a, stirrups 010) is shown in Fig. 4. When using a fixed crack model in connection with variable
shear retention factor according to Eq. 7, the beam fails in shear. However, the use of a fixed crack
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model with constant shear retention factor, or a rotating crack model will result in a completely
different behavior, namely a bending failure with considerably higher ultimate loads. Therefore, the
fixed crack model with shear retention factor by Kolmar is used for the entire analysis.

The ultimate stage is reached after extensive diagonal cracking and after yielding of stirrups in case

of beams with shear reinforcement. The ultimate shear forces Pu for all analysed cases are listed
in Table 1. The ultimate shear stresses, computed by vu Pu/(7bd/8), are shown in Fig. 5. A
comparison of the results for load case a with empirical formulas by Kordina and Blume [6], Mallèe

[7] and Specht [8] is presented in Fig. 6 (see [4] for details). For lower shear reinforcement ratios, the
FE analysis gives higher ultimate shear stresses than the empirical formulas. This can be explained
by the fact that with the FE analysis a T-beam was considered, while the empirical formulas are valid
for beams with rectangular cross section. Test results prove that the shear strength of T-beams is

about 20% higher than for beams with rectangular cross-section. Numerically obtained rate of shear

strength increase with increasing shear reinforcement ratio p, is somewhat lower than in empirical
formulas, but matches well the prediction by the exact truss analogy for which the shear carried
by stimips is equal to: vs — p,fsyctga. The angle of major inclined crack a increases (and ctga
decreases) with increasing reinforcement ratios. However, in most code provisions and empirical
formulas it is assumed that vs psfsyK in which the constant multiplyer K does not depend on ps.
The consequence is a steeper increase of the ultimate shear stress then in the case with K ctga.

no 06mm 08mm 010mm 208mm
stirrups

A» [mm2] - 56.5 100.5 157.1 201.1

Load a 259 291 320 345 384
Case b 282 308 330 381 428

c 306 338 375 427 485

Table 1. Ultimate Force Pu (Reaction at the Support) in [1:1V]

The values of ultimate shear force in Table 1, and ultimate shear stresses in Fig. 5 reveal higher
shear strengths for load cases 6 and c than for load case o. The reason is a shift from a concentrated
load (load case a) towards a more uniformly distributed load (load cases b,c). According to test
results, under otherwise constant conditions, the shear strength of a beam with distributed loads is

higher than for concentrated loads. This change of loading arrangement represents a change of the
shear span ratio and precludes the direct comparison between load case a and load cases b, c.

To study the influence of anchor loads on the shear strength of beams, load cases b and c which have
the same shear span ratio are compared. The placement of anchoring elements in the bottom zone
(load case b) results in a lower shear strength than for the beam where all loads are applied on the

top surface (load case c). The measure of decrease is obtained from a comparison of the ultimate
loads by:

pc pb
*P —pT~ (8)

in which superscripts denote load cases. Obtained values are presented in Fig. 7. The results show
that the difference of shear strength is within the range of 8 - 11%. The higher shear strength for load
case c is explaned in Fig. 8, where from the free body diagram follows that a part of the top load is

directly transferred to the support. In contrast to that, the bottom load must be transferred to the

top zone by stirrups before being transferred to the support by diagonal struts. Details concerning
the decrease of shear strength are discussed in [4], In the present analysis, the decrease of shear

strength for the beam without shear reinforcement is about 8%. This is somewhat higher than found
in a similar analysis performed by Cervenka et al. [2] for beams without shear reinforcement where
100% of the load is applied in the bottom zone and a decrease of 8-10% is obtained.
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5. CONCLUSIONS

The performed analysis gives an insight into the behavior of reinforced concrete beams which are
loaded by a concentrated load on the top surface and by equally distributed loads over the top or
bottom zones. The analysis shows that loads introduced into the bottom zone by headed anchors
might negatively influence the shear carrying capacity. The effects of different load arrangements
are outlined.
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Concrete in Tension Çf - specific energy
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