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Sharp borderline Sobolev inequalities on compact
Riemannian manifolds

LUIGI FONTANA

1. Introduction and main results

In a 1971 paper [22], J. Moser proved the following theorem:

THEOREM 1.1 (Moser). Let Q be an open domain in R&quot;, n &gt; 2. There exists a
constant C which dépends only on n such that if u is smooth, has compact support
contained in Q and its gradient Vu satisfies \q\Vu\1 dx &lt; 1, then

l exp {À(n)\u\nK&quot;-l)} dx &lt; C\Q\ (1)

where À(n) nœ^x 1} and œn_ x is the surface measure of the unit sphère in R&quot;. If
X{ri) is replaced by any X &gt; X(n), the intégral on the left hand side o/(l) is still finite,
but can be made arbitrarily large by an appropriate choice of u.

And, with a modification of the same argument,

THEOREM 1.2 (Moser). There exists an absolute constant c0 such that if u is a
smooth function on S2 with J52 \Vu\2 dS ^ 1 and J52 u dS 0, then

I e4nu&apos;dS&lt;c0. (2)
&apos;52

The constant An is the best possible in the same sensé as X(ri) in Theorem 1.1.

Moser applied Theorem 1.2 in his work on the problem of prescribing the

curvature on S2 (see [23]).
Recall that Sobolev&apos;s theorems, see e.g. [29], assert existence of imbeddings

W{op(Q) -+Lq{Q) for 1 &lt;p &lt; n and W^P{Q) -&gt;C0(O) for n &lt;/?, where \\q l/p -
l/n. Thus, Theorem 1.1 represents a sharp way to fill in the gap at the critical
exponent p n. Theorem 1.2 plays the same rôle for the Sobolev Theorems on S2.
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In 1988 D. R. Adams proved a generalized version of Moser&apos;s Theorem 1.1, in
which it is assumed control on the Lp norm of a higher order gradient of/.

THEOREM 1.3 (Adams). Let Q be a domain in Rw and m be a positive integer
strictly smaller thon n. There is a constant C, depending only on m and n, with the

following property:
If u 6 Cm(Rn) has compact support contained in Q and ||Pmw||n/m ^ 1, then

l exp {X(m9 n)\u(x)\n/in~m)} dx &lt; C\Q\ (3)

where

X(m, n) &lt;

nn/22mr
m

n —m + \r
&apos;nn/22mr(m/2)&apos;

n/(n — m)

n — m

n/(n — m)

if m is odd

if m is even

(4)

and Vm dénotes the iterated Laplacian Am/2 if m is even and VA(m 1)/2w if m is odd.

If À(m, n) is replaced by any larger number, the intégral in 3) cannot be bounded

uniformly by any constant.

Adams&apos; approach to the problem is to express u as the Riesz Potential of its
gradient of order m and then apply the following theorem

THEOREM 1.4 (Adams). Let 1 &lt;p &lt; oo. There is a constant c0 co(p, n) such

that for ail fe Lp(Rn) with support contained in Q,

(5)

where a n/p9 \/p -f \\p&apos; 1, andIaf(x) J \x — y\a nf(x) dy. The constant n/œn_ {

cannot be replaced by any larger number without forcing c0 to dépend on f as well as

on p and n.
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To prove Theorem 1.4, Adams applied a resuit of R. O&apos;Neil [24] about
&quot;convolution type&quot; operators.

LEMMA 1.5 (O&apos;Neil). If h =f*g then

h**(t) &lt; tf*(t)g**(t) + f°V(*)j*(j) ds.

(By f* we mean the usual non increasing rearrangement of\f\ and f** is defined by

Then, a change of variables reduces the problem to the following technical lemma.

LEMMA 1.6 (Adams). Let a(s, t) be a non négative measurable function defined
on the set — oo, oo) x [0, oo) such that a(s91) ^ la.e. when 0 &lt; s &lt; t, and suppose that

G&apos;0

f00 \+ a(s, t)p ds
-oo Jr /

&lt; oo.

Then there is a constant c0 co(p, b) such that, for ail &lt;/&gt;
&gt; 0 satisfying

^oo (j){s)p ds &lt; 1, the following inequality is true:

Jo
&lt;c0

where F(t) t - (f^ a(s, i)&lt;f)(s) ds)p.

There hâve been attempts to prove Moser-Adams type theorems for sphères of
dimension n &gt; 3 and for more gênerai manifolds. For example, contributions hâve

been made by Cherrier [14], [15], [16]. However, the arguments employed in the

past failed to yield the largest coefficient A(m, n) in the exponential, even in the first
order case m 1.

In this paper we will show that the complète analogues of the Adams and Moser
theorems are valid for every compact (smooth) Riemannian manifold M. In fact,
the optimal k &apos;s turn out to be the same for every such M as they are for domains
inR&quot;.

Our main resuit is the following

THEOREM 1.7. Let M be a compact Riemannian manifold of dimension n and

m a positive integer strictly smaller than n. There exists a constant C C(m9 M) such
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that for ail u e Cn(M) with \MudV Q and JM \Vmu\nlm dV &lt; 1, the following
uniform inequality holds

JM
exp {A(m, n) \u{x) \n/{n ~ m)} dV{x) &lt;C (6)

where the constant À(m, n) is the one given in (4) and is sharp in the same sensé. V and
A represent the gradient and the Laplace -Beltrami operator relative to the metric of
M, so that, in a coordinate neighborhood,

Vf=YJ{glJdJf)dl and Af=--*TYadl{glJ
m Vg &lt;v/

where glJ are the coefficients of G~\ g detG and G (gtJ) is the metric tensor of
M.

We observe that, in the theorem above, as well as in Theorems 1.1, 1.2

and 1.3, the condition u e Cm{M) can be replaced by the slightly weaker condition
u e Wm*lm{M\ where, as customary, Wm*jm(M) is the Sobolev space obtained by
completion of Cm(M) with respect to the norm ||/||m,w/m (\M Sr=o \Vkf]n/m)m/n or
any of its équivalents. The proof is straightforward.

Theorem 1.7 was originally stated and proved for m even. While generalizing the

proof to the case of m odd, the author was informed by Professor S-Y. A. Chang
that, at about the same time, she, T. Branson and P. C. Yang had independently
proved the spécial case corresponding to n 4 and m 2 by similar methods (see

[9]).
Our outline for proving Theorem 1.7 is the same as that of Adams for his

Theorem 1.3. Firstly, we formulate an appropriately modified version of O&apos;Neil&apos;s

lemma and an extended version of Lemma 1.6. Thèse are Lemmas 3.1 and 3.2 in
Section 3. They enable us to prove Theorem 1.9, which is an analogue on M of
Adams&apos; sharp fractional intégral resuit Theorem 1.4, and is perhaps of independent
interest. Theorem 1.7 follows from Theorem 1.9, a convolution type représentation
of u in terms of its gradients, and a précise estimate of the kernels given in Theorem
1.8.

The représentation formulas we need are in terms of the Green&apos;s function G of
M.

Let M be a compact Riemannian manifold of dimension n having volume V.

The Green&apos;s function G(P, Q) of M is a function which, as a distribution on M,
satisfies the équation
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where AQ is the distributional Laplacian of M with respect to the variable Q, ôP is

the Dirac measure at P and V is the volume of M.
It can be proved (see [3]) that the Green&apos;s function of M exists, can be

normalized so that JM G(P, Q) dV(Q) 0 for every P e M, and enjoys the standard

properties of Green&apos;s functions.
In particular, the following formula

u(P) f G(P, Q) Au(Q) dV(Q) f
JM JM

G(P, Q) Au(Q) dV(Q) VQG(P, Q) • Vu(Q) dV(Q)
JM

is valid for u regular on M and satisfying jM u dV 0.

Now define functions Gm for m even and vector fields Gm for m odd by

G2k(P, Q) f G2{k_ o0R, Q)G(P, R) dV(R)
M

for k &gt; 2, with G2(/&gt;, Q) G(P, Q), and

G2k-i(P,Q) VQG2k(P,Q)

for fc &gt; 1. Observe that

^qG^CP, Q) G2k^2(P, Q) APG2k(P, Q)

and, by Fubini&apos;s theorem,

Q) G2,(g, P) and G2k(P, Q) dV(Q) 0.

If w is a smooth function on M and \MudV 0, then by Green&apos;s formulas we
hâve

u{P) [ G2k(P, Q) Aku(Q) dV(Q) (7)
JM
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and

JM
Q) dV(Q). (8)

Thèse are the représentation formulas. We need the estimâtes of the kernels

Gm(P, Q) given by the foliowing theorem

THEOREM 1.8. There are constants Bu Bn_ x depending only on M, such

that for every P, Q e M and 1 &lt; m ^ n — 1

\Gm(P, 0| ^ cm(n)d(P, Bmd(P,

where

cm(n)

r n — m

r n —m

// m w

;/ m is odd.

The cases m 1 and m — 2 of this theorem follow from Aubin&apos;s basic analysis
of the Green&apos;s function of a compact Riemannian manifold (see Theorem 2.5 and

[2]). The cases m &gt; 2 are deduced from the previous ones by using Rauch&apos;s

comparison theorem (see Theorem 2.3 and [13]).
The above estimâtes reduce the proof of Theorem 1.7 to the proof of the

following resuit which perhaps is of independent interest.

THEOREM 1.9. Let M be a n-dimensional compact Riemannian manifold,
« &gt; 1. Let T be the operator defined by

JM
Tf(P)= K(P,Q)f(Q)dV(Q)
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where

K(P, Q) d(P, Q)&apos;~&quot;( 1 + ad(P, QY),

a is a non négative constant, /? &gt; 0, 0 &lt; a &lt; « and d is the Riemannian distance. Then

there exists a constant c c(a, /?, a, M) such that, for every function f e Lnl\M)
satisfying \M |/|&quot;/a dV &lt; 1, the following inequality holds

J%
f n 1

exp \ | Tf(P) \n/in ~a) i dV(P) &lt;c. (9)
M fan - 1 J

The number n/œn_ is the largest possible constant for which the intégral on the left
hand side of inequality (9) is bounded by a constant independent off

Clearly Theorem 1.8 and Theorem 1.9 imply Theorem 1.7.

We shall prove Theorem 1.8 in Section 2 and Theorem 1.9 in Section 3. In
Section 4 we prove analogue exponential integrability for fractional intégrais of
periodic functions and mention a few open problems.

2. The estimâtes for Gm

The crucial point in the proof of Theorem 1.8 is to reduce a certain intégral on
M involving Riemannian distances to an analogous intégral on R&quot; involving
ordinary Euclidean distances.

It is well known from potential theory and harmonie analysis, that, in R&quot;, the

following formula holds:

f \x-y\&quot;&quot;[

Jr»
(10)

where a, /?&gt;0, ce + p &lt;n and

2

See [26], page 118.

(11)
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To prove Theorem 1.8, we need a version of this formula valid on compact
manifolds M.

Recall that d(P, Q) dénotes the Riemannian distance on the compact manifold
M.

LEMMA 2.1. Suppose that a, jS &gt; 0 and that a + j8 &lt; n. Then

d(P9Q)« + e-»(l+E(P,Q)) (12)i y(a + p)

where \E(P, Q)\ &lt; Bd(P, 01/2, with B constant depending only on a, jS, and M.

To prove this lemma we need to recall some results from Riemannian geometry.

PROPOSITION 2.2 (Volume form). Let BP(t) be the géodésie bail of center P
and radius t in M, Le. the set ofpoints in M at a distance from the point P smaller
than t. Then:

Vol 08,(0) ^^ t»(l- —l—- s{P)t2 + o(t2))
n \ 6(« + 2)

where s(P) is the scalar curvature at P.

Moreover, in normal géodésie coordinates around P, the volume form of M is

dV{Q) tn ~ l (\ - ^ r(x)t2 + o(t2) J dx dt

where Q exp^ tx, x g S&quot; l and dx is the standard surface measure of Sn~l. r(x) is

the Ricci curvature (viewed as a quadratic form) evaluated on the vector x.

For références and proofs see [7] pages 15-16 and [19].
AH we really need, however, is

dV{Q) tn ~ \ 1 -h O(0) dx dt and Vol {BP(t)) =C^11\ 1 + O(0)
n

which, for M compact, follows at once from Proposition 2.2.

The next resuit is the basic tool which allows us to estimate the quantity d(R, Q)
in terms of Euclidean distances.
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THEOREM 2.3 (Rauch Comparison Theorem). Let M, Mo be Riemannian

manifolds with dim Mo ^ dim M, and let P(P0) e M(M0).
Assume that for ail plane sections g{oq) of M(Mo)9 the sectional curvatures satisfy

K(g0) ^ K(a). Let r be chosen such that the exponential map of M with center at P,

expp restricted to the bail B{r) with radius r and center at the origin in TPM is an

embedding and the exponential map of Mo with center at Po, expP(), is not singular on
the corresponding bail B(r) in TPqM0. Let I : TPM -&gt;TPqM0 be a linear injection
preserving inner products. Then for any curve c : [0, 1] -» expP (2?(r)), defining the

corresponding curve c0 in Mo by

co(t) expPo o / o QxpPl(c)(t)

we hâve L[c] ^ L[c0] where by L[y] we dénote the length of the curve y.

For références and proofs, see [13], pages 30-31.

As an immédiate conséquence of this theorem, we see that if

/ o expp \Q) and Ro exp/&gt;0 o / o cxpP](R)

with g, R points in the bail of radius r in M, Qo, Rq points in Mo, then the géodésie

joining Qo to jR0 in Mo is not shorter than the géodésie joining Q to R in M.
We also need the following easy lemma which will take care of most of the error

terms we will be producing throughout the paper.

LEMMA 2.4. IfO &lt; a, 0 &lt; n, the intégral

/(/&gt;, Q) d(P, RY~n d(R, QY&apos;n dV(R)
}m

is bounded if a + p &gt; n, O(d(P, Q)a + P~n) if n &gt; a + fi and O(\og(\/d(P,Q))) if
n=(x+p.

The proof uses Proposition 2.2 and is straightforward.

We are now ready to prove Lemma 2.1.

Proof of Lemma 2.1. Since M is compact, certainly its sectional curvature is

bounded above by a positive constant kx and below by a négative constant fc2, i.e.

at each point P e M, for every plane section a, we hâve
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k2 ^ K(a) &lt;&gt; kx

Consider the w-dimensional sphère S of curvature k{ and the «-dimensional
hyperbohc space H of curvature k2 Let ds and dH be their respective Riemannian
distances Dénote by exp, exp&apos;, and exp&quot; the exponential maps of M, S, and H
respectively

Let ô be 1/2 of the smallest of the radn of injectivity of M, S and H (since M
and S are compact their radn of injectivity are stnctly positive, while //&apos;s one îs

infinité) Then, if P, P\ P&quot; are points respectively in M, S, //, the exponential map
of each of our manifolds îs a diffeomorphism from the bail with center at the ongin
of the tangent space at P (res P\ P&quot;) and radius ô, to the bail of the same radius
around the point P (res P&apos;,P&quot;) m the mamfold

Consider normal géodésie coordinates on BP{ô), BP (ô) and BP (ô) in M, S and

H respectively It îs a feature of thèse coordinates that the tangent space at the

center îs isometric to the standard «-dimensional Euchdean space So, by choosmg
orthonormal basis in TPM, TP S and TP H, we can identify ail thèse spaces with the

standard Rw

If R and Q are two points in BP{§) a M, consider their normal géodésie
coordinates y and x (points in I/.M^R&quot;), uniquely determined by R =expP(j)
and Q expP (x) Construct the points Rf exp^ (y) and Q&apos; expp (x) m «S, and
their analogues R&quot; exp£ (y) and Q&quot; — exp£ in H

The Rauch Companson Theorem 2 3 implies that

ds(R&apos;, Ql * d(R, Q) &lt; dH(R&quot;, Q&quot;) (13)

In other words, we hâve géodésie triangles PQR in M, P&apos;Q&apos;R&apos; in S and P&apos;Q&apos;R&quot; in
//, which, by the properties of the exponential map, satisfy

d(P, Q) ds(P\ fi&apos;) dH(P\ Q&quot;) \x\

d(P9 R) ds(P\ R) dH(P\ R&quot;) \y\

and

0 RPQ R&apos;^Q&apos; R&apos;pQ&quot;

where 9 îs the Euchdean angle between the vectors y and x Then, the &quot;third sides&quot;

of the triangles satisfy 13)

We want to estimate d{R, Q) in terms of \y — jc|, the Euchdean distance between

their normal géodésie coordinates Inequahty (13) reduces the problem to an
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estimate of distances on a sphère or a hyperbolic space, where we can use

trigonometry.
We use spherical trigonometry on the triangle P&apos;R&apos;Q\ obtaining

cos fids(R\ Q&apos;) cosjj|*| cos/i|j| +cos 6 sin/i|*| sin fi\y\

where /i is a scaling constant depending only on kx.
Standard algebra and trigonometry show that the above équation implies

ds(R\ Q&apos;) |* -y\{\ + O(|x| + H)2). (14)

In the same way, using hyperbolic trigonometry on the triangle R&quot;P&quot;Q&quot;, we
hâve

cosh vdH(R&quot;, Q&quot;) cosh v\y\ cosh v|jc| — cos 6 sinh v\y\ sinh v|*|

where v is a scaling factor depending only on the curvature of H k2.

Again, after some algebra, we get

dH(R\ Q&quot;) |x -y\{\ + 0(|x| + H)2). (15)

As a conséquence of (13), (14) and (15) we hâve

d{R,Q)=\x-y\(\ + O{\x\ + \y\)2) (16)

where the quantity O(\x\ + |j|)2/(|x| + [y|)2 is bounded by a constant depending
only on M.

We can now estimate

i d(P9R)*-Hd(R,Q)fi-ndV(Q)
M

and conclude the proof of Lemma 2.1.

Décompose the intégral over M into $bp(ô) + \m-bp{ô)- Since d(R,Q)p~n is

integrable on M, the second intégral is bounded by a constant, depending only on
M and j?, times ô*~n.
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To estimate

1 R)*~ nd(R, QY - n dV(Q)
BP(Ô)

we write it in normal géodésie coordinates around P, and using the notations
introduced above, we obtain the following intégral in R&quot;

[
jB(d)

where &lt;/&gt;(x, y) is the coordinate expression of d(R, Q). By (16), we get:

JB(S)

Now, using the R&quot; version of Lemma 2.4, the fact that

\y\*-n\x-yf-ndyiR&quot; - B(ô)

is a bounded function of \x\ with the bound depending only on a, /? and the

géométrie quantity (5, by recalling that \x\ d(P9 Q) and using formula (10), we get
equality (12). Therefore Lemma 2.1 is completely proved.

Now we are ready to prove Theorem 1.8.

The flrst step was essentially done by T. Aubin in a 1974 paper [2]. He proved
the following séries représentation for the Green&apos;s function of M:

THEOREM 2.5 (Aubin). If M is a compact Riemannian manifold of dimension

n &gt; 2, its Green &apos;s function is given by :

G(P, Q) H(P, Q) + H(P, R) £ K,(Q, R) dV(R) (17)

where H(P, Q) [(n - 2)œn_ x]~xt{d{P, Q))2~n and t(s) is a C°° non decreasing

function defined on (0, oo) such that limA_0+(/(s)/s) 1 and t is constant for s ^ &lt;5,

with à smaller than the radius of injectivity of M. Kt is defined inductively:
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Kt (P, Q) f KM_X (P, R)KX (R, Q) dV(R)
JM

where KX(P9 Q) -AQH(P, 0-1.
If f(Q) &lt;l&gt;(d(P, 0) is a function of the distance from P alone, then it is well
known that:

where r is the Riemannian distance from P to Q, and the gtJ are the coefficients of
the metrie (see [6] for instance).

By Aubin&apos;s Theorem 1 in the same paper, there exists r0 depending only on the

geometry of M such that for every P g M in BP(r), the bail of radius r and center
P, r &lt; r0, we hâve

-logv/det(g,) &lt;Cr

the constant C depending only on M and not on P and r.
The quantity \(d/dr) log ^/det (gy)| is also globally bounded on M.
Using thèse facts we can easily estimate

H(P, Q) if(r)
1 1

(/i -2)a&gt;B_,
r2&apos;&quot;(l-hO(r))

and

J//(P, 0 —/-w(r)?&apos;(r) [V(r) -^

Since t{r) is C°°, for small r, we hâve /(r) t&apos;(O)r + O(r2) and T(
f&quot;(0)r + O(r2) and thus

/&quot;&quot;&quot;(

1 +
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Hence -AH(p, Q) and Kx are O(d(P, Q)l~&quot;) and therefore, for ail m, Km(P, Q) îs

at least O(d(P, Q)Xn) (much better, in fact).
Since Aubin proved that the séries Z,°i / K, (/\ Q) is absolutely convergent and

bounded for X suitable (depending only on M), we can conclude that

G2(P9 Q) &lt;?(/&gt;, Q)
_

*
d(P, Q)2-11 + O(d(P, Q))]. 18)

Moreover, since

f
JM

VPG{P, Q) VPH(P, Q) + VPH{P, R) £ K,(R, Q) dV(R)
JM i= 1

and

\VPH(P, 0| \VQH(P, 0| =^— |/! &quot;&quot;W/&apos;WI ^—r1 -&quot;(1 + 0{r))

we hâve

|G, (P, 01 |VQG(P, 01 &lt;: —— d(P, 0! &quot;

&quot;[ 1+ O(d(P, Q))]. 19)

In the above discussion, we assumed dim M &gt; 2. If dim M 2, G can still be

represented by the séries

f0 + f //(P, i?) £ *,(*, 0
J

where, this time, H(P9 Q) =(1/2tt) log(l/r(rf(P, 0)).
The same kind of estimâtes as before, yields

\rQG(P, 0| *^d{P&gt; Q)-lW + O(d(P, Q))] (20)

which is the only kernel estimate we need when n — 2.

From now on, n dim M &gt; 2.

We shall now prove the &quot;even&quot; part of Theorem 1.8.
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LEMMA 2.6. If\&lt;2k&lt;n

G2k{P, Q) ^ -f-r d(P, Q)2k-&quot;( 1 + O(d(P, Q)&quot;2)).

Proof. By définition, when 2 &lt; 2k &lt; n,

G2k{P, Q) f G(P, R)G2k_2(R, Q) dV(R).

Since we already hâve the right estimate for G2, we can proceed by induction and

assume that

G2k 2(P, Q) c2k^2{n)d{P, Q)2k~2~&quot;[ 1 + O(d(P, Q))]

so that

G2k(P, Q) c2k _ 2{ri) i f d{P, R)2~&quot;d(R, G)2* &quot;2 — dV(R)

+ d(P,
JM

nO(d(R, Q)2k-l~n) dV{R).

By Lemma 2.4, the last intégral is no worse than O(d(P, Q)2k+l/2&apos;n). Lemma 2.1

now implies

2k(P, Q) c2k _ 2\n) ; d(P, Q) 1 -f O(d{P, Q)l
(n — 2)œn_l y(2k)

Recalling the définition of y (see (11)), we find

and c2(n)=-—^ (21)
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By induction, this implies

1

c2k(n)
(k - \)\2k~ \n - 2k)(n - 2k + 2) • • • (n - 2)œn_x

and the lemma is proved.

Now we prove:

LEMMA 2.7. If\&lt;2k&lt;n îhen

\G2k_,(P, G)| * -t4 d(P, Q)2k-x-\\ + O(d(P9 Q)1/2)).

w n~l
(22)

Proof. By définition, for 1 &lt; 2k &lt; n

G2k(P, Q) G(P9 R)G2k_ 2(R, Q) dV(R). (23)
Jm

Taking the gradient with respect to the variable P we get

VPG2k(P, 0=| VPG{P, R)G2k 2(R, Q) dV(R).
Ja/

Now recall that

VPG(P, R) ^ VP(d{P, R)2n) -f- O(d(P9
{n - I)œn _
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By estimate (19) and Lemma 2.4 we are reduced to estimate the following intégral

f VR(d(P9 R)2- n)d(R, g)* - * - » dV(R) (24)
JBp(ô)

where BP(ô) is the bail of radius ô around P in M.
As in the proof of Lemma 2.1, we rewrite our intégral using normal géodésie

coordinates around P. We already hâve the expression of the volume form and of
d(R, Q) in thèse coordinates. Ail we need is the expression of VP(d(P, R)2~n)
(2-n)d(P,RY-&quot;VPd(P,R).

VPd(P, R) is nothing else than the unit vector tangent, in P, to the géodésie from
R to P. Let y (yu. ,yn) \y\a with aeS&quot;~l and R=expy. Then
VPd(P, R) -a= -yj\y\ and d(P, R)2n \y\2~n (yï + - &apos; + ylY2 ~ n)/2 so that
the i-th component of its gradient is

g»

where the glJ are the coefficients of (g^)&quot;1, the inverse of the matrix of the
coefficients of the metric.

Since in a normal géodésie coordinates neighborhood of P, glJ ôlJ + O(r), (r
being the distance from P and ôlJ Kronecker&apos;s delta), the i-th component of intégral
(24), by (16) and Lemma 2.4 becomes

(n-2) f \y\x-&quot;yL\x-y\2k-2-ndy + O(\x\2k-&quot;-l/2) (25)
jb(S) \y\

which, within an error that we can estimate as O(|jc|2/c~w~1/2), is nothing else than

(n-2) f yl\y\~n\x-y\2k~2~ndy&apos;
JR&quot;

Since in the bail B(ô) around the point P, glJ ôlJ -f O(r), this means that, within an

error not worse than O(\x\2k-n~ 1/2), the length of the vector VPG2k(P, Q) in the
Riemannian metric of M is estimated by the Euclidean modulus of the vector

[ \y\2~n\x -y\2k~2-&quot; dy\
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Since

l
its gradient has modulus equal to con_ ,(« — 2)/2(k — l)|x|2* &quot;

&apos;. Hence, recalling
that \x\=d(P,Q),

Clk~2 V\ d(P,R)2-&quot;d(R,Q)2k~2-ndV(R)\ + E

where E represents an error (not necessarily the same in différent Unes) not worse
than O(d(P, Q)2k~n- v2y The value of clk_2 is given by Lemma 2.6 so the proof of
Lemma 2.7 (and therefore of Theorem 1.8), is complète.

3. Proof of Theorem 1.9

The proof of Theorem 1.9 follows closely Adams&apos; original proof. The point is

that, because of the very local nature of the problem, perturbations of higher order
of the kernel in our intégral operators are negligible.

The main tool is O&apos;Neil&apos;s Lemma. We already mentioned the version of this
Lemma used by Adams in his paper (see Lemma 1.5). O&apos;Neil&apos;s Theorem 1.7 in [24]
actually covers opérations more gênerai than convolutions/ * g on R&quot;. However, it
does not apply, as stated, to intégral operators on gênerai manifolds M of the form
T discussed below. This is because, when M is non homogeneous, balls with the

same radii but différent centers can hâve différent volumes. Consequently, the
kernels K(P, Q) differ too much from those of the form K(P - Q) on Rn for the

hypothèses of O&apos;Neil&apos;s Theorem 1.7 to be satisfied. There is, though, an asymtotic
homogeneity in the manifold case when the radii tend to zéro which enables us to

prove the following lemma, which serves as suitable substitute.

LEMMA 3.1. Let M be a compact Riemannian manifold of dimension n, and

define the operator T, acting on functions defined on M, by

JM
Tf{P)= K{P,Q)f{Q)dV{Q)

JM
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where

K(P, Q) d(P, Q)«-&quot;( 1 + Cd(P, QY)

with 0 &lt; a &lt; n, (5 &gt; 0 and C a non négative constant. Then, for every t &gt; 0 and for
every function f &gt; 0 on M we hâve

(r/)**(0 £
â

f00 / ns Y

where the constant B is independent off

Of course in this resuit, only t &lt; Vol (M) is of interest.
O&apos;Neil&apos;s original argument can be adapted to our situation by using the volume

estimate of Proposition 2.2. We omit the proof.

Remark. Observe that, with suitable (and natural) conventions, Lemma 3.1 is

true in the one-dimensional case too. In that case the small balls are just intervais

on the one dimensional manifold, their volumes are twice the length of their radius

(so that the volume estimate of Proposition 2.2 is trivially true), the boundary of
such a bail is a set of two points and its zero-dimensional measure is œ0 2. With
thèse conventions, Theorem 1.9 also is true for n 1.

Proof of Theorem 1.9. Let tx Vol (M). Then, using/1&apos; &lt;/**,

f exp {—— |r/(P)|w/(n-a)l dV(P) ffl
exp \-^— |(7y)*(0r/(&quot;~°4 dt

JM l^n - 1 J JO lWn - 1 J

&lt;
f&apos;1

exp \-^— |(77)**(t)\n/in-Adt.

By Lemma 3.1, for 0 &lt; / &lt; tu

/*(j&gt;(&quot; ~ n)l% 1 -f Cspln) ds. (26)

(Tf)**(t) ^ C&amp;-^n \f*(s) ds (p1
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C dénotes constants independent of/which can vary from line to line. Hence

x /*(4*(a - n)ln{ 1 + Cs&quot;11) ds \ dt.

Let x log l/s, y log 1/f, yx log 1/f, and

The right hand side of the estimate above is equal to

f°°
exp lie f°° e~[(n~a)/A2](v&quot; v)4&gt;(x) dx

¦f 1 + C(e -^v/w)&lt;/&gt;(x) rfx - j &gt; rf^. (27)
Jv i J J

Define

_(\+Ce~(p/n)x \ïyx&lt;Lx&lt;y

|(;^-[(n-ï)*-)&apos;) ifjj&lt;j&lt;x&lt;oo

and define, for y e[yx, oo),

0
-!»/(«-»)

g(x, y)c/)(x) dx (28)
^i J

The intégral (27) becomes J^ e~Fiy) dy. Since

1 &gt; j l/]&quot;^ rfK I (f*)n^(s) ds I 4&gt;{y)nl* dy

the proof of the theorem is reduced to the proof of the following lemma.

LEMMA 3.2. Suppose that &lt;/&gt; : [yu oo) -&gt;R+ satisfies \f 0(x)n/ot dx &lt;\. Let g
and F be as above with c, p &gt; 0, 0 &lt; a &lt; n. Then
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{y)dy &lt;&gt;Cl&lt;oo (29)

where Cx dépends on yx, a, j8, C, &amp;m£ «#/ on 0.

This lemma differs from Adams&apos; Lemma 1.6 only by the perturbation C e~xifiln)

for x &lt; y in the kernel g(x, y).
Unfortunately, this modified lemma does not seem to be deducible in any

obvious way from the statement of the original one, so we must check that Adams&apos;

proof can be successfully adapted to this case.

Proof of Lemma 3.2. First of ail observe that

SUp I g(X, yyl*—-&gt; dx f K)/&quot;

* &lt; 00. (30)

Now

\ e-F(y)dy= I EÀ\e&apos;ÀdÀ (31)

where Ex is the set {y &gt; yx : F(y) &lt; A}. By \EÀ\ we dénote its Lebesgue measure.
We prove the lemma in two steps

LEMMA 3.3 (Step 1). There exists a constant c &gt; 0 independent of 4&gt; such that

if Ex #0 then À &gt; —c, Le. infyi^y&lt;oo F(y) &gt; — c &gt; oo. Furthermore, if y e Ex then

w/a dxX&quot;
&lt; ^|A|a/n -f B (32)

where d9 A and B are suitable constants independent of (f) and X.

LEMMA 3.4 (Step 2). There exist constants C and D independent of § and À,

such that for every X

(33)
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Lemmas 3.3 and 3.4 immediately imply Lemma 3.2 since

foc foc foc
e-F(Orfv= l^le-&apos;fltt^ (C|A|-hZ&gt;)e-&quot; rfA

Jv J-oc J-&lt;

and the last intégral is just a finite constant independent of (j).

Proof of Step 1. If y e E,, then by définition and Holder inequality we hâve

rpx -]«/(«-a)
y-k \ g{x,y)&lt;t&gt;{x)

&lt;f&gt;(x)( l+Ce xll/&quot;) dx

+ è(x)C e{ &apos; ~ x){n ~ *)ln dx
J. J

+ (\ &lt;t&gt;(x)&quot;
&apos; dx

i-a)

x/n

(» «)/«

Now

^gx,y xj _y^ + xj

and

Ce&apos;-&apos;à &lt;b.

The constant C in the above lines is not necessarily the same in différent Unes,

the only important thing being that it is independent of 0 and k.
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By letting

&lt;Kx)&quot;*dx\

and observing that L{y) ^ 1 for every y, we get

y - X &lt; [( 1 - L(y)n/«)«!&quot;(y + d){n ~*)/n + bL(y)]n/{n ~a). (34)

Adams gets this estimâtes too, so the conclusions of Step 1 lemma follow from the
same argument as in his paper [1].

Proof ofLemma 3.4. Let R be a positive arbitrary real number and suppose that
EA n [R, oo) # 0. Take tut2eEkn [R, oo), tx &lt; t2. Then:

g(s, t2)(Ks) ds + g(5, f2)0(j) * + éLCr,)

(n-&lt;x)/n

Now note that

f&quot; g(s, t2yl(n -a)ds= f&quot; ^, /, )-/&lt;»

which we already showed to be smaller than (tl 4- &lt;/). Moreover

C e -^/&quot;)&quot;/o - «&gt; ^ ^ /2 - /, + rf,.f
&apos;2

g(J, /2)w/(&quot;
&quot; a) ds f2

Since Jq1 cj)&quot;/&lt;x ds ^ 1, we get

r2 - A ^ {fo -f rf)(w-a)/w + [(/2 - tx + rf,)(l|-a)/&quot; + *]£(/,)}&quot;/(&quot;—). (35)

At this point everything is as in Adams&apos; paper and thus the proof is complète.
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We shall show that the coefficients in the exponents of Theorems 1.7 and 1.9 are
the largest possible.

We start with Theorem 1.9 and we prove the following

PROPOSITION 3.5. If the operator T is defined as in Theorem 1.9, then /i/a)n_
is the maximum value of the constant y for which the intégral

f exp{y|r/(i&gt;)|&quot;/&lt;&quot;-*VF(/&gt;) (36)
JM

is bounded by a constant cM independent off whenever §M \f\n/* dV &lt; 1.

Observe that the local nature of the problem makes possible a complète
réduction to the R&quot; case. Essentially the same extremizing séquence of radial
functions works for R&quot; and for any w-dimensional Riemannian manifold, even non
compact. Thus on any Riemannian manifold we expect the best constant to be not
larger than n/œn _ {.

Proof of Proposition 3.5. Fix P e M and consider the bail BP(ô) where ô is

smaller than 1/2 of the radius of injectivity of M at P. We want to evaluate the

operator T on the extremizing family of functions f defined by

fr(Q) log - d(P, Q)-*Xr(Q) (37)
cow_1 \ r j

where %r dénotes the characteristic function of the set

{QeM such that r &lt; d(P, Q) &lt;ô}.

Computations similar to the ones in the analogous case in R&quot; (see [1]) lead to
the following estimate

(38)

Thus, for every fixed e &gt; 0, there exists r0 such that r &lt; r0 implies that
1 - £ for every Q s BP(r).
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For the Lw/ot-norm of/r, we hâve

439

rl-/. =fû»-i log
r 1 UBP{Ô)

r s ia/w
œ»_,log- + O(l)

d((P,Q)-*^dV(Q)

-

ô

and thus the inequality

exp y fff1 \dV(Q)&lt;c0
JM l \\jr\\nl&lt;x J

(39)

implies that y must be less than or equal to n/con_l. Proposition 3.5 is thus proved.

We will now show that Theorem 1.7 is sharp.

PROPOSITION 3.6. With the same hypothesis of Theorem 1.7, the largest
constant rj for which the exponential intégral

Jm
çxp{rj[f(P)\n^-m)}dV(P)

is bounded by a constant c0 independent off is À(m, ri) offormula (4).

(40)

Proof As customary we work in the bail BP{8) with ô small enough so that the

exponential map is a diffeomorphism and the volume and surface estimâtes for
small balls are fairly précise. To avoid unnecessary notational complications we

suppose ô 1. Everything works, with proper obvious modifications, for arbitrary
S. The construction is essentially the same as in the Rn case, see [1], but it has to
be adapted to the new situation (différent ambient space and différent conditions on

The case m — 1 is easy.
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We consider the family of radial functions

log - log
Q)

0

if d(P, Q) &lt; r

if r ^ d(P, Q) &lt; 1

ifd(P,Q)&gt;L

Thèse functions belong to Wln(M). We normalize them in order to hâve zéro mean,
and define

Now

and thus

fr(Q)

constant 1 - tf/log- ] if 0 ^ d(P9 Q) &lt;r

log l-A [ -log d(P, Q) + O( 1)] if r ^ rf(P, 0
l

constant O( log-

The modulus of the gradient of thèse functions is easily calculated, and

r,

The exponential intégral (40) has to be bounded by c0 for ail admissible
functions. Evaluating it for fr/\\Vfr \\n we see that rj cannot be larger than mo^f °.

The case w &gt; 1 requires some regularizations. Let &lt;P be a C°° function defined

on [0, 1] for which the following is true
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and, if m &gt; 2,

=o.

For 0 &lt; e &lt; 1/2 we define

H(t) \-t

if 0 &lt; t &lt; e

if £ &lt;/ £ 1

if 1 - c &lt; t

if 1 &lt; t.

Now define, for 0 &lt; r &lt; 1, 0 &lt; t &lt; 1,

and note that the functions

fr(Q)

are defined in the unit bail around P in M, m times differentiable there and

identically equal to 1 on BP(r).

We need to compute \M \Vmfr(Q)\n/m dV(Q), and begin with

àfr(Q)=~2lH\

d W irJoë
&apos;.fi)
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(« -2) d(P,

d(P,Q) ~2

d(P,Q)

d(P,Q) ~2

where d/ôp dénotes the dérivative in the radial direction from P and we used the

fact that log v/jgj is C00 and bounded in our bail around P. At this point it is not
difficult to see by induction that

Akf,{Q)=(n-2)

d(P, Q) Q) ~2k+l

and, by an itérative computation of Ak~ ld(P, Q)~2 and (ôjôp)(Ak~ ld(P, Q)~2) we

get

\VmfriQ)\ log ^j log log

(41)

where

c(m9 n)

m
2(&quot; - 2)/2 r\ - (n - m)(« - w + 2) •••(«- 2) for m even,

- 0/2
,1Z _ m ¦ 3) •••(«— 2) for m odd.
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Observe, now, that

if 0 &lt; t &lt;: £

if £ &lt; t &lt; 1 - £

if 1 - £ &lt; t &lt; 1

if 1 &lt; f.

Thus, with some computations, we find

443

&lt;*&gt;&apos; \-t

\VmfXQ)\nlm dV(Q)
m/n

J\-1 f | l
n) [ log- j jœM_ log- + Ce log- -f O( log

1 \ -m/n
-h c(m, h)co^ 1 + Ce)m/n log - -h O[ log -

Now we need to estimate the average of fr over M:

Vol

Vol

Since H{t) &lt; Ct (with C l*&apos;!*, for instance), we hâve

Vol o
*

r

Thus, the average of fr over M is O(log 1/r) and it is not large enough to
influence the final resuit. In particular on BP(r) we hâve
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We define our extremizing family of functions/i, as

frdV

Ir Jr\\n/m

The functions fr satisfy the hypothesis of Proposition 3.6, and if the exponential
inequality is to hold, the coefficient rj must satisfy the following condition

u&gt;n _ rn( 1 + O(r)) exp x,. jjw/(w _ ^ / &lt; c0 (42)
|| * J r \\n/m

where, as usual, c0 doesn&apos;t dépend on r. Inequality (42) and the above computation
of \\V&quot;fr\\n/mimp\y

n-&quot;ï) r(m p,\n/(n - m)

which, remembering the expression of c(m, n), says that tj &lt; À(m, n). Proposition 3.6

is completely proved.

4. Some further results and remarks

The techniques described in the previous sections are quite gênerai and can be

successfully adapted to other situations in which exponential integrability is in-
volved.

We start by examining the case of Weyl fractional intégration for periodic
functions. Following the présentation in Zygmund&apos;s classical work [30], Chapter
XII, let/be an integrable 2n periodic function. Suppose its intégral over the interval
(0, 2ri) is zéro so that the constant terni of its Fourier séries S[f] is zéro. This
condition guarantees that the intégral /, of / is a 2n periodic function itself and,

upon choosing the constant of intégration in such a way that \ln fx 0, we can

construct a periodic f2 such that/2=/i and so on.
In terms of Fourier séries, if S[/] I crt emx with co 0 then

Z (cn/in) einx and in gênerai, for k positive integer
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l~-ke-x. (43)

The formula (43) can be taken as a définition offk and extended to any positive
real value of k, provided that we define

y(*&gt; (in) k \n\ k
exp —- nik sign n 1

for n ï 0 and yff&gt; 0.

For every positive real number a and every integrable lu periodic function with
zéro intégral mean over (0, 2n) and Fourier séries le/&quot;1&apos;, we define the Weyl
fractional intégral of order a as that 2n periodic function /a whose Fourier séries is

It can be shown (see [30]) that/a can be obtained from/by convolution with a

periodic function W^t) whose Fourier séries is X y^ eint.

If we define the operator Ia by /a/=/a, it turns out that, for every positive a and

p,

and since /a for a positive integer is just an itération of ordinary intégrations, the

case 0 &lt; a &lt; 1 is the most interesting one to study.
We recall, again from Zygmund&apos;s Chapter XII, that

PROPOSITION 4.1. // 1 &lt; r &lt; s &lt; oo and a 1/r - l/s, then feLr implies

/a € U and

(f
27t

(44)

where s&apos; and r&apos; are the conjugale exponents of s and r respectively.

From this resuit, it is not difficult to deduce that if /e Z/, r &gt; 1, and \lnf= 0

then Ii/r/is integrable in every power. Moreover there are positive constants X and

A such that if 11/IL £ 1, then
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f exV[X\lXjrf(x)\r]dx&lt;A (45)

(see Zygmund [30], vol 2, page 142 and page 158). Our aim is to find the largest
constant À for which (45) is true.

The first step in this program is the following estimate of the kernel ¥^(0 (see

Zygmund [30], vol 1, pages 69-70).
PROPOSITION 4.2. With an error uniformly (9(1), the 2n periodic function

*Fa(.x) can be represented on the interval —n&lt;x&lt;nas

*-1 forQ&lt;x&lt;n

0 for —n&lt;x&lt;0.

This kernel is not exactly of the same type as the one we studied in the previous
sections, but it is close enough to allow us to modify suitably the argument and
obtain the resuit we are aiming for.

THEOREM 4.3. Iff is a 2n periodic function with zéro intégral mean on (0, 2ri)
and Jq71 |/(jc)|p dx &lt; \ (1 &lt;p &lt; oo) then, letting a \/p, Ixf satisfies the exponential
inequality

f exp \[ -^\ \lj{x)\^»-»\dx &lt;L A (46)

where A is a constant independent of f For no coefficient larger than

(r((x)/2n)]/{] ~a) can inequality (46) be true with any A independent off.

Proof Let

for x e — 7i, 7i), where B e L00. Extend AT to be a 2n periodic function. Define the

operator

¦iTJ{x)= j K(x-t)f(t)dt.

For integrable periodic functions / with §n_nfdx 0, Proposition 4.2 says that
(F(a)/27i)/a is an operator of the form Ta.
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Now, for every integrable 2n periodic/, by O&apos;Neil&apos;s lemma (in its simpler forai,
Lemma 1.5) we hâve

r(ra/)**(0 &lt; tf**(t)K**(t) + rp(s)K*(s) ds.

Choose a constant A &gt; 0 such that, on - rc, n)

Thus

and

ce cet

for 0 ^ t &lt; 2tt. Therefore, for 0 &lt; / &lt; 2n

(TJ)**(t) &lt;&gt; 2&quot;
&apos; R ^Y Xp^W +

- ¦ r r^^) (^j +«jrw ds. (47)r
We compare this estimate with (26) and recall that for n 1 the value of cow_ is

2. Then we see that the only important différence lies in the coefficient 2a ~l which

can be factored out of the right hand side of (47).

If we assume ||/||p &lt; 1 and carry through, step by step, the analysis done in

proving Theorem 1.9, we get an exponential inequality in which the coefficient 1/2

given by the one dimensional case of Theorem 1.9 is replaced by 1:

f
with A independent of/.

To show that 1 is the sharp coefficient consider the following family of 2n

periodic functions defined on — n, n) as
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with 0 &lt; r &lt; n.
Since Weyl fractional intégration is defined for functions with intégral mean

zéro, we consider

~ j
Observe that

Now, for 0 &lt; x &lt; r, r small, we see, after corne computations, that

In particular, for every e &gt; 0 there exists r, such that for r e (0, r(), T^

Now

&gt; 1 — c.

Thus, if

dx&lt;A

we must hâve

f 1 / / i\-«\i/o-«)&quot;|
expAlog-f 1-f Oflog-J J \&lt;A

which implies X &lt; 1. We hâve shown that 1 is the best coefficient for the exponential
integrability of Taf. Since the Weyl fractional intégral operator /a has the form
(27r/r(a))ra we see that (r(a)/27i)1/(1 ~a) is the sharp constant for it, and the
Theorem is proved.
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There is also a notion of fractional intégration for periodic functions in higher
dimension. The définition, given by Wainger in [28], is suggested by fractional
intégration in R&quot; (the classical Riesz potentials).

Following Wainger [28], let/be in L^T&quot;) where Tn is the w-dimensional torus,
that is [0, \]n with the usual topological identifications.

Let ck, k e Zn be the Fourier coefficients of/. Define Iaf 0 &lt; a &lt; n as the unique
function defined on T&quot; with Fourier coefficients dk given by do 0 (O zéro vector
of Zn) and by dk c*(27r|A:|)-a if O ïk {ku kn). \k\ (S kj)l/2.

Wainger proved the following resuit

THEOREM 4.4 (Wainger). For everyfe L\T)n, IJis well defined and is given
by

-L&gt;

where ga is periodic ofperiod 1 in ail its n variables and

where Ex(x) is bounded (actually C°°), and

&quot;¦&quot;»¦!

(n, a) r( n - a

Exponential integrability for /a/is an immédiate conséquence of Theorem 1.9.

We can therefore state the following:

PROPOSITION 4.5. There is a constant C%n such that if f e Ln/&lt;x(Tn) and

satisfies ||/||n/a &lt; 1 then

f exp {yM \IJ(x) \&quot;«&quot; ~a)} dx &lt; Can
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where the constant ya(«), given by

2

n — a

w sharp.

Observe that ya(n), for a an even integer smaller than n, is the same critical
exponent as in Theorem 1.7, as it should be, considering the meaning of fractional
intégration and the fact that the sharp exponential coefficient is the same in most
situations (in particular for compact manifolds).

To conclude, we indicate two open problems. Firstly, we observe that for
gênerai non compact manifolds only very partial results about exponential inte-

grability are known, see [14] and [15]. The argument in Section 3, shows that the
coefficient X cannot be larger than À(m, n), but we do not hâve yet complète results
for exponential integrability over domains on non compact manifolds analogous to
Moser and Adams&apos; theorems for domains in R&quot;.

The second problem concerns the possibility of higher dimensional extensions of
a récent resuit of A. Chang and C. Yang (see [12]).

THEOREM 4.6 (Chang and Yang). Suppose D is a piecewise C2, bounded,

finitely connectée, domain in the plane with a finite number of vertices. let 9D be the

minimum interior angle at the vertices of D. There exists a constant cD such that for
ail u e C\D) with

I \Vu\2dx &lt;: 1 \ udx 0

we hâve

L e2e°u2dx&lt;cD.

If we replace 29D with any positive /?, the intégral is still finite, but if /? &gt; 26D it
can be made arbitrarily large by appropriate choice of u.

Chang and Yang&apos;s proof of this theorem dépends on an isoperimetric inequality
and represents a différent approach to the problem of exponential integrability.
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The présence of the boundary of D seems to pose difficult problems to an

approach based on the techniques of the previous chapters. It might be possible,

however, to find (after some sort of symmetrization) a suitable and workable
représentation formula which could allow the extension of Chang and Yang&apos;s

theorem to R&quot; with n &gt; 2.

We should expect something like the following:
Let D be a domain in Rn with compact closure. Some regularity on ôD has to

be assumed. In particular, suppose that the limit

where the numerator dénotes the n — 1 surface measure of dBP(r)nD, exists for
every P e dD. 6(P) can also be defined for P e D in which case 6(P) =œn_l.
Assume 6(P) has a positive minimum 6D on D.

Then there must be a constant C such that for ail C1 functions / satisfying

j f(x) dx=0 and | |F/(jc)| dx &lt; 1

the following is true for a n0l^in~l)

exp [a\f(x)|&quot;/(&quot; ~l)]dx &lt;C. (48)

If a &gt; n6lp(n~ l\ no constant C can bound the intégral uniformly with respect to/.
It is easy to see why a cannot be larger than n9]^n~ l\
Let P e dD be a point for which 0(P) =0D. We can suppose P is the origin of

R&quot;. Consider, now, the functions fr such that:

fAQ) ¦ICI
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UQ) =/r(0 -
1

Vol(D) Vr

is given by

fr(Q)

|\-iconstant 1 - O[ log - I if 0 &lt; \Q\ &lt; r

&lt; 1

constant O[ log - if \Q\

and

otherwise.

Now, let Dr D r\{Q : r &lt; \Q\ &lt; 1}. Fix e small, in particular smaller than 0D/2,
and let r0 be so small that for r &lt; s &lt; r0

da-Or (49)

so that

f \Ffr(x)\»dx (log-)
&quot;

f -dads

log. f
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where, by (49), \E(s)\ &lt; s for r &lt;s &lt;r0. Therefore, for small r

~(n- \)/n

So if (48) îs true, for small r we must hâve

1 + O(log-J Illog-— exp^a

and therefore

Since e is arbitrary,

What happens îs that, since our functions need not be zéro outside /), only part
of the Lp norm of \Vf\ in a neighborhood of a boundary point P is controlled by
our hypothesis on/. The rest (the part outside D) contnbutes to the values of/
around P for free. Of course this circumstance cannot occur if we impose on / the
condition of being compactly supported in D. In this case, as we know, the best

integrabihty exponent is nœ^f l\ and this is consistent with the équation
0(P) =a&gt;n_{ which holds when P is an interior point of D.

This paper is part of the author&apos;s doctoral dissertation written under the
direction of Professor Albert Baernstein II at Washington University in St. Louis
(December 1991). I wish to thank Professor Albert Baernstein II for his advice,

encouragement and ail the mathematics he taught me. I also thank Professor D.
Adams for his kind interest in my work.
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