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Realization of simply-connected 4-manifolds with a given boundary

Steven Boyer*

Introduction

One of the mcest applications of Michael Freedman&apos;s work in 4-dimensional

topology îs his classification of closed, simply-connected, onented 4-manifolds in
terms of their intersection painngs and their Kirby-Siebenmann invariants (see

§10 1 of [FQ]) A similar classification for compact, simply-connected, onented
4-mamfolds with connected boundary was begun in [B2] The new features which
arose were the relationship between the intersection pairmg of the 4-mamfold and

(î) the torsion hnk pairmg of the bounding 3-mamfolds,
(n) the mduced spin structure on the bounding 3-manifold when the intersec¬

tion pairmg was even

The point of view in [B2] was to fix a closed, connected, onented 3-manifold M and

a symmetnc, bilmear, intégral pairmg if on a free abehan group E, and then to
consider the onented homeomorphism classes of 1-connected 4-manifolds with
boundary M and intersection pairmg isomorphic to if Invariants were constructed
which distingmshed thèse classes and ît was also shown that in many instances ail
the potential values of thèse invariants were reahzed by appropnate manifolds One

goal of this paper îs to show that ît îs always the case that thèse invariants assume
their full range of values In domg this we shall recast some of the work of [B2]
The main interest m thèse classification results îs the tools they provide for studymg
4-manifolds In particular they hâve been used to study the représentation of
2-dimensional homology classes by topologically locally-flat surfaces ([Bl], [SI],
[S2]) In the final two sections of this article we apply our constructions to prove
some existence and uniqueness results on such représentations We now descnbe

more fully the contents of this paper Précise définitions may be found in §1

* Partially supportée by NSERC grant A7819 and FCAR grant EQ3518
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Let M3 be a 3-mamfold as descnbed above and (E, &lt;£) a bihnear forai space

presenting H^(M) (Définition (1 3)) The group A(M) of homological isometnes of
M (Définition (1 4)) acts transitively and effectively on the left of the set of ail

présentations of H^(M) by (E, Jf) When (E, !£) îs an even painng, each présentation

P (E, 5£) -? H*(M) détermines a distinguished set of spin structures

Spin,, (M) c Spin (M), which îs an orbit of the natural action of l[(M) image
(H](M) -» H\M, Z/2)) on Spin (M) A markedprésentation P^ of H*(M) îs a pair
consisting of a présentation P (E, 5£) -»//„, (M) and a marking of P, being

(î) an élément of Z/2 when {E, &amp;) îs odd,
(n) an élément of SpinP (M) when {E, &amp;) îs even

In the odd case, the group A(M) x Z/2 acts transitively and effectively on the left
of the set of marked présentations In the even case, there îs an extension Â(M) of
I\M) by A(M) which so acts (Définition (1 8))

A topological reahzation of a given marked présentation of H^(M) îs a compact,
simply-connected, onented 4-mamfold V with boundary M such that

(î) there îs an isometry A (E, S£} -&gt;(/72(K), such that with respect to the

given présentations, d(A) \H^{M) (see §1),

(n) when (£, J^7) îs odd, the Kirby-Siebenmann invariant ks(V) equals the

marking of the présentation,
(ni) when (E, J£) îs even, the unique spin structure on M extending over V

equals the marking of the présentation

THEOREM A Each marked présentation of H*(M) by a painng (E, ££) is

reahzed topologically Any two reahzatwns are homeomorphic by a homeomorphism

extending the identity function on M

Let /V^(M) be the set of classes of compact, 1-connected, onented 4-mamfolds
with boundary M and intersection painng isomorphic to {E, &lt;£\ where two such

manifolds are considered équivalent if they are homeomorphic by a homeomorphism

restncting to \M Theorem A defines a function from the set of marked

présentations of //+(M) by (£, J£?) to V°^(M) Now each 4-mamfold V representing
a class in f °^(M) détermines such a marked présentation, and thus the function is

surjective Further, two marked présentations hâve the same image if and only if
they hâve the same markings and there is an isometry between the two présentations

whose boundary is \H^M) As thèse conditions are preserved under the action
of A(M) x Z/2 when ï£ is odd, and by Â(M) when &lt;£ is even, thèse actions will
descend to transitive actions on tT^(M) Hence we may identify i^0^{M) with the
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left cosets of some subgroup of A(M) x Z/2 in the odd case, and with the left cosets

of some subgroup of Â(M) in the even case. Explicitly, fix a 4-manifold Fo

representing an élément of ir%(M) and let P^ be a marked présentation realized by
Fo. In the odd case, the stabilizer of the class of F is AP(M), the homological
isometries of H*(M) induced by isometries of P (Définition (1.6)). In the even case,
the stabilizer of the class of Fis ÂPm(M), consisting of those pairs (a, ri) e Â(M) such

that a g Ap(M) and n fixes the marking. The resulting bijection between

and the cosets may be described by the function

&gt;A(M)/AP(M) (Définition (1.6))

and, when S£ is even, by the function

c\(M) : -r%(M)-+Â(M)IÂPAM) (after Lemma (1.10)).

THEOREM B.

(a) If(E9 S£) is odd, c°P x ks : i^%(M) -&gt; A(M)/&apos;AP(M) x Z/2 is a bijection;
(b) If(E, Se) is even, c°P^ : r*%(M) -+ Â(M)/ÂP(M) is a bijection.

If M is a Q-homology 3-sphere then Il(M) 0. In this case Â(M) A(M) and

=AP(M). We deduce:

COROLLARY C. If M is a Q-homology 3-sphere then

(a) coPxks: ^%{M) -&gt; A(M)/AP(M) x Z/2 w « 6i/^rw/i w/ze« (E, S£) is odd;

(b) c°P : r%(M) -+A(M)/AP(M) is a bijection when (E, S£) is even.

We remark that A{M)IAP{M)^A\M)\AP{M) where A\M) is the group of
link-pairing preserving isomorphisms of TX(M) and AP(M) is the subgroup of
A&apos;(M) obtained by restricting the éléments of AP(M) to TX(M) (see Theorem (1.7)).
Similarly Â(M)/ÂP^(M) is determined as a quotient Ât(M)/ÂtP^(M) of a fini te

group v4&apos;(M).

If/ is an orientation preserving homeomorphism of M and F represents a class

in i^%(M), then the 4-manifold Vf M x I u(jc 0) =/(x) F does also. This détermines

a left action of Jf+ (M), the group of orientation preserving homeomorphisms of
M, on ir%(M). Now F&apos; is in the class of Vf if and only if there is a homeomorphism

F : V&apos;^V restricting to / on M. Thus, the orbits of this action correspond
to %(M\ which dénotes the orientation preserving homeomorphism classes of
compact, 1-connected, oriented 4-manifolds with boundary M and intersection

pairing isomorphic to (E, S£). Now under the identifications of Theorem B, the
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action of / on V^{M) corresponds to the action of /* &apos;

x l2/2 on A(M)j
AP(M) x Z/2 in the odd case, and to/* l x/V on Â(M)/ÂP^(M) in the even case

(hère,/#
&apos;

Spin (M) -&gt; Spin (M) îs the natural function induced by/ Thus if we
set

(i) H+(M) {ft\feJr+(M)} and BP(M) H+(M)\A(M)/AP(M),
(11) H+(M) {(/,C,/#)|/Gjr+(M)} and ^(M) H+ (M)\Â(M)/ÂPm(M),

and let cP and d&gt;+ dénote the réductions of c°P and c^ we obtain

THEOREM D
(a) // (E, &amp;) is odd, cP x ks VAM) -&gt; BP(M) x Z/2 w a bijection,
(b) //(£, JSf) m even, c^ ^AM) -&gt; BP^(M) is a bijectwn

COROLLARY E If M is a Q-homology 3-sphere

(a) tÇ(M) ^ 5p(M) x Z/2 when (E, &amp;) is odd,

(b) %{M) ^(^) wA^/i (£, if) z^ ^e« D

In the final two sections of the paper we apply the work above to prove certain
existence and uniqueness theorems for représentations of primitive homology
classes in 1-connected, onented 4-manifolds by closed surfaces More precisely, let
W be such a 4-mamfold and £oe H2(M) a primitive homology class Define

g Z/2 to be the quantity

\ks{W) -h |[signature (W)-Ço ^0] if Ço is charactenstic,

(0 otherwise

We say that an onented surface F ^ W gives a simple représentation of ^0 if F is

locally-flat in W with 1-connected complément and the fundamental class of F
represents £0

THEOREM F If O(Ç0) 0, then for each g &gt; 0 there is a surface of genus g in
W giving a simple représentation ofÇ0 Further, such a surface is unique up to ambient

iso topy in W

If 0(1;0) 1, then the same resuit holds for each g ^ 1

When 0(£o) 0, the existence part of Theorem F is due to Lee and Wilczynski
They also prove some uniqueness results when g 0 Their method is to apply
4-dimensional surgery theory and is completely différent from those we use hère
See [LW] for more détails
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The necessity of the condition 0(ÇO) 0 (mod 2) for the reahzation of £0 by a

locally flat 2-sphere ongmates m the work of Kervaire and Milnor [KM] For

nonpnmitive classes, other necessary conditions anse out of the G-signature theo-

rem (see [Tr], [R] and [HS]) Lee and Wilczynski [LW] hâve shown that in quite
gênerai circumstances, thèse conditions are also sufficient to represent a homology
class by a locally flat 2-sphere

The umqueness statements in Theorem F may be elaborated on Let F be

a surface of genus g &gt; 0 and let Jg dénote the collection of ambient isotopy
classes of embeddings in W of F which give simple représentations of £0 Next
set r £0 £0 and let D(F, r) be the 2-disc bundle of euler class r over F Let
3g dénote the collection of flat embeddings of D(F, r) in W which, when restncted

to F, give simple représentations of £0 Finally let E {£, e H2(W) \^ £0 0}
and dénote by 5£ the restriction of the intersection painng on H2(W)
to E

THEOREM G
(a) If &lt;£ is odd, both Jg and Jg are single tons,
(b) If&lt;£ is even but Ço is not charactenstic (i e W is spin), then Jg is a single ton

but Jg has 22g éléments,

(c) If &lt;£ is even and Ço is charactenstic, then both Jg and Jg hâve

[2g-\-( — \)0(io)2g l] éléments, where [] is the greatest integer less than or
equal to function

The paper is organized as follows Section 1 contains définitions and conventions

Section 2 contains the proof of Theorem A Section 3 contains the proof of
the existence part of Theorem F and finally in Section 4 we complète the proof of
Theorem F and prove Theorem G

The author gratefully acknowledges useful conversations with Ian Hambleton

concerning the matenal in §3 and §4

§1. Notations and Terminology

We shall assume throughout this article that ail manifolds are compact and

onented Further ail homeomorphisms will be assumed to préserve orientations
Boundanes of manifolds will hâve the orientation corresponding to the boundary
of the fundamental class of the manifold they bound As in the introduction, M
will dénote a closed, connected 3-manifold and TX{M) the torsion subgroup of
HX{M) The free part of HX{M) is the quotient F,(M) //1(M)/J1(M)
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If C, and C2 are disjoint 1-cycles in M representing classes [Cx] and [C2] in
T{{M\ there is a rational value linking number &lt;fQ(C{, C2) e Q ([ST], §77). The
torsion pairing

/ xr,(Af)-&gt;Q/Z

is just the (mod Z) réduction *fo:

^o/z([C,], [C2]) s /o(Cl5 C2) (mod Z).

We shall assume that ail links L in M are tame. T(L) will dénote a closed

tubular neighbourhood of L. Given a knot A^ in M, let /x be its meridian. More
precisely, let Z) be a small 2-disc fibre of T(K) oriented so that it intersects K
positively. Then jâ will be the boundary of D.

When M is a Q-homology 3-sphere there is a canonical isomorphism
SQ(K, : HX(M\K; Q) -&gt;Q determined by the requirement that [/*] h-* 1.

(1.1) DEFINITION. The longitude of a knot K in a Q-homology 3-sphere M
is the unique class l e Hx{dT(K)\ Q) satisfying (i) \i • A 1 in H{(ôT(K); Q), and

(ii) the image of X in H}(M\K; Q) is zéro.

Note that the first condition is équivalent to À being rationally homologous to
K in T(K) while the second is équivalent to &lt;fQ(K, X) 0.

It is shown in [BL2] that when M is a Q-homology 3-sphere, a class

pix H- qk e H{(dT(K);Q) is represented by an essential simple closed curve on
ÔT{K) if and only if q e Z and there is a c e Z coprime with q such that

p c — q^Q/z(K, K) (mod Z). Oriented Dehn surgeries along K are classified by
such pairs (/?, q) (see §1 of [BL2]).

1.2) DEFINITION. An intégral framing of a knot K in a 3-manifold M is one
for which the framing curve is isotopic to ± K in r(A^). An integrally framed link L

in M is a framed link for which each framing curve is intégral.

Dénote by #(!!_) the manifold obtained by performing the surgery prescribed by
L #((L) has the orientation extending that of M\f(L).

Note that when M is a Q-homology 3-sphere, we may express an integrally
framed link IL as L K\p^e^w • • u#&lt;*&apos;&quot;e»&gt; where e, e {± 1} and/&gt;, e/Q/x(Kn Kt)
(mod Z) for each / e {1, 2,...,«}. In this case set
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and define the framing matrix of IL as

&apos;Pi

Pi

e/v

It is shown in [BL2] that

e/v

Pn

A bilinear form space is a pair (E, ££) where E is a finitely generated free abelian

group and if : E x E -* Z is a symmetric bilinear pairing. For instance if F is a

1-connected 4-manifold, the intersection pairing (H2(V), •) is such a pairing.
A form (E, S£) is called even if «£?(£, ^) 0 (mod 2) for each ^ e £ and is called

odd otherwise.

An isometry of (E, &lt;£) is an isomorphism of E which préserves J£f.

Dénote by £* the Z-dual of E : E* Hom (JE, Z).

(1.3) DEFINITION. A présentation of H+(M) by a bilinear form space (E, &amp;)

is an exact séquence

h ad{Sf)
H2(M) &gt; E E*0

such that
(0 if

(ii) if p g H2(M) and rj e E* then

&gt;Hl{M)

m,t], (/&apos; 1, 2) where then

rj(h(P)).

For instance if M is the boundary of a 4-manifold F then it is well known that
(H2(V), •) détermines a présentation Pv of H^(M) (see §3 of [GL]).

(1.4) DEFINITION. A homological isometry between two closed 3-manifolds
M and M&apos; is a pair of isomorphisms a=(a,,a2) where al : //,(M) -? Hl{M&apos;)

(i 1, 2) which satisfy

(i) if o,,d26 T,(M) then /q/z^i^i)^,^)) =&lt;mq/zOi,u2);

(ii) if v e HX(M) and p e H2(M) then a,(u) • a2(/J) f • j8.

When M M&apos; we call a an automorphism. A(M) will dénote the group of ail such

automorphisms.
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Let P be a présentation of //^(M), as in Définition (1.3), and let a e A(M). We

can define a new présentation of H^(M), a(P), by replacing d by &lt;xx o 3 and /* by
h ° aï1 - It is an easy exercise to verify that this defines a transitive, effective, left
action of A{M) on the set of présentations of H^(M) by a bilinear form space

(1.5) LEMMA. //*(£, i?) w an oddform presenting H^(M), then the action of
A(M) x Z/2 o« ^/ze 5e/ of marked présentations of H^(M) given by

(a, m) • (P, n) (a(P), m -h w),

w /?o//z transitive and effective.

Any orientation preserving homeomorphism / of M, induces an élément

/^e^M) and we let H+(M) be the subgroup of A(M) consisting of ail such

automorphisms.
An isometry between présentations {E, ££) of H^{M) and (£&apos;, if&apos;) of H+(M&apos;) is

a commutative diagram

h ad(Sf) d

E £* &gt; HX(M) &gt;0

* la,

* &gt;HX(M) &gt;0

where A is an isometry of the pairings. Note that A détermines completely the

isometry and so in particular we shall write (somewhat ambiguously)
(al5 a2) d(A). As A is an isometry it follows that d(A) is a homological isometry
between M and Mf.

0 —

0 —

-&gt; H2(M)

-i
-&gt; H2(M&apos;)

^-&gt;

E
i

E&apos;

(1.6) DEFINITION. Given a présentation P : (£, 5£)-^H^{M\ let /4P(M) be

the subgroup of A(M) defined by

AP(M) {d(A)\ A is an isometry of P}

The function c% : t&quot;%(M) -+A(M)/AP(M) given by c% ô(A)AP(M), where
yl : P -» PK is an isometry, is easily seen to be well-defined.

Define

BP(M) H+ (M)\A(M)/AP(M).
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It was shown in [B2] that the quotients A(M)/AP(M) and BP(M) dépend only
on torsion information To descnbe this let

(1) A((M) be the set of /Q/z-preserving îsomorphisms of TX{M),
(n) A&apos;p(M) be the subgroup of A&apos;(M) consisting of those ^Q/z-preserving

îsomorphisms induced from isometries of (E, J^),
(m) Hl+(M) {f* r1(M)-^r1(M)|/GJf+(M)},
(iv) BP(M) H&apos;+(M)\A%M)/AP(M)

Note that FX{M) and HX{M) are dually paired by the intersection painng and
thus the restriction homomorphism A(M) -? A \M) îs surjective Evidently this

homomorphism takes AP(M) onto AP(M) and //+ (M) onto H&apos;+ (M) The follow-
îng theorem îs a combination of results from §1 of [B2] For a e A(M) let
a&apos; g A\M) be îts restriction

(1 7) THEOREM An automorphism a lies in AP(M) if and only if a&apos; lies in

AP{M) As a conséquence, the restriction induces hijectwns

A(M)/AP(M)-^At(M)/AtP(M) and BP{M)-+BP(M)

To deal with the case where (E, &lt;£) îs even, we need to ennch A(M) For a

spm structure g on M, let qa Tx (M) -? Q/Z be the associated quadratic enhance-

ment of tfQ/z (see [T] for instance) If P îs a présentation of //^(M), as in
Définition 1 3), by an even painng (E, &lt;£), then P détermines a quadratic en-
hancement qP of &lt;fQ/z forÇeE such that ad(^){Ç) mr\ where m ^ 0, then the
réduction of — l/2m2)^f(&lt;^, Ç) (mod Z) defines qP(drj) The set SpinF(M) of
spin structures a on M with qa qP îs precisely an l](M)-orbit where I\M)
image (H\M)-&gt;H\M, Z/2)) ç= Hl(M, Z/2) If M îs the boundary of a compact,
1-connected, spin 4-mamfold F, and Pv îs the présentation of H^{M) from the

homology séquence of (F, M), the spin structure on V restricts to an élément ov
of Spin,, (M)

Let a g A{M) and suppose that rc îs a permutation of Spin (M) We shall say
that n îs oc-adapted if

(î) 7c(af(jc) a) jc 7i(&lt;7) for each x e H\M, Z/2) and a e Spin (M),
(n) qn{c){oLx{z)) ^(z) for each z g T,(M) and &lt;r g Spin (M)

(1 8) DEFINITION Let Â(M) be the set of ail pairs (a, n) where a e

and n îs a-adapted
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Note that Â(M) îs a group under coordinate-wise composition It îs shown in [B2]
(Lemma (3 3)) that there îs an exact séquence

1 I\M) &gt; Â(M) -^-&gt; A(M) 1 (19)

where p îs the natural projection Il(M) includes in Â(M) owing to the fact that a

permutation adapted to the îdentity îs just the translation in Spin (M) by an élément

of I\M) (see §3 of [B2])
It îs relatively straightforward to venfy that the formula (a, n) (P, a)

(a(P), n(a)) defines a left action of Â(M) on the set ofmarked présentations of H* (M)
by an even form (E, 5£) Indeed we hâve the following,

(1 10) LEMMA The action (a, ri) (P, a) (a(P), n(a)) defines an effective, and

transitive action ofÂ(M) on the set ofmarkedprésentations ofH*(M) by an even form
(E, 5£) a

Suppose that P* îs a marked présentation of //*(M) by an even form (£&quot;, jSf),

say a e SpinF (M) îs the marking For each isometry A of P, let nA be the d(A) -adapted

permutation of Spin (M) determined by nA{a) a There îs a subgroup of Â{M)

{(d(A), nA) | A îs an isometry of P}

The function c\ r°AM)-&gt; Â{M)IÂP^{M) given by c°Pjy) (d(A), nA), where
A P -&gt; P îs an isometry, îs easily seen to be well-defîned Further, each/e H+ (M)
détermines an/*-adapted permutation/# of Spm (M) Thus there îs another natural
subgroup of Â(M)

Define

ÊPJiM) H+ (M)\Â{M)IÂP^M)

We remark that as in Theorem (1 6), the quotients Â(M)/ÂPm(M) and BP(M) are

determined by torsion information The reader îs directed to [B2] for the détails

§2. Realization of simply-connected 4-manifolds

In this section we shall prove Theorem A We shall divide the proof of existence

into two cases according to whether HX{M) îs finite or not
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Case 1 (HX(M; Q) s 0). Let P : (£, g&gt;)-+H*(M) be a présentation, say

0 E &gt; E* //, (M) 0.

As ad(£e)(E) has finite index in £*, the pairing
extends uniquely to a symmetric rational valued pairing if* on 2s*. Explicitly, if
rii,rj2e E* and m{,m2&gt;0 are chosen so that m^, ,m2r\2e ad(^)(E), then we set

(ii,/2)
mxm2

Note that the following identities hold:

V{ g £ and i/ g £?. (2.1)

*Q,z(dril9dri2) -&amp;*(ril9ri2) (mod Z) Vij,,q2e£*. (2.2)

Fix a basis £l5 ...,{„ for £ and let fyl5 */„ be the dual basis for 2s*: rjt(^j) ^/7.

(2.3) LEMMA. The matrix of &lt;£* with respect to the basis rju ,rjn of E* is

the inverse of the matrix of ££ with respect to the basis £,,...,&lt;!;„.

Proof. First note that the matrix of ad(^) with respect to the given bases is

Extend &lt;£ to E(g)Q in the obvious way. Then we may consider ad{5£) as an

isomorphism ad(&amp;) \E®Q^&gt; (E*) ® Q. Note that identity (2.1) continues to hold.
Let (ay)n x n be the n x n rational matrix which is inverse to the matrix of S£ with
respect to the given basis. Then

^(rinij) =rjl(ad(J?)-\r1j)) by (2.1).

air n

Let L Kx u • • • u Kn be an oriented link in M such that [K, ], the class of Kt in

7/,(M), equals drjt. According to identity (2.2) we hâve for / ^j
-&lt;?*(rjn rij) tQIZ([Ktl [K,]) (mod Z)

&lt;?Q(KnKf) (modZ).
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Now passing a strand of K, across a strand of K3 alters tQ(Kl9 Kj) by ±1. Hence

after a finite number of such isotopies we may suppose that L was chosen to satisfy

Next we détermine preferred intégral framings for the components of L. To do
this we observe that

-^*(1p1,)^q/z(KH«;]) (modZ)

and thus the class

represents a parallel to Kt (see §1). It therefore détermines an intégral framing of Kn
1 &lt; i &lt; n. Let IL be the associated framed link. By construction, the framing matrix
of L is given by

Hence

l * ±1U I

\H{(M)\
-&apos; L| -|^(Éf,{,)| \HX{M)\&apos;

It follows that %(l) is a Z-homology 3-sphere. Define a compact 4-manifold F,

V M x /u[//S2)u---u//i2)] ux(L) ^
where //î2) is a 2-handle attached to M x {0} according to the framing on Kt and

W is the contractible 4-manifold with boundary #(IL) (see [F]). Turning the handles

upside-down we see that V is just W with n 2-handles attached. Hence V ^ \J^, 512

and so in particular nx{V) ^ 1 and #2(*0 ^w-

Next we describe a natural isometry /l : (£&quot;, «^) -&gt;(//2(F), Consider the basis

{rj\, y\&apos;2, ?/^} of H2(V, M) where ry^ is represented by a core of the ith 2-handle
H\2) in V. Define an isomorphism A* : H2(V, M) ~*E* by setting A*{r]fl) rjn
\ &lt; i &lt; n. Finally let A : E-+H2{V) be the isomorphism dual to A *
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(2.4) LEMMA. A : (E, &lt;£) -»(//2(K), •) is an isometry.

Proof. We describe more precisely the isomorphism A.
Let IL&apos; be the framed link in %(L) inverse to L The /th component of L&apos;, K\ say,

is the boundary of the cocore of //J2) and is oriented so that its meridian repre-
sents the class -iffa,, */,)/*, H- K e H^dTiKJ; Q) Hx{dT{Kft)\ Q). Dénote by
{Ç&apos;t, Ç&apos;2, £&apos;n} the basis of H2(V) where £,&apos; is represented by a cycle consisting
of a Seifert surface in /(IL) for ^ and a cocore of i/{2). Evidently this basis is

dual to {rj\, rj2, tj&apos;n} and hence A(Çt) £&gt;[, \ &lt;i &lt;n. Now it is well known
that for i^j,Ç&apos;t • Çj =tQ(K&apos;l9K&apos;j). On the other hand, Lemma (1.5) of [BL2]
shows fo(K\,Kj) -(£f %, and thus by Lemma (2.3), ^ • &lt;*; =if(^,^) for
/ #/ Finally &lt;^f&apos; • ^&apos; is determined by the framing on K\, and one may use the

results of §1 of [BL2] to deduce &lt;*; • f ; if(^, ^) for 1 &lt; i &lt; n. Hence yl is an

isometry.

Now it is clear from the construction that with respect to the présentations P
and Py,d(A) \H (M). Thus to complète the existence part of Theorem A, it
suffices to show how to vary the ks -invariant of V when if is odd and how to
realize an arbitrary a e SpinP (M) when S£ is even. But in the latter case, the

hypothesis H}(M; Q) — 0 implies Il(M) =0. Hence there is a unique marking in
SpinP (M) and this must equal the restriction of the spin structure on V. Thus this

case holds.

Suppose now that S£ is odd. Refer back to the définition of V. It is clear that
ks(V) ks{W) l/8|i(x(L)) (mod 2). It will therefore suffice to show how to alter
IL giving L&apos; say, so that h{%{1!)) ^ /i(/(L)). To that end we use the assumption that

if is odd to choose an index / g {1, 2,...,«} for which if(£M £,) 1 (mod 2). To

simplify the notation below, we assume that i =\. Consider the three auxiliary
framed links described as follows,

(1) Lo K2P2^ l)vK(3P3&gt; °u • • -u^- 1} where pt -5£*(i/f, rç,).

(2) l&apos; K\{Pl&apos; 1}uL0 where K\ differs from Kx only through the addition of a

small trefoil:
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(3) L&quot; Ko ui where Ko is positioned as indicated below

Now by blowing down K(Ql l) it is clear x(l&apos;) x(L&quot;) *(*o !)uL)
where C is the knot in /(IL) corresponding to the image of Ko Hence

+ 8«r/(C) (mod 16)

The proof will be finished when we show arf(C) 1 (mod 2) Now arf(C) is

congruent (mod 2) to the coefficient of z2 in the Conway polynormal of C (see

[Ka]) This latter quantity was calculated in Lemma 1 4) of [BL1] in the case where

M is a Z-homology 3-sphere Switching to rational homology in that calculation,
we see that the same argument works for M a Q-homology 3-sphere The resuit is

that

(mod 2)

where

0

0

0

Hence |JB?| \BLq\ ±|//,(z(lL0))|/|//,(M)| We hâve already noted that \BL\

± l/|^!(Af)| and thus ar/(C) ^(xC-o))! (m^d 2) In the proof of Lemma (2 4),

we proved that the frammg curve for K\ was the (^(£1, £1), 1) curve Thus
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Then arf(C) L(ÇU &lt;!;,) 1 (mod 2) and this part of the proof of Theorem A is

complète.

Case 2 (M arbitrary). Let L KxvK2u • • • uKm be an oriented link in M for
which the classes [AT,], [K2], [Km] form a basis of F,(M) HX(M)/TX(M). As

FX(M) is dual to H2{M) via the intersection pairing, there are classes

Pup29...,Pme H2(M) satisfying [Kt] • P3 ôtJ. It is well-known that each jSy may
be represented by a flat surface Sj in M transverse to L. Hence, after tubing away
pairs of oppositely signed intersection points between Kt and SJ9 we may assume
that Kx is transverse to S7 and further that

3 {xt i=J

for 1 &lt; i,j &lt; m. Removing a small dise neighbourhood of xt in St shows that the

meridian of Kn fi, say, is null-homologous in Mo, the exterior of L.

(2.5) LEMMA. An intégral surgery along L produces a Q-homology 3-sphere

Mx as long as none of the surgeries is trivial, that is, none of the framing curves are
meridians. Further HX(MX) is naturally identified with TX(M).

Proof Consider the homology séquence of the pair (M, Mo),

• • • &gt; H2(M, Mo) -^ HX(MO) &gt; HX(M) &gt; HX(M, Mo)

The excision theorem implies that HX(M,MO) =0 and that the image of ô is

generated by the meridians of L. We hâve shown thèse curves to be null in H, (Mo)
and therefore the homomorphism HX(MO) -+HX(M) is an isomorphism. This means
that any collection of parallels to the components of L gênera te FX(MO) while
TX(MO) TX(M). It follows that any non trivial intégral surgery of M along L
results in a 3-manifold Àf, with HX(MX) TX(MO) TX(M).

Let K(J?) ker (ad{^)). The présentation P détermines a naturally defined non
singular bilinear form space (E/K(&amp;), &lt;£*) and présentation Pl
H*(MX) (see §1 of [B2]). (£, &lt;£) splits as an orthogonal sum

(K(J£), 0). Dénote by T the trace of an intégral surgery as described in Lemma

(2.5). Form a 4-manifold V — T uMl Vx where Vx is one of the spaces constructed
in Case (1) which realizes Pl and has boundary Mx. The calculations in the proof
of Lemma (2.5) show that the inclusion Mx-+T induces an isomorphism
HX{MX) -*HX(T). Hence, referring to the Mayer-Vietoris séquence stemming from
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the union V=TuMl Vx, we may conclude that H2(V) £ H2(T) ®H2(VX). The
intersection pairing on F also follows this splitting and thus there is a canonical
isomorphism

(H2(V\ •) * (H2(T\ -)®(E/K(&lt;?\ &lt;e*\

Now examination of the constructions of T and F, reveals that F may be

expressed as the union of M x / with n 2-handles and a contractible manifold.
Hence H2(V) ^ Zw. On the other hand, H2(M) ^ FX(M) and so the intersection
form an H2(V) has a summand of the form (Zm, 0). As (E/K^X^&quot;) is non-
singular, we conclude (H2(T), •) ^ (Zm, 0). Clearly then (//2(F), •) ^ (£, JSf). Fur-
ther, we can produce an isometry A :E-*H2(V) with ô(A) \H^{M), just as in
Case 1.

Suppose now that if is odd. By varying the ks-invariant of Vu we vary
the ks -invariant of F. This proves the existence part of Theorem A when &lt;£ is

odd.
Assume now that ï£ is even. We must show how to vary the spin structure on

F over the éléments of Spin^ (M). To that end flx a nontrivial intégral framing J%

on L as described in Lemma (2.5). Let Mx be the associated Q-homology 3-sphere
and let To dénote the trace of this surgery. Let F, be chosen as before. For each

b e {0, \}m, let SFb be a nontrivial intégral framing of L which agrées with J^ on
Kt when bt 0 and differs from it by a meridinal twist otherwise. For each b let
Th dénote the trace of the surgery prescribed by 3Fb. Deflne Vb Tb kjM{Vu
b e {0, 1 }m, and note that if ab dénotes the unique élément of Spin (M) extending
over Vh, then thèse spin structures are distinct. Indeed if b&apos; ^ bn then 3Fb and 3Fb

differ by meridinal twist along Kt and thus ob, which extends over the /th 2-handle
of Tb9 does not extend over the /th 2-handle Tb-, Alternatively, we may argue
that as the components of L represent a basis for FX(M), then {ob \ b e {0, l}m}
is the orbit Il(M) • a0. Clearly then, each marking of the présentation P is

realized. This complètes the proof of the existence part of Theorem A when S£ is

even.

Proof of uniqueness in Theorem A. Given two manifolds F, and V2 realizing a

marked présentation of //^(M), there is a morphism (1M, A) : Vx -&gt; F2 (see [B2]).
If if is odd, this may be replaced by a morphism (1M, A&apos;) : F, -» F2 with
0(1^,^4&apos;) =0 (Proposition (0.8) (ii) of [B2]). As M^i)=M^2&gt;5 this implies
there is a homeomorphism F : Fj -&gt; F2 extending 1M (see Theorem (0.7) of [B2]).
If if is even, the spin structure on M from Vx equals that from F2 and thus

9{\M,A)~Q (Proposition (4.1) (v) of [B2]). As before, this suffices to prove
uniqueness.
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§3. Realization of homology classes

We prove the existence part of Theorem F m this section Throughout, W will
dénote a closed, 1-connectée 4-manifold, ÇoeH2(lV) a primitive class and

v g H2( W) a class satisfying v Ço 1

Let E {ÇeH2(W)\Ç £0 0} and define &lt;£ to be the restriction of the

intersection painng to E Set r £0 £0

(3 1) LEMMA {E, if) présents H^{—L(r, 1)) in a canonical fashwn

Proof Now v defines an élément of E* in an obvious way vE(Ç) v Ç We
shall show that

(î) coker (ad\^)) =Z/r gênerated by uE,

(n) if r &gt; 0, JS?*(u£, d£) - 1/r (mod Z)
Assuming thèse two claims hâve been demonstrated, we may readily define the

desired présentation

h ad(^) d

0 &gt;//2(-L(r, 1)) &gt;E &gt;£* &gt; H{(-L(r, 1)) &gt;0

as follows Let D(S2, r) be the 2-disk bundle over S2 with euler number r It îs

well-known that dD(S2, r) L(r, 1) thus giving L(r, 1) the structure of an S ^bundle

over S2 and further, that any two such fibnngs of L(r, 1) are isotopic Thus we may
define a natural îsomorphism coker (ad(J£)) ^Hx(— L(r, 1)) by sending the class

of vE m coker(ad(^)) to the négative of the class in Hx(—L(r, 1)) carned by a

circle fibre Note that this isomorphism îs mdependent of the choice of v Let
d £*-?//,(— L(r, 1)) be the composition

£* &gt; E*lad(&amp;)(E) -^ Hx( -L(r, 1))

Now we define h H2(-L(r, 1)) -&gt;E When r # 0, H2(-L(r, 1)) 0 and so we
take h 0 When r 0 we note that ioe E and we define h(P) £0 where
jS e H2( — L(0, 1)) ^ Z îs the generator satisfying /? 5(t&gt;E) 1 It îs an easy exercise

to venfy that thèse définitions détermine a présentation of H^(—L(r, 1))

Now we justify the two claims First we show that vE générâtes coker (ad(&amp;))

To that end let p e E* As E îs a summand of H2(W), p extends to an élément of
H2(W)* By duahty we can find a class y e H2(W) such that y Ç p(Ç) for each

£ e E But then since y - (y Ç0)v îs an élément of E, we see

P=(7 U)»E +
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Hence coker (ad{S^)) is generated by vE To see that vE has order r m
coker (ad(^)), first observe that for each Ç e E, (ru) Ç ad(&amp;)(rv - Ç0)(Ç) Hence

rvf e ad(J?)(E) On the other hand, if 0 &lt; m &lt; \r\ and mvE ad(&amp;)(Ç) for some
Ç e E then m (mu) (£0 — rv) ^ (£0 — ru) 0 (mod r), a contradiction Hence

vL has order precisely \r\ m coker (ad(&lt;£))

Finally suppose r ^ 0 We hâve just observed that ru£ ad(J?)(rv — £0) Hence

(r2u u - 2r + r)
r

— (mod Z)

This complètes the proof of Lemma (3 1)

If To îs an unknotted torus in S4, say a torus coming from a Heegard sphtting
of S3 ç S4, and if F îs a surface in PF with 1-connected complément which

represents f0 g /J2(**0, then F#roçH/#5r4=PF also has a 1-connected complément

and represents £0 Hence, for the existence part of Theorem F, ît suffices to do
the case g 0 when &amp;(Ç0) 0 (mod 2), and the case g 1 when &amp;(Ç0) 1 (mod 2)

Existence when $£ is an odd painng Mark the présentation of //3|e(—L(r, 1))

with ks(W) g Z/2 According to Theorem A, this marked présentation is reahzed by

a compact, 1-connected 4-mamfold V Deflne a closed 1-connected 4-mamfold W
by W F ufD(S2, r) where the gluing homeomorphism / 3K~&gt;D(52, r) is just
the îdentity of L(r, 1) when r ^0 When r 0, / will be either the îdentity or the

homeomorphism which fixes the Sl-fibre and acts as the îdentity on H^(L(0, 1)),

but which switches the two spin structures on L(0, 1) We shall specify which below
Our goal now is to show that W is homeomorphic to W by a homeomorphism

sending the class Ç&apos;o, carned by the base S2 c D(S2, r) £ W\ to £0 This will
complète the proof of existence when ï£ is odd Now ks(W) /c.y(F) ks{W) and

so according to Theorem (1 5) of [F] and îts addendum, ît suffices to produce an

isometry r (H2(W), )^{H2(W% such that r«0) ^o

As V reahzes the given présentation, there is an isometry A P -*PV such that
d(A) 1# (— L(r9 1)) Continuing with the notation from Lemma (3 1), let

n (A*) *](vE) eH2(V,dV) Then drj dvE e Hx(-L(r, 1)) is, by construction,
represented by a negatively onented Sl -fibre Hence there is a 2-chain in V

representing n whose boundary is this Sl-fibre Define v&apos; eH2(W) as the class
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obtained from the sum of this 2-chain with an appropnate Z)2-fibre in D(S2,r)
In the case that r 0 we must take more care First we choose the gluing map /
in the définition of W so that v&apos; v&apos; v v (mod 2) Next we replace v&apos; by
t/ + 2-(u v — t/ v&apos;)Ç0 so that now v&apos; v&apos; v v Thèse choices will be assumed

below Note that m any event u&apos; Ço 1

Now ît îs not hard to see that the inclusions induce isomorphisms
il/ E®Zv-+H2(W) and \\if H2(V)@J.v&apos;-&gt;H2(W&apos;) Further there îs an obvious
isomorphism 0 E@Zv -+H2(V) ©Zt/ which restricts to A on E and sends v to
u&apos; Setr ij/&apos; 0 \jj l H2{W)-*H2{W) ClearlyF(£,) r(^2)=^, ^2 for each

£1, £2 e 2s We also hâve that when Ç € E,

r(v)

rj A{Ç) by construction

A*(ti) S

vÇ by définition of rj

It follows that

r{K) m=K Ç (32)

for each k e H2(W) and each Ç e E We will be finished when we indicate why
u&apos; v&apos; v v (implying F îs an isometry) and why r(£0) Ç&apos;o To prove the latter,
weuse(3 2) to deduce that if Ç&apos;e H2(V), r(ÇQ) £&apos;= £o r 1(^/) But T l(Ç&apos;) e E
and thus r(Ç0) Ç&apos; 0 for each Ç&apos; e H2(V) It can be shown that a class in H2{W)
which kills H2{V), r(Ç0) for instance, must be a multiple of ^ We also know
that £0, and thus F(&lt;!;0), îs primitive Hence r(£0) ±^0 To show the sign îs

+ 1 we consider, first of ail, the case r 0 Then £0 g E and so by (3 2),
1/ r(Ç0) F(v) r(Ç0)=v £0=1 But v&apos; Ç&apos;o=\ by construction and there-
fore r(^o)=^o If r^O, recall Ç0-rveE Then r(£0 - rv) e H2(V) implies
0 ^0 A^o ~ rv) ?o n^o) — r Hence ^0 F(^o) r and again we must hâve

We may now complète the case where if îs odd by explaming why 1/ o&apos;

v v When r 0 this was by construction Assume then that r / 0 Now
Hx{ — L(r, 1)) ^ Z/r and thus it can be shown ru £0 + ^ for some ^ e £ Then

Hence

io ^o + ^ 5=r2i&gt; v,

and we obtain the desired îdentity
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Remark With a httle more work, one can arrange for the gluing map to be the

îdentity in the r — 0 case For if t&gt;&apos; vf ^v u (mod 2), we use Proposition (0 8) (n)
of [B2] to sélect a morphism (\dv,Al) of V such that the obstruction class

0(1^,71,) évaluâtes nontnvially on an S &apos;-fibre If we now replace A by Ax o A and

construct v&apos; with respect to the new A, we shall hâve o&apos; v&apos; v v (mod 2)

Existence when &lt;£ is an even pairing and &lt;9(£0) 0 Let P be the présentation of
H^(~L(r, 1)) determined by Lemma (3 1) If r ^ 0, Spm,, (~L(r, 1)) has a unique
élément a and we mark P with ît If r 0, Spm^ (—L(r, 1)) Spin — L(r, 1)) has

two éléments Mark P with the unique spin structure extendmg over D(S2, 0) if W

is even and the other one if W is odd
Realize this marked présentation by a compact, 1-connected 4-mamfold V and

construct W as before, though now we shall take the îdentity as our gluing map in
ail cases The previous argument produces an isometry r (H2(W), -+(H2(W),
with r(&lt;^o)=(^o The only point to venfy is that when r 0, the congruency
v v&apos; v v holds But as $£ is even, W (respectively W) is spin if and only if o v

(respectively v&apos; v&apos;) 0 (mod 2) Now a e Spin,, — L(0, 1)) was selected so that W

is spin if and only if W is Hence v&apos; v&apos; v v (mod 2)

If (H2(W), is even, the existence of F is enough to deduce the existence of a

homeomorphism / W -*W with/J|c(^o) £o and so we are done in this case The
final case for considération is when {H2{W), is odd This is precisely the case

where £0 is charactenstic and so by the hypothesis @(Ç0) 0 (mod 2), we see

ks(W)
»

[signature (W) - Ço £0] (mod 2)

| [signature W) - r] (mod 2)

On the other hand

ks(W&apos;) ks(V) (mod 2)

ss £ [signature (F) -//(- L(r, l),&lt;r)] (mod 2)

Now Novikov additivity shows signature (V) signature (W) — sign (r) We also

know that as (H2(W), is odd, the spin structure a does not extend over D(S2, r)
This détermines a e Spin (—L(r, 1)) and ît may be shown pi(-L(r, 1), o)

sign (r) - r (Theorem (6 5) of [KT]) Hence

ks(W) £ [signature (ff) - r] ss

We conclude that F is reahzed by a homeomorphism
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Existence when &lt;&amp; is even and &amp;(Ç0) 1. Let T S1 x S1 and dénote by D(T, r)
the 2-disk bundle over T with euler number r. Set Mr —dD(T, r). Consider the
bilinear pairing (Ê, Ê) (£, if) © (Z2, 0). Using Lemma (3.1), it is not hard to see

that (Ê, J£) présents H^(Mr) in such a way that if vg is the extension, by zéro, of
vE to Ê, then dvg e Hx{Mr) corresponds to a negatively oriented S&apos;-fibre in Mr. Fix
such a présentation P and mark it with a e SpinP (Mr) satisfying

(i) ks(W) |[signature (if) - fi(Mr;a)] (mod 2);

(ii) &lt;x does not extend across D(T, r).

It is not obvious at first glance that there are such spin structures. We shall prove
this in a moment. Assuming it, realize (P, a) by F and form W VvD(T, r), glued
with the identity function. As if is even but H^is odd, v • v 1 (mod 2). The choice

of g shows that W is also odd and so v&apos; • v&apos; 1 (mod 2) also. The construction of
an isometry F : H2(W) -&gt;H2{W) may now proceed as before. Finally, condition (i)
on a shows

ks{Wf) ks(V) | [signature (^) - fi(Mr; a)]

ks(W) by (3.3) (i).

Hence F is realised by a homeomorphism and this final case of existence for Theorem
F will be done when we explain how to find a g Spin^ (Mr) satisfying (i) and (ii)
above.

Let Spin0 (Mr) dénote the collection of spin structures on Mr which do not ex tend

over D(r, r). It is not hard to see that Spin0 (Mr) has four éléments, each pair
differing by an élément p*(Hl(T; Z/2)) ^ Il(Mr), where p : Mr -? T is the projection.

(3.4) LEMMA. Ifr^O, Spin0 (Mr) SpinF (Mr).

Proof. If r is odd, both sets equal Spin (Mr), so we may assume r is even.

Now SpinF (Mr) is the Ix{Mr)-orb\t in Spin (Mr) of spin structures whose

associated quadratic enhancement of the link pairing equals qP, the one defined by
the présentation P (see Proposition (2.11) of [B2] for instance). A calculation similar
to that of J£?*(de, ve) in Lemma (3.1) shows qP(dv^) (2r)~l — \ (mod Z). On the

other hand, using the fact that r^O, the remarks prior to this lemma imply that
Spin0 (Mr) is an I\Mr) orbit, whose complément consist of those spin structures
extending over D(T9 r). Now HX(D{T, r)) is free and so the quadratic enhancement,

q say, of a spin structure extending over D(T, r) may be calculated from the

homology séquence of the pair (D(T, r), Mr). In particular we hâve q(dvE) (2r)
&apos;

(mod Z). Thus q ^qP. The lemma now follows.
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As Spin,, (Mr) Spin (Mr) when r 0, Spin0 (Mr) Ç SpinP (Mr) always. We
need to produce an élément g e Spin0 (Mr) satisfying (i). To do this, let

X : Spin0 (Mr)-? Spin (T) be the function of Lemma (6.2) of [KT]. It satisfies

X(p*(x) &apos; &lt;J) x - x(&lt;t) for each x e H\T\ Z/2). Let p : Ofpin -&gt;Z/2 be the isomor-
phism. Now T admits four spin structures, precisely three of which are nullcobor-
dant. Hence, using Theorem (6.5) of [KT], if a e Spin0 (Mr) there is an

xeH](T; Z/2) such that

p*(x) ¦ g) - n(Mr ;g)=%&apos;P(Tx *(CT)) - 8

8 (mod 16).

If g does not satisfy (i), then p*(x) - g e Spin0 (Mr) will. This complètes the proof
of the existence part of Theorem F.

(3.5) Remark. Suppose £0 is characteristic and let Fbe a surface of genus g &gt; 1.

We can use the method above to construct directly a locally-flat embedding of F in
W with 1-connected complément which realizes £0. We let D(F, r) dénote the 2-disk
bundle over F of euler number r and set Mr —dD(F,r). Then we show

(£, &lt;&amp;) (£&quot;, J?) ©(Z2g,0) présents H^(Mf) appropriately, say by a présentation P.

Now P must be marked by a spin structure g g SpinP (Mr) satisfying the conditions
(3.3). As g &gt; 1, this can always be done. Indeed there will be 2g + (-l)6^^- »

such markings. To see this let Spin0 (Mr) be those spin structures on Mr not
extending across D(F, r). As before, Spin0 (Mr) Ç SpinP (Mr). Lemma (6.2) of [KT]
produces a bijection x &apos;¦ Spin0 (Mr) —&gt;Spin (F) and using Theorem (6.5) of that

paper we can show that for g e Spin0 (Mr) condition (3.3) (i) is satisfled if and only
if &lt;9(£0) P(F/(a)) (mod 2). Now there are 2g + 2*~ &apos; nullcobordant spin structures

on F and 2* — 2*
&apos; non-nullcobordant ones. The resuit follows.

§4. Uniqueness

In this section we complète the proof of Theorem F and prove Theorem G.

Suppose Fu and F2 are two locally flat surfaces of genus g in W with
1-connected compléments which represent £0. Let h : F] -+F2 be a homeomorphism.
According to §9.3 of [FQ], each has a 2-disc bundle tubular neighbourhood, say

DiFï) and D(F2). As the euler number of thèse bundles are each equal to £0 • £0 r,
there is a homeomorphism H : DOF,) -+D(F2) extending h. We would like to extend

H to a homeomorphism H : W -*W isotopic to the identity. We shall see that this
is always possible as long as £0 is not characteristic. If £0 is characteristic, there will
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be an obstruction, but it may be nullified by appropriately replacing the homeomor-
phism h : FX-^F2. Now the détails.

Let M, — dD(Fx) and M2 —dD(F2). Consider the exteriors of Fx and

F2\ F, W\D(FX) and V2= W\D(F2). By hypothesis thèse are compact, 1-con-
nected 4-manifolds whose boundaries are homeomorphic via/ H | Mx \ Mx-+M2.
Note that / takes a positively oriented Sl -fibre in Mx to a positively oriented
S &apos;-fibre in M2.

Dénote by &lt;p7 : H2{Vj) -+H2{W) the homomorphism induced by the inclusion

(j 1, 2). Recall E {Ç e H2(W) | £ • {0 0}.

(4.1) LEMMA. Image (&lt;?,) E for j= 1,2.

Proof Fix / From the Thom isomorphism theorem, the natural homomorphism

H2{W) -+H2(W, Vj) ^ H2(D(Fj), Mj) ^ Z sends a class £ g //2(^) to &lt;* • £0-

Hence its kernel is £. But this kernel is clearly image (cpj).

It follows from Lemma (4.1) that for each j, there is a séquence
0-&gt;//3(W, Vj) -+H2(Vj) -+E-+0. As £¦ is free abelian, thèse séquences split, and
thus there is an isomorphism A : H2(VX) -+H2(V2) making the following diagram
commute,

0 &gt;H3(W,VX)

H3(D(F2), M2)

¦I
0 &gt;H3{W,V2)

H2(VX) 0

H3(D(FX),MX) &gt;H2(MX)

H2(M2)

V
&gt;H2{V2) •0

(4.2)

It is not hard to verify that any such isomorphism A is an isometry. Our next goal
is to show that A may be chosen so that ô(A) =/„ with respect to the présentations

/V, and Py2.
For each y 1,2, let k, : H2{W) -*H2(Vj, M}) be the composite H2(W) -&gt;

H2(W, D(Fj)) s H2(V,, M,).
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(4.3) LEMMA. The following diagram commutes

H2{VX)

43

H2(V2,M2)

Proof. We only need to verify that kx A* k2. To see that let \x e H2{W) and

g H2(VX) be arbitrary. Then

V ¦ q&gt;2(A(Ç))

It follows that A* k2 /c, D

(4.4) LEMMA. There is an isometry A : H2(VX)
(4.2) commute such that ô(A) =/„,.

H2(V2) making diagram

Examination of diagram (4.2) shows that 5(v4)2 =/„, : H2(MX) -&gt;H2(M2).

Now both 5(yl) and/^ préserve the intersection pairings Hx{Mj) x H2(M;) -+Z. By
the nonsingularity of thèse pairings (at least after dividing Hx(Mj) by its torsion
subgroup) we see that 3(71)! and f% : HX(MX) -+HX(M2) are equal up to torsion.
When r 0, both HX(MX) and HX(M2) are free and so d(/t) =/„.

Assume now that r / 0. Recall u g //2(WK) satisfies y • £0 1. Then if
dj : H2(Vj, Mj) -&gt;Hx(Mj) is the boundary homomorphism, (ô7 o Ky)(u) g Hx{Mj) is

represented by a negatively oriented S &apos;-fibre in M7. Hence, by construction of

Now as r / 0, Tx{Mj) ^
shown d(A)x \ TX(M) =f

d2o (A*)~](kx(d)) by (4.3)

d(A)x(dx(Kx(v))).

/r and is gênerated by 37(k7(d)) (7 1, 2). Hence we hâve
\ TX(MX). But we observed that /* and d(A)x difTer by
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torsion éléments of HX(M2). It follows that d(A)x =/„, | HX(M) + \jj for some

homomorphism i// : (7/,(M,), ^(Af,)) -?(r1(M2), 0). We now proceed as in the

proof of Proposition (1.6) of [B2] to show how A may be altered to satisfy
d(A) ==/„, and to make diagram (4.2) commute (see pages 338-339 of [B2]).

If A : H2(VX) -+H2(V2) is chosen to satisfy the conclusion of Lemma (4.4) then

(/, A) : Vx -* V2 is a morphism. Recall 6(f A) the associated obstruction class in

I\M2)

(4.5) LEMMA. If 6(f A) 0, then H extends to a homeomorphism
H \W -+W which is isotopic to the identity. In particular, the inclusion

K : D(FX) c W is ambient isotopic to H ° K.

Proof. Now ks(Vx)=ks(W)=ks(V2) and so the hypothesis 0(fA)=O
implies that/extends to a homeomorphism //&apos; Vx~* V2 with //i A (see Theorem

(0.7) of [B2]). Let H=HuH:W= D(FX )kjVx-+W D(F2) u V2. Then H is

clearly a homeomorphism for which H#(Ç0) — £o- From diagram (4.2) we see that
if f eH2(Vx) then

Hence H^ \E \E. Now if r t^O, ^o and £ span H2(W) rationally. Thus in this

case, H^ \Hl{W)&gt; According to [Q], H is isotopic to the identity.
Assume now that r=0 and recall v e H2(W) satisfies v-Ç0=l. As noted

above, H^\E \E and thus //*(£) • v Ç • v for each Ç e E. This means that
^*(u) v + m&lt;^o f°r some m e Z. Then u • o //^(o) • ^+(f) u • v -h 2m. Then

m =0 and so H^(v) =v. As u and Zs span H2(W), we conclude //^ \H2(iV) in
the case r 0 also. As above, this means H is isotopic to the identity.

(4.6) Remark. We note the following conséquence of the last lemma. Suppose

F, and F2 are two locally fîat surfaces in W with 1-connected compléments which

represent £0. Let h : F, -» F2 ç= W be a homeomorphism. Then /z is isotopic to the

inclusion Fx ç W if and only if for the restriction / : M, -? M2 of some homeomorphism

H : D(FX)-&gt;D(F2) extending A, there is a morphism (/, A) : H2(VX) -&gt;

H2{V2) such that /l makes diagram (4.2) commute and #(/, /l) 0.

Recall from the proof of Lemma (4.4) that the class d2(K2(v)) is represented by
a negatively oriented S&apos;-fibre in M2.

(4.7) LEMMA. For any isometry A : H2{VX) -*H2(V2) making diagram (4.2)
commute and with ô(A) ==/„,, 0(/, A)(d2(K2(v))) 0.
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Proof. When r is odd, d2(K2(v)) has odd order and so the resuit is clear. Suppose
then that r is even. Fix a spin structure ax eSpii^Mj) extending over DX{FX). If
o2 =/#(o&quot;i), it is clear o2 extends over D{F2). Then by Proposition (4.1) of [B2],

A)(d2(K2(v)))

w2(K2, M,;/^,))^)) - w2(F2, M2; Mcr,))^))
h&gt;2(F2, M2; a2)(ic2(D)) - w2(Fl5 M1? er,)(/l*(ic2(i&gt;)))

w2(K2, Af2; &lt;x2)(k20&gt;)) - w2(K,, Afl5 (^(^(d)) by Lemma (4.3)

0 (mod 2)

as ax extends over D(FX) and o2 extends over D{F2). Evidently this complètes the

proof.

Proof of uniqueness when &lt;£ is odd. Let A : H2(VX) -+H2(V2) be an isometry as

guaranteed by Lemma (4.4). According to Proposition (0.8) (ii) of [B2], there
is a morphism (/,/T) : Vx -+ V2 with 6(f A&apos;)=0. Now A&apos; can be chosen so

that diagram (4.2) still commutes. This is because A&apos; may be expressed as
A&apos; — A + h2o{// o ad{^x) where ^ : H2(VX, M,) -&gt;//2(M2) is a certain homomor-
phism with image gênerated by a class P e H2(M2) whose dual in Hl(M2) reduces

(mod 2) to 6(f A). When r ^ 0, (p2o h2 0 and so &lt;p2 ° yl&apos;
&lt;p2 ° ^ &lt;Pi &gt;

which is

what we wanted. When r 0, we can use Lemma (4.7) to choose an appropriate /?

with (p2(h2(f$)) 0. Again we shall hâve &lt;p2° A&apos; cpx.

In ail cases then, we can arrange for the hypothèses of Lemma (4.5) to hold.
Hence the inclusion K : D{FX —? W is ambient isotopic to H ° K. As the homeomor-

phism h : Fx-+F2 and its extension H : D{FX) -+D(F2) were chosen arbitrarily, the

uniqueness statement in Theorem F and part (i) of Theorem G hold when JSf is odd.

Proof of uniqueness when ££ is even. Let ox and a2 be the unique spin structures

on Mx and M2 extending over Vx and V2. According to Proposition (4.1) (v) of [B2],
if (/, A) : Vx -&gt; V2 is any morphism, then 6(f A) is determined by the identity
f#(ax) 9(f A) • g2. We must therefore arrange for f#((rx) &lt;r2, if possible.

Consider, first of ail, the case where W is spin. Then Oj extends uniquely to a

spin structure &lt;77 on D{F}). Now it may be that H#{ôx) ^&lt;r2, but this may be

corrected without altering h as follows. Let p : D(F2) -+F2 be the projection and fix
a class x e Hl(F2;Z/2) such that H#(âx) p*(x) • &lt;r2. Choose any xeH\F2)
reducing to x and represent x by a function y : F2-+Sl. Now S1 acts on D(F2) by
rotation of the Z)2-fibres. In particular we may define a homeomorphism
i? : (D(F2\ F2) -+(D(F2), F2) by R(z) y(p(z))(z). Clearly R | F2 1F If we replace
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H by R o //, then we still hâve an extension of h : Fx-+F2, but now H#(âx) â2.

Restricting to Mx and M2 gives/#((x,) a2. Thus, as in the case when ££ was odd,
no matter which homeomorphism h : FX-*F2 was chosen, the inclusion k : F, -&gt; W
is ambient isotopic to h o k. This gives the uniqueness part of Theorem F when W
is spin as well as the portion of Theorem G (ii) referring to J. To complète the

proof of Theorem G (ii), we must show that 3 has 22g éléments. But our arguments
show that when W is spin,

(i) two homeomorphisms //,, H2: (D(FX), F,) -»(/)(F2), F2) are ambiently iso¬

topic if and only if (Hx)#(âx) (//2)#(&lt;r,);

(ii) for each x e Hl(F2; Z/2), there is a homeomorphism Hx : (D(FX), Fx) -?

(£(F2), F2) such that (//,)#((!,) /&gt;•(*) • (T2.
^As D(F2) admits 22g spin structures, it follows that J has 22g éléments.

The final case for considération is when W is odd and ££ is even. This is

precisely the case where £0 is characteristic. We shall see that it may not be possible
to isotope the inclusion k : Fx -» W to h o k, but that there is a homeomorphism
hx : FX^F2 such that k is isotopic to hx o k.

Let Pj dénote the présentation of H^(M;) arising the homology séquence of
(VnMf) (j 1,2). Let Spin°(M7) be the collection of spin structures on M} not
extending over D(Fj). Then Spin0 (My) has 22g éléments and arguing as in Lemma
(3.4) it can be shown that Spin0 (My) Spin^ (Af7) if r ^ 0 and that Spin0 (M,) is

exactly one half of SpinF (M7) Spin (M}) when r=0. Lemma (6.2) of [KT]
constructs a bijection %j • Spin0 (M7) -*• Spin (F}) for which it may be shown that the

following diagram commutes:

Spin0 (M, )-^U Spin0 (M2)

1

Spin (F,) -^Spin(F2).

Thus/#(a,) dépends only on h and further the following statements are équivalent:
(i) the inclusion K : D{FX) £ W is ambiently isotopic to H o K;
(ii) the inclusion k : Fx&lt;^ W is ambiently isotopic to h o k;
(iii)/#((T1)=(72;
(iv) *#(Xi(&lt;Ti)) =Xi(&lt;x2).

Thus the natural restriction map 3 -*J is bijective when £0 is characteristic. We

remark further that /*#(Xi(&lt;t,)) is spin cobordant to X2(p2). This follows from the

fact that if /? : Ofpin-&gt;Z/2 is the isomorphism, then

P(Fx22{a2)) (4.8)

(see Remark (3.5)). Now there are exactly [2* + (-1)0^*- *] spin structures on
F2 satisfying (4.8) and they form an orbit in Spin (F2) of the Homeo+ (F2) action.
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Thus, considenng the compositions hf ° h where /z&apos; e Homeo+ (F2), shows that both
3 and J hâve [2g + - \)0i*o)2g l] éléments and further that there îs a homeomor-

phism hx F,-&gt;F2 such that h{ o k îs ambiently isotopic to h This complètes the

proofs of Theorem F and Theorem G
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