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For a fixed Turaev shadow Jones-Vassiliev invariants
depend polynomially on the gleams

Urs Burn

Abstract. We use Turaev's technique of shadows and gleams to parametrize the set of all knots
in S:i with the same Hopf projection We show that the Vassiliev invariants arising from the
Jones polynomial Jt (K) are polynomials in the gleams, l e for n > 2, the ra-th order Vassiliev
invariant u„, defined by Jex (K) ^"^g un(K)xn, is a polynomial of degree In in the gleams
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Introduction

In Turaev's seminal paper Shadow links and face models of statistical mechanics
[T] knots and links in S^-fibred 3-manifolds over oriented surfaces are presented

by their Turaev shadows and gleams Using these ideas we give an explicit
parametrization /C, see Section 1, of the set of all knots in the 3-sphere S*3 which
project under the Hopf map onto a fixed Turaev shadow s on the two-sphere Let
e be the number of double points of the Turaev shadow s The map

/C Ze x Z —> {K C S \ K knot with generic Hopf projection s}

may also be viewed as a suitable parametrization of the lattice of admissible
gleams In Theorem 3 3 we give an explicit formula for the second order
Vassiliev invariant v% The map v^oK Ze x Z —> Z is a polynomial of degree 4

given by

1
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where the coefficients are easily computable from s. As a by-product we obtain a
formula for vi for standard knot diagrams on R2. The maybe best known Vassiliev
invariants are related to the Jones polynomial Jt{K) G Z^t^1] of a knot K by
expanding this Laurent polynomial, after the substitution t ex, into the power
series Xl^Lo un(K)xn. The main result of this paper is to give a constructive
proof that the n-th order Vassiliev invariant un is a polynomial of degree 2n in
the gleams.

Theorem 3.6. The function

uno)C:ZexZ —> Q

is a polynomial of degree 2n.

The first version of this paper was written in March '95. In June '95 two new
results were obtained. Goussarov [G] showed that n-th order Vassiliev invariants
are polynomials of degree < 2n in the gleams. This proved a conjecture by O.
Viro in 1990 that Vassiliev invariants depend polynomially on the gleams.
Independently Shumakovitch [S] found a shadow formula for v<i with very interesting
coefficients.

1. The parametrization K

In this section we give an explicit parametrization /C of the set of all knots in the
3-sphere S*3 which project under the Hopf map onto a fixed Turaev shadow s on
the two-sphere. We identify S*3 with the unit sphere in C2 and the Hopf flbration
is induced by the intersection with complex lines through the center. We denote
the Hopf map by H. First we have to fix some additional data. Let s be the image
of a generic immersion from S*1 to S*2, the fixed Turaev shadow. Generic means
that the curve s has no triple points and no selftangency points. The closure
of a connected component of the complement of the curve s is called region. The
number of double points e and the number of regions r of the curve s are related by
r e + 2. After having fixed a region and an interior point, say oo, of this region,
we identify S2 with R2U{oo}. We fix a disc Del2 which contains s. In the solid
torus H~^{D) we fix a normal cylinder N, homeomorphic to D x [0,tt] and such
that the Hopf fibres either do not intersect this cylinder or intersect N in vertical
segments d x [0,tt], d G D. Knots in N which project onto s can be presented
by standard knot diagrams with the usual over and under crossing information.
For technical reasons we also fix an extra point Pj on s which is incident to the
unbounded region and orient s in such a way that the unbounded region lies on
the right hand side when we pass through Pj. In Figure 1, on the left hand side,
we see a piece of a knot, passing through H~^(small disc) and intersecting the
oriented Hopf fibre over P. The processes of positive and negative fibre fusions,
respectively, are indicated in the same figure.
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small disc positive negative

Figure 1

The point P we marked on s is also called blowtng-up point. Given n G Z, to
perform n fibre fusions in a blowing-up point P means to choose \n\ different
points on s, very close to P, and to make for each of these points a positive or
negative fibre fusion if n is positive or negative, respectively. Now we can define
the map

/C : Ze x Z —> {K C S3 | K knot with generic Hopf projection s}

Let /C(0,... ,0,0) be the knot in N with negative crossings only. Now take this
knot and perform the fibre fusions shown in Figure 2 near each double point Pt,
i G {1,... e} and in Pf to obtain the knot K.(x\,... ,xe,Xf).

-x fibre fusions

fusions

fibre fusions

Figure 2

Note that this knot is well defined only up to vertical isotopy, i.e., isotopy where
each point of the knot moves along the fibre. We will see in the next section that,
up to vertical isotopy, the map /C is surjective. This could also be shown directly
using the vertical isotopies indicated in Figure 3.

Example. In Figure 4 we see the trivial curve s with no double point and the
knot /C(3) which projects under the Hopf map onto s. The sequence of knots

Xf i—> lC(xf) will be very important later. For Xf G {—2, —1,0,1} we obtain the
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negative

positive

neg. pos

Figure 3

H

Figure 4

trivial knot, and for Xf > 2, JC(xf) is the torus knot T(xf,Xf
to/C(-l -xf).

which is isotopic

The map /C has several important properties. The knots /C(... xt + 1,... x^)
and /C(... Xj,... x^) differ by a positive crossing change. After the vertical
isotopy indicated in Figure 5 it is sufficient to consider what happens inside Tt :=
H~^{Dl). We see that the loop can be moved back to the normal cylinder by a
vertical isotopy.
This also shows that if xt G {0, f} for all i G {1,... e}, then, after a vertical
isotopy, /C(xi,... xe,0) lies in N and JC(x\,... ,xe,Xf) K,{x\,... xe,0) # K{xf).
For the sake of simplicity, we denote by /C(... ,x4 + ^,... ,x^) the singular knot
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T.
-x.-l

Figure 5

with positive and negative resolution /C(... ,xt + l,... ,Xf) and /C(... ,xt,... ,Xf),
respectively.

2. Turaev's construction

We shall only describe Turaev's construction for the special case of links in S*3

which project under the Hopf map H to S*2. For generalizations and details we refer
to [T]. We consider a link LcS3 which generically projects under H to S*2. We can
vertically isotop this link to L' such that any two pre-images of any double point
lie opposite in the Hopf fibre. Let q : S*3 —> RP3 be the canonical two-sheeted
covering and let h! be the circle bundle induced by the commutative diagram
H h1 o q. The graph q(L') is mapped bijectively onto H(L) by hi. The inverse

bijection r : H(L) —> i{L') is a section of h! over H(L). The restriction of h! to
a region X is a trivial bundle. We identify it with the projection S'xl —> X.
Denote by ax the degree of the composition of t\qx '¦ dX —> S'xl with the
projection S'xl —> S*1. This is the obstruction to extend t\qx over X. Let
ßx be the number of corners (counted with multiplicities) of the region X. The
gleam of X is defined to be l3x^ax It is an integer, independent of the choice
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of L' and the trivialisation of h!. The total gleam is defined by the sum of the
gleams over all regions, minus twice the number of double points. Each double
point contributes to 4 corners, so the total gleam equals — ^ J2x °x- The sum °f
the obstructions ax can be identified with xC1') %x(H) —2, where x(£) is the
Euler number of the two dimensional real vector bundle associated to the oriented
circle bundle £. The Turaev shadow H(L) together with its (integer) gleams is

called the shadow of L and denoted by S(L), its total gleam equals one. We call
two shadows equivalent if they can be transformed to each other by a finite number
of shadow moves, see Figure 6. The local gleams x,y,z,... are arbitrary integers,
but 0,1 and 2 play a distinguished role.

y-2

Figure 6

Theorem 2.1 (Turaev [T]). Two generic links L\,L<2 C S*3 are ambient isotopic
if and only if their shadows S(L\),S(L2) are equivalent. The map L i—> S(L)
induces a bijective correspondence between the set of isotopy types of links in S
and equivalence classes of shadows.

Note that there also exists an oriented version for this theorem, where the
links and the corresponding Turaev shadows are oriented. The orientation of
the fixed Turaev shadow s was chosen only for technical reasons. The proof of
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this theorem shows that the set of links, which has as Hopf projection the same
fixed generic collection of loops, is parametrized by the gleams. For the gleams
there is only one restriction, the total gleam has to be equal to one. For the
case of knots with Turaev shadow s, this lattice of admissible gleams is given by

Theorem 2.2. The map

/C : Ze x Z —> {K C S | K knot with generic Hopf projection s}

described, above is surjective up to vertical isotopy.

Before we prove this theorem, let us study the gleams of K.(x\,... ,xe,Xf).
The local gleams of /C(0,... ,0,0) are given by the following rule:

Figure 7

To obtain the gleam of a region we have to sum up these local gleams and we have

to add one to the gleam of the unbounded region. Firstly we may assume that the
normal cylinder N is exactly half of H~^{D) and secondly that for a knot in N
the lower branch near a crossing point lies in the meridional disc D x {0} and the

upper branch in D x {tt}. Then everything follows directly from the définition of
the gleams. The local gleams of fibre fusions are shown on the left hand side of
Figure 8. On the right hand side, we see the local gleams of the fibre fusions near
the double point P%.

pos. fibre fusions

Figure 8

Proof of Theorem 2.2. We observe that we can realize all admissible gleams of s

using the following trick:
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+ 1

Figure 9

D

Moreover, for a fixed Turaev shadow s, the gleam of a knot of a region
minus the gleam of /C(0,... ,0,0) of the same region is a Z-linear combination of

xi,... ,xe,Xf. The transition matrix depends on s and on the choices of oo and

Pf. This shows that a knot invariant / is a polynomial of degree m in the gleams
if and only if / o /C is a polynomial of degree m.

3. The main results

In this section we examine how knot invariants depend on the gleams. Given
a (/-valued knot invariant /, where Q is an abelian group, what does the map
Jo/C:ZexZ —>Ç look like?

As we will also deal with derivatives, i.e., finite differences, of functions defined
on the lattice Ze x Z, we introduce the notation AXj (I o /C)(... x3,... for the
difference (Jo/C)(... ,x3 + l,...) -(/o/C)(... ,x3,/..).

We shall use the following result:

Theorem 3.1 (Birman, Lin [B-L]). Let K be a knot and let Jt\K) be its one-
variable Jones polynomial. Let UX(K) be obtained, from Jt(K) by replacing the
variable t by ex. Using the power series expansion of ex to express UX(K) as a

power series in x:

n=0

Then uq(K) 1 and un(K), n > 1 is a Vassihev invariant of order n.

Example. We consider again the sequence of knots Xf \-^ K{xf). We try to
examine how Jones-Vassiliev invariants depend on Xf. We use the fact that the
one-variable Jones polynomial Jt of the torus knot T(p,p + 1), p > 2, is given by
the following formula of Jones [J]

Jt(T(p,p 1-t2
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We calculate:

U. Burri CMH

Jt(T(p,p + 1)) tp(p
p-1

fc=O

and get, for p > 2, Ux(T(p,p + 1)) ^^=0 un{p)xn, where

fc=0

The function wn is a polynomial of degree 2n in p for p > 2. Extended to a

polynomial defined on Z, un has the symmetry wn(p) un( — l —p), i.e., un o K.

is a polynomial in x^ of degree 2n. As expected, we have u\{p) 0. For u<i we

get the nice expression ui{p) —\p{p— l)(p + 2)(p+ 1), and hence: U2(/C(x^))

Theorem 3.2. Lei wn &e a Q-valued Vassihev invariant of order n. For each

choice of indices with 1 < i\ < < in < e we have

A^A^ .AXzn(vn o/C)(xi,X2,. • • ,xe,xf) cnn %n

where c%1%2 tn is the value of vn on an n-smgular knot with the same chord

diagram as the curve s, where only the chords corresponding to the double points
P%1,. Ptn are considered,.

An example for n 3 is shown in Figure 10:

Figure 10

Proof Let 1 < i\ < < in < e. The n-singular knots /C(... ,xn + ^,... ,xîrv +

\t ¦ ¦ ,Xf) have the same chord diagram for all x\,... ,xe,Xf G Z. The value of
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the n-th order Vassiliev invariant vn is constant on these singular knots. On the
other hand, using the Vassiliev skein relation, we get

vn{K{... ,xH + -,... ,xln + -,... ,xf))
Zj Zj

E j **-«„ T cîrv, J-f —

,xe,xf).

D

Example. It is well known that the first order Vassiliev invariant v\ is trivial. We

want to check how strong our techniques are. We apply Theorem 3.2. It follows
that for all i G {I,--- e} we have AXz(v\ o K)(x\,... ,xe,Xf) 0. Remember
that v\ of a 1-singular knot is zero, because the chord diagram has an isolated
chord. This shows that (v\ o K.)(x\,... ,xe,Xf) is a function, let us say g, of Xf
only. Now it is sufficient to find x\,... ,xe G {0,1} such that JC(x\,... ,xe,0) is

the trivial knot. Then

/C(xi,... ,xe,Xf) (trivial knot) =fj= JC(xf)

which implies that g(xj) is determined by the values on the sequence K{xf).

For the next theorem we need the following definition of [it,öt, at,ctJ. Splicing
the curve s in Dt as in Figure 11, we obtain two curves At and Bt and define

/Xj := — ^\At n Bt\. This number is equal to the linking number of the two-

component link obtained by splicing /C(0,... ,0, A, 0,... ,0,0), see Figure 11:

D.

Figure 11

The integer St is defined by St := +1 if Pj G Bt and St := —1 if Pj G At. The
coefficient at is defined to be the difference of the two winding numbers md(Bt,Pt)
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r-KJJ)

Figure 12

and ind(At,Pt). Let r : S*1 —> S*2 be a parametrization of s. For i 7^ j, cn is

equal to zero or one according to Figure 12.

Let vi denote the second-order Vassiliev invariant which can be identified with
the coefficient of z2 of the Alexander-Conway polynomial Vk{z) G Z[z]. We know
that V2 —

Theorem 3.3. The function v% o/C : If X Z —s- 7L is a •polynomial of degree four
given by:

-v 2 ivr 2

1

=1
A+24X/X/

We obtain a formula for v<i for standard knot diagrams on the plane. All knot
diagrams on R2 with knot projection s can be encoded using /C. We put Xf 0

and xt 0 or 1 if the i-th crossing is negative or positive, respectively.

Corollary 3.4. The following formula for v% of standard knot diagrams holds
true:

i,z2;... ,ze,0))= Y^
î=1

where the last term can be calculated using the same formula, by choosing x\,.
xe € {0,1} such that K,{x\,X2, ¦ ¦ ¦ ze,0) is trivial.

Corollary 3.5. The numbers cl3, \i% are related by

t=l
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Proof of Corollary 3.5. The knot /C(l,... 1,0) is the mirror image of
/C(0,... ,0,0), but vi cannot distinguish them, i.e., U2(/C(l,... ,1,0))

,0,0)) and we are done. D

Proof of Theorem 3.3. We fix i € {1,... e} and study the function

,0,z,,0,... ,0,0)).

We calculate

,0,z,,0,... ,0,0))

,0,z, ,0,0))- ,x,,0,... ,0,0)).

This difference is equal to the linking number of the two-component link obtained
by splicing the singular knot /C(0,... ,0,xt + ^,0,... ,0,0) at the singular point.
Since the linking number of a link is the sum of any set of crossing indices whose

switchings unlink it, we can calculate this linking number explicitly. It consists of
three terms. First we observe that inside Tt := H~^{D%) we have the linked fibres
from the xt positive and negative fibre fusions we made near Pt. The first term of
the linking number calculates the linking of these fibres, the second one measures
how the curves At and Bt wind around Tt and the third one does not depend on
xt. We obtain

-Xt
see Figure 13:

D

Figure 13
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Now we determine AXzV2(IC(xi,... ,xt,... ,xe,0)). The quadratic term — x^
remains unchanged, because this contribution to the linking is determined by what
happens inside the solid torus Tt. The astonishing thing is that the linear term
atxt as well remains unchanged. We give two independent proofs of this fact.

The first proof: The fibres of the fibre fusions near a double point P3, j =£ i,
are linked with the fibres in Tt. But there is no contribution to the linking which

grows linearly in xt, because one half of them is run through in the positive sense
and the other half in the negative sense.

The second proof: Here we use the fact that v<i is a Vassiliev invariant. Using
Theorem 3.2, we know that for j =/= i, 1 < j < e we have

AXjAx^V2()C(xi,... ,xî;... ,xe,0)) Cjj

This means that the coefficient of the linear term does not depend on x3.
The above implies

Ax^V2()C(xi,... ,xî;... ,xe,0)) -x^ + alxl + Fl(xi,... ,xl,... ,xe,0)

where Ft{x\,... 1xll... ,xe,0) does not depend on xt. Now we let xj run as well.
The Hopf fibre over Pj is linked with the solid torus Tt, which implies

Ax^V2()C(xi,... ,xt,... ,xe,xf)) -x^+(al+ôlxf)xl+Fl(xi,... ,xl,... ,xe,xf).

For j =/= i, 1 < j < e, the equation

AXjAx^V2()C(xi,... ,xt,... ,xe,xf)) Cjj

implies that

Fj(xi,... ,xl,... ,xe,xf) Cjixi + + c^xl + + clexe + hl(xf)

where ht depends on xj only. We integrate and get

,Xj,.. ,xe,Xf)) --xt(2x^ - 3xt + 1) + -(at + Stx f)(x^ - xt)

+w, + + CjexeXj + hl{xf)xl + Gl{x\,. ,x'i,.. ,xe,xf)
where G% is the integration constant. But this result holds for every i G {1,... e}.
We obtain

Ie Ie(u2o/C)(xi,X2,... ,xe,xf) --^2xt(2x^ - 3xt + l) + -^(a, + ôtxf)(x^ - xt)

i=\
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It remains to determine ht and g. We have

V2(lC(0,...,0,xf))=g(xf).

Furthermore we know that /C(0,... ,0,Xf) /C(0,... ,0,0)#K.(xf) and that v<i is

additive under connected sum, which implies that

g{xf) ^(/C(0,... ,0,0)) + ^Xf{xf - \){xf + \){xf + 2)

From

/C(0,... ,0,1,0,... ,0,xf) /C(0,... ,0,1,0,... ,0,0)#/C(x/)

and

,0,1,0,... ,0,x/)) /i,(x/)+ff(x/)

we find

ft,(x/)=^(/C(0,... ,0,1,0,... ,0,0))-^(/C(0,... ,0,0)) Mt.

D

Theorem 3.6. Lei ms define un as in Theorem 3.1. The function

un o K : Ze x Z —> Q

«s a polynomial of degree In.

Proof. The proof is by induction. We need the following result:

Proposition 3.7 (Birman, Lin [B-L]). Let K+, K-, K^ be knots which are
defined by immersions which agree everywhere except near a single crossing. Let
A be the linking number of the 2-component link Kq. Then for every n > 2 the

following formula holds:

un(K+) - un(K-) un_\(K-) - Mn_i(ifoo) H
j
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K_

Figure 14

First we translate this formula into our language. The four immersions K+,
K-, Kq, Koo, which agree everywhere near a single crossing, are shown in Figure

14.

Let us consider the singular knot K := K{x\,... ,xt + ^,... ,xe,Xf). It is easy to
see that K+ /C(xi,... ,xt + 1,... ,xe,Xf) and K- K,{x\,... ,xt,... ,xe,Xf).
We already encountered Kq in the proof of Theorem 3.3. It follows that A

,Xj,... ,xe,xf))

(a, ôlxf)xl clexe

For Koo the situation is somewhat more difficult, but with the help of the map
/C we will be able to describe K^. We define /O as before but, instead of the
curve s, we now use the curve st obtained from the curve s by making an oo-splice
at the double point Pt. The double points Pi,... ,Pt,... ,Pe of st have the same
names as those of s. The orientation is chosen in such a way that s and st run
through Pf in the same sense. There are two possibilities for the orientations of
the branches in D%, see Figure 15:

or

Figure 15

We shade two of the four local regions at any double point as shown in Figure 16

and compare these shadings of s and st in the example shown in Figure 17.

For j G {1,... e} \ {i}, we define ~x~J as x3 if the two shadings in P3 coincide and
as 1 — Xj, if they are opposite. A good approximation for K^ is given by

Cs*(xi,... ,£;,... ,xe,xf)
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Figure 16

Figure 17

or

Figure 18

but the effect of the fibre fusions indicated in Figure f 8 has not yet been taken
into account.
We can do ±2xt more fibre fusions in Pf and move them towards Dt using the
trick in Figure 9. We give an example for the same curve as before. In Figure 19

we indicate that we have to take the following entries for /CS1 to get K^:
Koo /Csl(xi,X2,1 — X3 + x\,l — X4+ x\,Xf + 2x\)

With this choice, the gleams of corresponding regions on the left and right hand
side coincide, see Figure 19.

Now we are ready to prove the theorem for n 3. For i G {1,... e} we have

,xe,xf))
(3A)3-(3A+l)a

3!
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Figure 19

So A^ («3 o /C) is a polynomial of degree < 4 in x\,... Xf. We conclude that, up
to an integration constant Gt(x\,... ,x~t,... ,xe,Xf), the map xt i—> («3 o /C) is

a polynomial of degree < 5 in xi,... ,Xf. But this is true for all i G {1,... ,e},
which implies that «3 o K. is a polynomial of degree < 5 in x\,... ,Xf plus a

function, let us say g(X), which depends on xj only. We choose x\,... ,xe G {0,1}
such that the knot K.(x\,... xe, 0) is trivial. For this choice of x\,... xe we get:
(«3 o /C)(xi,... ,xe,Xf) us(K.(xf)) a polynomial of degree < 5 in xj plus
9(3)(xf)- This implies that ^^n is a polynomial of degree 6 in xj, because we have

shown in the first example of this section, that u^{K,{xf)) is a polynomial of degree
6 in Xf.

Let us suppose now that for all m < n the map umoK, is a polynomial of degree
2m. We want to show that «„+1 o /C is a polynomial of degree 2(n + 1). Using the
induction hypothesis and the result in Proposition 3.7 we see at once that for all
i G {1,... e} the map Ax^(un^\o]C) is a polynomial of degree < 2n in x\,... ,Xf.
This implies that un^\ o /C is a polynomial of degree < 2n + 1 in x\,... Xf plus
a function, let us say <?(n_|_i), which depends on Xf only. We conclude, as above,
that <?(n_|_i) is a polynomial of degree 2(n+ 1) in Xf, which proves the theorem.D
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