
Zeitschrift: Technische Mitteilungen / Schweizerische Post-, Telefon- und
Telegrafenbetriebe = Bulletin technique / Entreprise des postes,
téléphones et télégraphes suisses = Bollettino tecnico / Azienda delle
poste, dei telefoni e dei telegrafi svizzeri

Herausgeber: Schweizerische Post-, Telefon- und Telegrafenbetriebe

Band: 73 (1995)

Heft: 10

Artikel: How can we communicate with computers?

Autor: Allemang, Dean / Liver, Beat

DOI: https://doi.org/10.5169/seals-876008

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 09.03.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-876008
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


DECISION SUPPORT SYSTEMS

ABSTRACTIONS: THEIR PURPOSE AND APPLICATION IN TELECOMMUNICATIONS

HOW CAN WE COMMUNICATE
WITH COMPUTERS?

The successful deployment of any software system

depends on its ability to communicate with its environment.

In the case of Decision Support Systems, this

means that the computer must be able to communicate

with human decision makers. Since humans do not

normally communicate in the same cumbersome

language as a computer implementation, this means

that the issue of finding appropriate abstractions to
facilitate this communication is particularly important.
In this paper we study the nature of such abstractions

and show how they can be used to guide the design of
a decision support system.

Decision Support Systems (DSS)

come in a variety of forms, from
very simple systems that provide
access to data or perform simple calculations

to complex systems that take

DEAN ALLEMANG AND BEAT LIVER,
BERN

over a considerable amount of decision

making. In order to be useful, a
DSS must provide some service that
would be tiresome, difficult, or even
impossible for a human reasoner to
provide on his own. For example, a

DSS can calculate the price of a

proposed network, helping a designer to
choose the most favorably priced
solution, or it could index a data base of
past failure cases, which stores far
more cases of network failure than a

human can possibly be expected to
remember.

Abstractions and
computation

The leverage that a DSS offers to a

decision process can come from one of
two sources: the DSS can have an
algorithm that reliably solves some general

class of problems, or the DSS can

rely on problem-specific information
that allows it to support solving a

particular type of problem. The network
cost calculator is an example of the
former, while the well-indexed data
base is an example of the latter. Any
complex DSS is likely to use both
sources of leverage. In [7] we describe
how for many practical problems, it
can be proven that no fast, general
algorithmic solution is likely to exist. For

this reason, we concentrate on
solutions that rely on specifics of certain
problems for their decision support
leverage. We will refer to the collection

of information about how to pro¬

ceed in a specific situation as knowledge.

Knowledge about a particular
problem-solving domain usually
results from a communication with an

expert in that field. The accessibility
of a large amount of knowledge
about a field is what distinguishes an

expert from a novice. The knowledge-
based part of a DSS now looks like
figure 1; the computer system must
communicate with an expert in order
to represent the knowledge of the
domain. The computer system then
supports the decision maker (the end
user) by making use of this knowledge

to exchange useful information
with the user. This results in two
bottlenecks for information flow in a

DSS: between the expert and the
computer and between the computer and
the end user. The particular needs of
decision support place special requirements

on these two communication
channels (Fig. 1):

Cooperative problem solving

For interesting decision support
applications, neither a human alone nor a

machine is capable of solving problems

with the required speed and
reliability. In the simplest case (e.g. the
network price calculator), the human
is in complete control of the problem-
solving activity, and the machine only
provides passive consultation. In more
complicated situations, the machine
can also take over some of the direction

of the problem solving (e.g. deciding

what information to collect
next). This requires the user and the
computer to be able to carry on a dialog

at several different points in the
problem-solving process.

User responsibility

In most knowledge-intensive
problem-solving situations, the person
who makes a decision is responsible

948 COMTEC 10/1995



DECISION SUPPORT SYSTEMS

BOTTLENECKS

Expert Computer User

Fig. 1.

The bottlenecks of decision support applications; communication between expert and

computer and between computer and user.

for its correctness. This responsibility
can be legal (as in the case of medical
decision making, where incorrect
decisions can be punished by lawsuit)
or fiscal (as in the case of an equipment

repair engineer, who will have
to make another visit to the customer
site if the first solution fails). A DSS

that takes over a decision process
must have a facility for allowing its
human user to take responsibility for
their combined actions. This means
that the system designer (or the
system itself) must be aware of the
activities in the problem-solving process
that require responsibility.

System maintenance

One of the main motivations for
installing a DSS at all is its use as a
repository of knowledge. As such, the
knowledge covered by a particular
system will change, either as new
knowledge about the domain is

obtained (e.g. new research about
system performance under certain
conditions) or the cope of the system is

changed (a new telecommunications
technology is installed). This means
that there must be a flexible way to
connect the system with its source of
knowledge (an expert or an expert
community).

In order to facilitate such a dialog, we
need more than just a good graphic
interface between the users and the
machine - we need a vocabulary with
which the humans and the computer
can exchange information. The problem

with finding such a vocabulary is

that humans and computers are
accustomed to dealing at very different
abstraction levels. Humans have to
deal with the real world with all its

complexity; they have a set of abstract
concepts they use to simplify the
world for certain purposes (Fig. 2). A
computer normally deals at a much
lower level, having to do with the
mathematical formalisms on which its

processing is based. Human-computer
communication is facilitated when we
can program the computer to understand

the human's abstractions.
In Figure 2 we see an example of this.
At the left is the real world with a

global communication network. An
abstraction is a concept that reduces
the information in the real world to a

manageable amount for some
particular purpose. The two abstractions

COMTEC 10/1995

shown are a sphere (for purposes
requiring information about the shape
of the earth) and a graph (for purposes

requiring information about the
connectivity of the network). Abstractions

of this sort are routinely used by
human decision makers to control the
complexity of the problems they solve.

A human and a computer can also
share these abstractions, as long as

the abstractions are both understandable

to the human and can be
represented in the computer. An abstraction

is represented in the computer by
some programming construct or data
structure; in this case, the spherical
shape can be represented in the
computer by the familiar formula, and the
graph can be represented by a

connection list. In order to use a

computer program, it is up to the users to
interpret the computer's abstractions
in the real world; the better they are
able to do this, the more effectively
they can use the program.
Below we present three successful
applications that illustrate this pattern -
some real-world structures will be

simplified with abstractions that are
simultaneously comprehensible to a

human and usable by the computer.
We will then examine how various
kinds of abstractions have made
communication between experts or users
and computer systems possible and
why the resulting systems were
successful. From this experience, we will
examine how it is possible to
construct and verify good abstractions, so
that these successes can be repeated
in a systematic way. In short, the key
to successful decision support is to
find appropriate abstractions to
mediate the communication between
human and machine, allowing them
to work together to solve problems
efficiently and effectively.

Successful applications
to telecommunications

The following three systems were
presented at the sixth annual Innovative
Application of Artificial Intelligence
conference. All three of them succeed

sufficiently in overcoming the problems

of cooperation, responsibility
and maintenance to become profitable

systems. We briefly describe each

application and show what abstractions

facilitated the communication
between experts, users, and machines.

Unbilled calls at Pacific Bell

In November 1993 Pacific Bell put a

system called EMCS (Expert Message
Correction System) into operation [6],
Pacific Bell has millions of phone calls
that cannot be charged routinely. This
is usually a result of feature interaction.

For example: How should a

conference call be billed when one of the
parties is a free-phone line? EMCS
assists charge investigators to determine

the liability for such nonroutine
calls. EMCS does not try to bill all
nonroutine calls; it simply acts as a

filter for hard vs. easy cases. For cases

that have straightforward answers,
EMCS provides the answer automatically.

If there is something especially
irregular about the case, then EMCS

forwards it to a human expert. This is

a simple way to organize the interaction

between user and machine - the
machine works on the large amount
of initial data and cuts it down to a

size manageable by a human analyst.
It also deals with the responsibility
problem by trusting the program with
simple cases and trusting it to distinguish

these cases from difficult ones.

949



DECISION SUPPORT SYSTEMS

The abstractions used in EMCS are
rules. A rule is a condition/action pair:
when the condition matches the
current situation, then the corresponding

action is taken. A rule for the
conference call example might say 'if a

conference call has exactly one
freephone party, then bill it as a normal
conference call (with no free-phone
party)'. The computer represents this
abstraction in the form of an 'IF-
THEN' rule, with conditions specified
in terms of features and actions as

billing activities. Abstractions in general
simplify the real world; the rules in
EMCS simplify the billing procedure
by abstracting away the order in
which the conditions have to be
considered. Thus the expert who provides
the rules need not consider this order
when writing the rules. In this
domain, the expert works with rules
directly, so that maintenance of EMCS is

quite simple - if the expert thinks of a

new pattern of call features that can
be classified easily, then it is a simple
matter to write it down as a new rule.
An abstraction is useful whenever the
details it hides are not important for
the problem. For rules in the billing
domain, the order in which they fire is

not important, since every pattern is

independent; therefore, rules are a

useful abstraction for the communication

between expert and DSS.

Sales service support at Bell Atlantic

In October 1992, Bell Atlantic began
putting SSNS (Sales Service Negotiation

System) into operation [3]. SSNS

supports sales personnel in advising
customers about telephone services.
Abstractions are represented in SSNS

by both rules and frames. Frames are
the representational unit in the
computer for object-oriented modeling;
the corresponding abstractions are
categories of real-world entities. The
frames are connected by links chosen
from a fixed set of link types. These

correspond to relationships between
the corresponding entities. For example,

in the SSNS case, the real-world
entities are telephone service features
and products (such as Answer Call,
Call Waiting, or Call Forwarding),
while the fixed set of relationships is

the set {restricts, interacts, depends},
indicating that the services may not
be supplied together, that they interact,

or that one requires the other,
respectively. For each known feature a

frame is constructed, and for each

relationship between features a

corresponding link is made. Thus, the
fact that Answer Call requires Call

Forwarding is represented by constructing

a 'depends' link from the frame
for Answer Call to the frame for Call

Forwarding.

SSNS is used in the following way: a

customer who requires some services
contacts a salesperson. The salesperson

interviews the customer and
enters his requirements in SSNS. SSNS

informs the salesperson if there are any
problems with these requirements, if
contradictory services have been
ordered, or if some required services
have not been ordered. The salesperson

then works with his customer to
find a set of services that satisfy the
customer's requirements. Since the
SSNS system reflects the requirements
of the product technology, feature
combinations that are accepted by
SSNS are feasible in practice.
SSNS leaves the responsibility for the
final configuration of services to the
salesperson - all it takes responsibility
for is the interaction among the
chosen services. The messages that
SSNS can give to the salesperson are
limited to the three types of service
interaction. In this sense, SSNS

communicates to the salesperson through
a limited but abstract language.
In contrast to EMCS, the control of the
problem solving in SSNS is flexible and
is left to the salesperson, who can
choose to respond to the messages in

any order or manner desired. This means

that the vocabulary with which
the salesperson communicates with
SSNS must be able to support this dia-

950 COMÏEC 10/1995



DECISION SUPPORT SYSTEMS

log. As long as the salesperson needs

no more information than can be given

by these three interactions (e.g.,
there is no need to know why a

particular feature depends on another),
this vocabulary will be sufficient.
The maintenance of the knowledge in
SSNS uses the same abstractions as the
user cooperation, namely the features
and their interactions. The system
maintainer is an expert on feature
interaction. System maintenance does
not require any new rules; the expert
simply adds new frames for new
features and new links for new relationships

between the features.

Help desk at AT&T

In August 1993, AT&T deployed the
system ESP (Expert Solutions Platform)
[5]. ESP assists help-desk personnel in

two of their major activities:
determining the cause of customer problems

and providing information
about product features. These two
functions are combined, because they
both require extensive indexing based

on the customer's current configuration

and use. ESP uses case-based
reasoning (CBR) to solve this problem.
The principle behind CBR is simple:
knowledge is represented as previously

solved problem cases, and reasoning

is performed by finding the stored
case that is most appropriately similar
to the current case and by reusing its
solution. CBR has the advantage that
one need not have a comprehensive
understanding of all possible situations

(in contrast to a rule-based or
frame-based representation); instead,
only the cases that have been observed

need to be recorded and understood.

This has the disadvantage, of
course, that only cases that bear
similarity to some earlier case can be
solved. When a new case is encountered,

the system can be easily extended,
the new case (along with its solution)

must simply be entered at an
appropriate point in the case base.

During a consultation, the help-desk
agent collects a description of the
case from the customer (usually by
telephone). The initial data collection
includes data about the features of the
customer's service and symptoms of
the problem. The ESP system finds the
stored case that best matches the
current case and offers that solution to
the help-desk agent. The help-desk
agent takes the responsibility of pro¬

viding the customer with an answer,
based upon the information in the
retrieved case. The labor is divided
between the user and the system by
leaving the final judgment of a case's

appropriateness to the help-desk
operator and by having the case base
find a relevant case from a data base

too large for a human user to manage.

In this way, the case base is valuable

as a repository of corporate
knowledge; this means that when the
experience gained by one help-desk
operator is added to the case base,
the performance of all help-desk
operators (including operators who
are new on the job) improves.
The maintenance of the ESP case base

should, in principle, be automatic;
each time a new case is solved, it is

placed back into the case base (along
with its solution) to be found during a

future run (as appropriate). In practice,

it is not so simple. In order to be
able to find the case at an appropriate
time, it is necessary to index the case
base. To solve this problem, the team
at AT&T organized the case base with
templates. A template corresponds to
a set of cases that share some
commonalities. Cases are not entered
automatically; a case base engineer
figures out how to express each case
in terms of the known templates and
places it in the correct part of the case
base.
These templates are abstractions; they
represent commonalities among
groups of cases. The templates are
organized hierarchically with general
templates high in the hierarchy and
more specific templates farther down.
The success of ESP depends on how
well these templates index the case
base.

Solutions and abstractions

Referring back to Figure 2, we can see
the role of abstractions in all three of
these solutions. An abstraction (like
the sphere and the connectivity graph
in Fig. 2) suppresses some detailed
information about the real-world entity
it describes. The power of a particular
abstraction depends on the decision
activity it supports; in the figure, the
sphere abstraction of the world is useful

for determining, say, the gravitational

force at the Earth's surface,
while the graph representation is useful

for determining how many relay
stations will be needed to send a mes¬

sage from one city to another. An
appropriate abstraction, relative to
some planned use, is one that
suppresses unwanted and unnecessary
details while retaining useful details.
In all three of the above applications,
the chosen abstractions have proven
to be appropriate to their decision

support problem.
The three examples also show how
abstractions can range from the general

to the specific:

- EMCS uses condition/action patterns
to represent unusual billing
patterns; this abstraction represents
independent patterns, suppressing
any ordering relationships among
the patterns. These condition/action
patterns are represented in the
computer as rules and processed by a

rule interpreter. As long as the
expert understands rules and is willing
to write them, this solution will
support communication between
expert and machine.

- SSNS uses frames to represent more
specific abstractions that are particular

to its domain of product
feature interaction (namely, the three
interaction types 'restricts', 'inter-
acts', and 'depends'). These abstractions

catalogue the entire range of
feature interactions in these three
categories, which are then
represented in the computer as links
between frames. Any distinctions not
captured by these three categories
are suppressed. These abstractions
have wide applicability in this
domain and constitute a language for
communication not only between
the expert and the machine but also
between the machine and the
salesperson.

- ESP is the only one of the three
solutions that concentrates on developing

abstractions that are appropriate

for the specific application. The

templates correspond to commonalities

among sets of cases and ignore
their individual differences. The
abstractions are represented in the
program by a tree of indices
corresponding to the templates. In
contrast to the interaction types in
SSNS, these templates are dynamic -
new templates are developed in

response to the set of cases encountered

during the use of the system. This
means that the vocabulary with
which the case base engineer
communicates with the system develops
as the case base grows.

COMTEC 10/1995 951



DECISION SUPPORT SYSTEMS

The selection of good abstractions is

essential to the success of these three
systems; EMCS and SSNS depend on a

good choice of a priori abstractions
for their success, while ESP provides
the possibility to add new abstractions

to the system. In expert systems
terminology, the activity of
determining an appropriate vocabulary of
abstractions is known as knowledge
engineering. The knowledge in ESP is

engineered in a flexible way, so that
the knowledge engineering activity
can continue after the system has

been deployed. But even the ESP case
base engineer has no guidance in how
to construct these abstractions. There
are no criteria that can determine
when an abstraction is useful, nor are
there even any general examples of
templates that have been useful in

the past; therefore, the case base
engineer has no systematic way to
generate useful abstractions. This is a

dangerous situation, since, as we have

seen, the success of a DSS depends on
engineering a good set of abstractions.

The importance of good abstractions
can be seen by examining a scenario
that is commonly found during the
development and deployment of a

DSS. Often during DSS development,
a set of abstractions is determined
(much as the ESP team has
determined a set of appropriate templates).

These abstractions, which facilitate

communication between expert
and computer and between computer
and end user, also serve to facilitate
communication directly between the
expert and the end user. The original
motivation for a knowledge-based
DSS, namely that the expertise is too
difficult to transfer to more than a

small group of 'experts', is no longer
valid; it becomes possible to
communicate the expertise more easily to
the user, making 'experts' plentiful.
The software, in such situations,
remains only as a training tool for the
new experts. In short, the determination

of good abstractions is more
important than the production of
software; hence, knowledge engineering

provides more than just methods
for constructing knowledge-based
systems.

Abstraction methods

Because of the importance of finding
or constructing appropriate abstrac¬

tions, we have been researching
methods for systematically finding
abstractions and evaluating their
appropriateness. This work falls broadly
into two categories, which
correspond roughly to the two ends of
the human/machine communication
channel. From the user side it is necessary

to have abstractions that are
comprehensible to their human users.
How can we acquire abstractions that
correspond to a human's world view?
From the machine side it is necessary
to have abstractions that simplify the
computational properties of the
information to be processed. How can
we evaluate the leverage that an
abstraction offers? Here we will show
one example from each of these
categories.

Eliciting abstractions

How can we make sure that an
abstraction corresponds to the concepts
used by an expert or user in the course
of decision making? The simplest way
to find out is simply to ask. But such a

direct approach has psychological
problems: users and experts often are
not explicitly aware of the abstractions

they use to solve problems, and
even if they are aware of them, they
often report them inconsistently,
incompletely, and incorrectly.
One method for helping humans to
express abstractions is to recognize
that many of the decision problems
faced by humans have considerable
commonalities, including consistent
patterns of abstractions that support
the decision process. If the expert
expresses some abstractions that form
part of such a pattern, then it is

reasonable to insist that the expert give
abstractions that complete the
pattern. For example, the well-known
method for solving problems known
as 'divide and conquer' requires not
only that one divide a problem and
solve the resulting sub problems but
also that one be able to combine the
solutions to the sub problems
together to form a solution to the overall

problem. If an expert tells how to
divide and conquer, it is reasonable to
ask how to combine the results.
A number of problem types and
corresponding patterns of abstractions
have been identified; they are called

generic tasks. For instance, diagnosis
and fault classification problems are
modeled using the generic task called

'hierarchical classification'. A more
detailed description of the application

of task models to decision
systems, with examples from
telecommunications, can be found in [8, 9]. By

modeling a problem-solving process
with some generic task, a knowledge
engineer suppresses some details of
the process, concentrating only on
certain aspects1. Modeling a problem-
solving process as 'hierarchical classification'

simplifies it by categorizing all
abstractions as hypotheses, refinements,

or profiles. Hypotheses
correspond to fault categories and can be
described at any of several levels of
detail. For each hypothesis, a set of
more specific faults can be defined
that correspond to subsets of the fault
category. Finally, for each hypothesis,
some information about the profile
(in terms of measurable values) of
typical examples for the fault category
must be given. Thus the expert's
abstractions are organized as a tree of
hypotheses, with the most general at
the top and more specific hypotheses
at the bottom (Fig. 3). The refinement
of a hypothesis is simply the set of its

immediate children in the tree. The
profile of a typical example of the
category is included at each node in the
tree.
Using the 'hierarchical classification'
generic task, the knowledge engineer
begins eliciting abstractions from the
expert by asking for some fault
categories (hypotheses); the consistency
of the set of categories is enforced by
arranging all the categories in the
tree (refinements). Then, for each

category, typical patterns of measurable
values (profiles) are elicited. The
result is a complete set of abstractions,
along with their relations to one
another. This process of elicitation of
abstractions is the same whenever a

problem-solving process is modeled
by the generic task 'hierarchical
classification'; hence, one can support this
modeling process with a computer
tool [1], Such a tool makes it easy for
the expert to maintain a set of
hypotheses; if new information is acquired
that changes the way the fault
categories should be organized, then the
tree of abstractions can be modified

1 In this sense, a generic task is an abstraction;
but since it simplifies the knowledge engineering

process, it is an abstraction used by the
knowledge engineer, not the expert or end
user.

952 COMÏEC 10/1995



DECISION SUPPORT SYSTEMS

HIERARCHY

Communication
System

Capacity

Software

Connectivity

Traffic Overload

Faulty Protocol

Invalid configuration

Plugs

Failed cable

Down node

Fig. 3.

A partial classification hierarchy for communication network failures (e.g.. Token Ring,

Ethernet). In general, the hierarchy is not strict; in this case, certain software problems

(Faulty Protocol, e.g. a noncooperative token-ring peer that never passes the token along)

can appear as capacity problems. Only hypotheses and their refinements

are shown here.

directly. But how can the domain
abstractions collected by such a tool be
used to support decision making?
Diagnostic Master II (DMII) [2] is a

system that supports this acquisition
process for 'hierarchical classification'
problems. It provides graphical
support for eliciting domain abstractions
from the expert. It then uses these
abstractions along with the generic task
'hierarchical classification' to automatically

produce indices for a case base.

Put into the context of the examples
in section 'successful applications to
telecommunications' DMII can be
used to construct a system like ESP,

but with the case base engineer replaced

by the expert. This gives the
expert freedom that is not offered by

any of the three sample systems
above, namely, the freedom to be
able to define the abstractions that
one wants to use to communicate
with the machine.

Automatic construction
of abstractions

In the previous section, 'Eliciting
abstractions', we saw how it is possible
to empower the expert (or end user)

to define abstractions in such a way
that the computer can use them. This
solution only works for situations in

which the generic task 'hierarchical

COMTEC 10/1995

classification' is appropriate. How can
we, more generally, determine
whether a particular abstraction is

useful from a computational point of
view? Presumably, an abstraction is

useful if it makes a problem easier to
solve.
In order to study how an abstraction
might simplify a problem, it is first
necessary to formalize the problem. In

[4], Choueiry models resource allocation

problems as Constraint Satisfaction

Problems (CSPs). A CSP is made up
of variables, values, and constraints.
Each variable has a set of allowed
values, and constraints place limits on
the allowed values. For example, a

common constraint says that two
variables may not have the same value.
Once a problem has been formalized
as a CSP, what are the possibilities for
simplifying it? Choueiry offers a

variety of such methods, but here we
will describe only two: decomposition
and interchangeability.
Decomposition refers to the identification

of small sets of variables whose
value assignments are independent of
the rest of the problem. When such
sets can be found, then the entire CSP

can be decomposed into two (or
more) smaller pieces which can be
solved independently. Since the
component set is independent of the
other variables, the solutions to the
subproblems can be simply combined

to obtain a solution to the original
problem. Problem decomposition can
be used to apply a divide-and-con-
quer strategy to a resource allocation
problem.
Interchangeability means that within
one problem certain values can be
replaced by others, without losing any
possibilities for a solution. One can
gather all the interchangeable values
into a single abstraction and treat
them as if they were a single value.
This reduces the number of values
that have to be examined in any
subsequent search for a solution.
Of course, these two techniques (and
others) can be used together - one
can find interchangeable values for
decomposed sets of variables.
Abstractions that correspond to such sets

are guaranteed to simplify the problem.

Example

An example of a simple resource
allocation problem is shown in Figure 4.

Suppose we have a team of seven
service engineers, two of whom are senior

engineers. Each engineer is capable

of servicing the types of user
equipment shown in the table. The
chart below shows a plan for a seven-
hour day, during which appointments
have been made with nine customers
whose complaints concern systems as

shown. How do we assign the seven
service engineers to the nine appointments,

so that each appointment has

an engineer who is trained to respond
to the complaint?
This problem is NP-complete, which
means, roughly speaking, that in general

the best possible algorithm will
require an exponential amount of
time to find if a satisfactory solution
exists [7]. In special cases, however, a

human can sometimes solve these
problems easily - if the problem can
be broken down into pieces that the
human can understand. Component
sets and interchangeable values
provide such pieces.
In the example we can decompose the
problem into isolated components as

shown in Figure 5. Recall that problem

decomposition means that
decisions made in one part of the problem
do not affect decisions to be made in
another. A short consideration of this
example will show that the decisions
to be made in subproblem A can be
made independently of the rest of the

953



DECISION SUPPORT SYSTEMS

problem; these tasks all require senior
engineers. Also, there are two tasks to
be performed at once, hence they
require two senior engineers. There are
only two senior engineers available,
so no assignment of a senior engineer
outside this set can possibly result in a

solution.
Subproblem A can be further decomposed,

based on the fact that the
tasks in the morning do not overlap
with the tasks in the afternoon, and
we can reassign our senior engineers.
Any assignment made in the morning
cannot affect assignments made in

the afternoon. In this case, we say
that subproblem A is decomposed
into problem components C and D.

We can now try to solve these (smaller)

problems, without worrying that
our decision might affect the as¬

signment of junior engineers. The
difficult problem at the top of Figure
5 has been decomposed into the three
simple, isolated problems highlighted
at the bottom.
When we try to solve subproblems C

and D, we need to decide which senior

engineer should be assigned to
which customer. For problem D the
required capabilities are ISDN and
PABX. Since both senior engineers
have both of these capabilities, the
two senior engineers are interchangeable

for subproblem D, and the problem

is solved without any search at all.
For problem C, since only one of the
senior engineers has ATM competence,

the two are not interchangeable;

therefore, the two must be
considered separately when finding a

solution.

Advantages

The resource allocation problem is NP-

complete, which means that, in general,

it cannot be solved efficiently by

any known algorithm (see [7] for
more details of the ramifications of
NP-complete problems). Any particular

problem, such as the one shown in
the example above, might have a

solution that is easy to find. In the
example we have shown how
decomposition and interchangeability can
help a human problem solver find
easy solutions. It makes sense, therefore,

for a machine to help a human
user by finding such abstractions
(when they exist), rather than by trying

to find a solution. This leaves the
human user free to bring in any
further constraints that might not have
been modeled; in the example the
human dispatcher might recall that
Jones had installed the ISDN system in

question. The interchangeability of
Smith and Jones in subproblem D in

Figure 5 allows the dispatcher to
assign Jones to the ISDN problem, with
perfect confidence that this will not
cause problems elsewhere in the plan.
If no solution exists, algorithmic
solutions (as are common in Operations
Research) are even more problematic.
After completing an exhaustive
search of all the possible solutions,
such an algorithm can determine that
no solution exists. No further analysis
is available - the reason for failure is

not known. An interactive solution
that decomposes the problem into
isolated and interchangeable sets can
help pinpoint the problem. For example,

if we were to add another two-
hour ISDN task in the afternoon in the
example above, no solution would
exist, because three senior engineers
are required at the same time, while
only two are available. The details of
the possible assignments of junior
engineers to other tasks are not important

for understanding this limitation.
Problem components and
interchangeable values constitute
abstractions in that they hide certain
details of the problem that are not of
interest to the solution. A problem
component hides all other variables

and values, while a set of
interchangeable values hides currently
unimportant distinctions between
values.

Choueiry has developed a system that
will automatically construct a hierarchy

of abstractions (as shown in Fig-

COMTEC 10/1995

EXAMPLE

Smith Jones Junior (x5)

LAN
Phone & FAX
PBX
PABX
TDM
ISDN
Frame Relay

LAN
Phone & FAX
PBX
PABX
ISDN
ATM

LAN
Phone & FAX
PBX

4
Frame Relay

PBX
1

LAN

I

ISDN

FAX

I

PBX

I

I
1 2

I
I I

3 4
I I

5 6 7
I I I -

time

Fig. 4.

A small resource allocation problem. Two senior engineers (Smith and Jones) have a large

set of service capabilities; one specializes in Frame Relay, while the other specializes in

ATM. There are also five junior engineers (Junior) with more limited capabilities. Customer

complaints have been planned for a seven-hour day as shown below. How can we assign

engineers to these tasks?

954



DECISION SUPPORT SYSTEMS

DECOMPOSITION

Fig. 5.

A decomposition of the problem from Figure 4 into isolated subproblems.

ure 5) using decomposition and inter-
changeability (among other
techniques) to simplify a resource allocation

problem. When such abstractions
can be found, they make descriptions
with them easier for a computer to
process (since the number of possible
solutions is smaller). Furthermore, the
abstractions found by computing
interchangeable values and problem
components are typically comprehensible

to users, since, for example,
interchangeable variables have some

features in common that make them
interchangeable. Thus, Choueiry
offers us a method for automatically
finding abstractions that will facilitate
communication from expert to
machine to user.

Conclusions and horizons

With the current explosion of
telecommunication services and technologies,

telecom systems are becoming

more and more difficult to design,
manage and maintain. As the
complexity of these systems grows beyond
a level manageable by humans alone,
decision support systems become
essential. From the above examples it is

clear that a major success factor in a

DSS is the determination of abstra-
tions that are appropriate to the
problem-solving needs of its users. In
order to make more powerful and
flexible decision support systems, we
need a sound, methodological ap-

COMÏEC 10/1995 955



DECISION SUPPORT SYSTEMS

ZUSAMMENFASSUNG

Der Schlüssel zum erfolgreichen Einsatz von Softwaresystemen ist die Verständigung
zwischen dem Programm und dessen Benützern. Bei Entscheidungssystemen muss das

Programm fähig sein, mit dem Entscheidungsträger in einer angemessenen Form kommunizieren

zu können. Normalerweise kommunizieren Menschen nicht in den schwerfälligen
formalen Sprachen der Computer miteinander. Daher ist es wichtig, dass angemessene
Abstraktionen gefunden werden, welche die Mensch-Maschine-Kommunikation wirkungsvoll
unterstützen. Die wesentlichen Eigenschaften solcher Abstraktionen und die Entwicklung

von Entscheidungssystemen unter Berücksichtigung dieser Eigenschaften werden in diesem

Beitrag dargestellt. Der Einfluss der Abstraktion auf den Erfolg von Entscheidungssystemen

wird anhand von drei Fallstudien im Bereich der Telekommunikation untersucht. Die

verwendeten Abstraktionen reichen einerseits von allgemeinen zu spezifischen und anderseits

von statischen zu dynamischen Abstraktionen. Abschliessend werden zwei Methoden zum

Auffinden geeigneter Abstraktionen für die Entwicklung erfolgreicher Entscheidungssysteme

dargestellt.

proach for representing, constructing
and verifying abstractions.
In our work we are pursuing research

on abstractions along two directions.
First, since abstractions are already
used by humans, we need a way to
collect and organize these abstractions,

so that they can be used in the
construction of a DSS. For this
purpose, we use the Generic Task

methodology. Second, since the DSS is

in fact a computer, the advantages of
the constructed abstractions must be
realizable computationally.
We bring these aspects of abstractions
together by constructing cooperative
systems, where part of the problem is

solved by the computer and part by
the human user. In this way, we can

bring computationally intensive
search methods (such as those studied
under the name of Operations
Research) together with knowledge-intensive

methods under the direction
of a human user, who is then in the
position to take responsibility for the
decisions made. The synergy of a
combined human/machine decision
support system improves the speed and
cost effectiveness, and so the customer's

expectations of quality service
can be satisfied. This gives Swiss Telecom

PTT a competitive edge in
realizing the full commercial potential
of telecommunication.

Dean Allemang completed his

Ph.D. in Artificial Intelligence at

the Ohio State University in

1990 on the application of
device models to automatic

debugging of computer programs.
He joined the research and development
directorate of the Swiss Telecom in 1994 as a

research engineer, where he develops AI applications

for the design, management and analysis

of telecommunications networks. As a senior

research assistant at the EPF in Lausanne, Dr.

Allemang worked on applying AI methods to
industrial problems. His current projects include

technology transfer for telecommunication

applications.

a Beat Liver received the Diploma
in Informatics from the Swiss

Federal Institute of Technology

„W (ETH) in Zurich in 1989 with a

specialization in communica-

kw tion networks, distributed
systems and computer-aided tools for VLSI. He

joined the research and development
directorate of the Swiss Telecom PTT in 1989. He is

researching computer-aided tools for
telecommunication network management problems in

the broader sense of the term, in particular

using results from operations research and

artificial intelligence for developing innovative

tools to diagnose, configure, and design
networks.

References

[1] ISE Software AG. Diagnostic Master,

Benutzerhandbuch. ISE Software AG,

Tägerwilen, Switzerland, 1992.

[2] Dean Allemang. Combining case-

based reasoning and task-specific
architectures. IEEE Expert, pages 24-34,
1994.

[3] Mike Carr, Chris Costello, Kare McDonald,

Debbie Cherubino. Embedded AI

for sales-service negotiation. In

Proceedings of the Sixth Innovative

Applications of Artificial Intelligence

Conference, pages 25-34,1994.

[4] Berthe Yazid Choueiry. Abstration

Methods for Resource Allocation.
Ph.D. thesis, Ecole polytechnique
fédérale, Lausanne, 1994.

[5] Carol Hislop and David Pracht. Inte¬

grated problem resolution for business

communications. In Proceedings

of the Sixth Innovative Applications of
Artificial Intelligence Conference,

pages 63-74,1994.

[6] Hieu Le, Gary Vrooman, Philip Klahr,

David Coles, Michael Stoler. Expert

investigation and recovery of
telecommunication charges. In Proceedings

of the Sixth Innovative Applications

of Artificial Intelligence Conference,

pages 75-82,1994.

[7] Beat Liver. Rechnergestützte
Konstruktion: Nutzen und

Problemlösungsmethoden. Technische

Mitteilungen PTT (11): 523-528,1993.

[8] Beat Liver, André Prim. Wissensbasierte

Systeme im Netzwerkmanagement.
Teil 2: Erfahrungsbericht. Technische

Mitteilungen PTT (2): 38-44,1992.

[9] André Prim, Beat Liver, Systèmes ex¬

perts pour la gestion de réseau. 2e

partie: compte rendu des résultats.

Technische Mitteilungen PTT (1):

12-17,1992.

956 COMÏEC 10/1995



WORLDWIDE ISDNSOLUTIONS

ascom
DELECT *

EPSON

en
CO

£ INFORMATIQUE-MTF SA

MCPengineering

i PHILIPS

TELECOM
PTT

TELELINK
iiiiiiiiiiiiiiiiiiiiik:
DIE SCHWEIZER K10DEMMACHER

TEnCOM

Veranstalter:

TELECOM V
Organisation:

Icon AG
Kaspar Pfeiffer-Strasse 21

Postfach 508
4142 Münchenstein 1

Telefon 061-413 03 81

Fax 061-413 03 83

Multimediale Datenkommunikation wird Wirklichkeit.

Mehr noch: Mit ISDN wird Information überall und jederzeit

verfügbar. Information bedeutetVorsprung.
Und Vorsprung sichert Ihre Existenz.

An der GLOBAL '95 treffen Sie sich mit allen, die in ISDN die

Technologie der Zukunft erkennen.

Die GLOBAL'95 verbindet für drei Tage mehr als 30 Länder zu

einem weltumspannenden Netz.

Fachleute diskutieren aktuelle Themen. Anbieter zeigen

Projekte und Lösungen.


	How can we communicate with computers?

