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On the long time behavior of homogeneous Ricci flows

Christoph Böhm

Abstract. In this paper we prove the following structure results for homogeneous Ricci flow
solutions: Any homogeneous Ricci flow solution with finite extinction time develops a Type 1

singularity. Any homogeneous Ricci flow solution on a compact homogeneous space, not
diffeomorphic to a torus, has finite extinction time. Any immortal homogeneous Ricci flow
solution develops a Type 111 singularity and the natural blow downs subconverge to an immortal
locally homogeneous Ricci flow solution.

Mathematics Subject Classification (2010). 53C30, 53C44.

Keywords. Homogeneous space, Ricci flow.

1. Introduction

A family (g(O)t e[o,r) °f smooth, complete, Riemannian metrics on a smooth manifold

Mn is called a solution to Hamilton's Ricci How [20], if it satisfies the geometric
evolution equation

—2 ric(g(l)) and g(0) g0
at

We call a Ricci flow solution a homogeneous Ricci How, if the initial metric go is

homogeneous. In this case the evolved metrics are homogeneous as well, in fact
the isometry groups do not change [24], The Ricci flow on homogeneous spaces
has been investigated by many authors, in particular in low dimensions and on Lie
groups (see e.g., 11,3, 11, 13, 14,21,22,28-30,35]). Still, in general the long time
behavior of homogeneous Ricci flows is completely understood only in very special
cases.

If a solution to the Ricci flow cannot be extended smoothly past time T, then we
call T e (0, oo] a singular time. If the singular time T is finite, the Ricci flow
solution is said to have finite extinction time. A Ricci flow solution with finite
extinction time is said to develop a Type 1 singularity, if there exists a constant

> 0, such that

sup||R0KO)IUo -(T -1) < Cg0
M"

for all t <= [0, T). Here R(g(f)) denotes the curvature tensor of the metric g(t).
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By a recent result of Lafuente [261 a homogeneous Ricci flow has finite extinction
time if and only if the scalar curvature of the evolved metrics becomes positive close

to extinction time.

Our first main result is

Theorem 1. A homogeneous Ricci flow with finite extinction time develops a Type I
singularity.

We will also show that for such homogeneous Ricci flows the norm of the

curvature tensor can be controlled by the scalar curvature as soon as the scalar

curvature is positive (Remark 2.2). By [23], [16], [19] the homogeneity assumption
in Theorem 1 cannot be dropped, since on the Euclidean plane and on spheres there

exist rotationally invariant metrics, which lead to Type II singularities.
Our second main result is

Theorem 2. Let M" be a compact homogeneous space not diffeomorphic to the

torus I". Then any homogeneous Ricci flow solution has finite extinction time.

A compact homogeneous space admits in general homogeneous metrics with
negative scalar curvature; the spaces which do not have been classified by Wang and

Ziller [44] (see also [8]). Notice that any homogeneous metric on a torus is flat.

By general results of Naber [33] and Enders, Müller, Topping [17] on Type I

singularities of the Ricci flow, it follows that along any sequence of times converging
to the finite extinction time T, parabolic rescalings will subconverge to a nonflat

homogeneous gradient shrinking soliton. By work of Petersen and Wylie [37] such

a shrinking soliton is in our situation a finite quotient of a nonflat product metric of
a homogeneous Einstein metric with positive scalar curvature and a flat metric on
Euclidean space. Notice that the flat factor might be absent.

We turn to the question whether the compact homogeneous Einstein space £oo

appearing in the limit soliton can be related to the homogeneous space considered.
Recall that a homogeneous space is diffeomorphic to a coset space G/H, where G
is a Lie group acting isometrically and transitively on M" and H is the compact
isotropy subgroup of a point.

Theorem 3. Let M" G/H be a compact homogeneous space not diffeomorphic
to the torus T". Suppose that the isotropy representation decomposes into pairwise
inequivalent summands. Then for any homogeneous Ricci flow on G/H there exists

a compact intermediate subgroup K, such that £'oo — K/H.
The intermediate subgroup K corresponds to the most shrinking direction of the

metrics g(t) (see Section 5) and depends only on the initial metric g0. Notice though,
that for different initial metrics the group K may vary as can be seen easily from

considering homogeneous product metrics on S2 x S2.

Since there exist homogeneous spaces K/H not admitting any /(-invariant
Einstein metrics (see [44], [9]), in general not all intermediate subgroups can occur.
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For instance, let G SO(2p + q),L SO(2p)SO(q) and H SO(p)U(l)SOfa),
where SO(/>)U(l) C U(/t) C SO(2/t). Then, if p > 5 and q 3, the

spaces G/H and L/H do not admit homogeneous Einstein metrics by [34], [44],
As a consequence the only possible intermediate subgroup is K U(/?)SO(<7). If
p 3 and q > 4, the space G/H does admit homogeneous Einstein metrics, that is

one can also have K G for appropriate initial metrics.
We will show in Theorem 5.14, that for any sequence of times converging to T,

the restriction of appropriately rescaled metrics g{t) to K/H subconverges to an
Einstein metric of positive scalar curvature. The limit Einstein metric depends only
on the initial metric and not on any subsequences chosen, if on K/H there exist

only finitely many solutions to the homogeneous Einstein equation of fixed volume
(cp. finiteness conjecture of 110|). Since in the first of the above two examples
the space AT/// is isotropy irreducible, we get for any initial metric the same limit
soliton. Let us mention, that if the isotropy representation has two inequivalent
summands these results where obtained in [13].

We expect Theorem 3 to be true for arbitrary homogeneous spaces. In general
the most shrinking direction of the evolved metrics corresponds to a distribution,
which becomes integrable only in the limit. As a consequence, the Ricci flow on
such homogeneous spaces is much more difficult to deal with.

We turn to homogeneous Ricci flows on noncompact homogeneous spaces.
Berard-Bergery [5] has shown that a homogeneous space admits a homogeneous
metric of positive scalar curvature if and only if the universal covering space is not

diffeomorphic to Euclidean space. By [26] it follows that on homogeneous spaces
with Euclidean universal covering space any homogeneous Ricci flow solution will
be immortal, that is T oo. Recall that a homogeneous Ricci flat metric is flat
by [2], As a consequence, for an immortal homogeneous Ricci flow solution, which
is not flat, the scalar curvature is negative and must converge to zero.

An immortal solution to the Ricci flow is said to develop a Type III singularity,
it there exists a constant C^0 > 0, such that for all / e [0, oo)

sup ||R(£(0)IU(r) -t < cg0.
M"

Our third main result is

Theorem 4. An immortal homogeneous Ricci flow develops a Type III singularity.

As an immediate consequence of the above results we obtain

Corollary 5. For homogeneous spaces with compact or Euclidean universal cover-
inR space thefollowing holds: The homogeneous Ricci flows on these spaces develop
either a Type I or a Type III singularity, irrespectively of the chosen initial metric.

It is an open problem, whether this dichotomy holds for a arbitrary homogeneous
sPace. If true, this would imply the long standing conjecture of Alekseevskii on
n°ncompact homogeneous Einstein spaces (see [6], 7.57).



546 C. Böhm CMH

We turn to the question to which extend there should be counterparts of the above

mentioned results of Naber and Enders, Müller, Topping for Type III singularities of

homogeneous Ricci flows on noncompact homogeneous spaces.
We consider for ,v > 0 the immortal solution gs(t) ' j g(st). It follows

from Hamilton's compactness theorem that if the injectivity radius of (Mn,g(t)) is

bounded from the below by then for any sequence converging to

infinity the sequence (Mn, gSj (/)) of blow downs subconverges to a homogeneous
immortal limit Ricci flow goo(t)) on a possibly different homogeneous

space In general, by work of Glickenstein [18] and Lott ([30], Corollary 5.14),

one obtains subconvergence to a limit flow on an «-dimensional, etale groupoid. In

our situation such a groupoid is nothing but a locally homogeneous space, which in

general will be incomplete (see Section 6).

Our fourth main result is

Theorem 6. For any immortal homogeneous Ricci flow solution the above defined
blow downs subconverge to an immortal locally homogeneous Ricci flow solution.

By [41 ] a locally homogeneous space with nonpositive Ricci curvature can
be extended to a (complete) homogeneous space. In general this is not true

anymore. There exist even Einstein metrics of positive scalar curvature on locally
homogeneous spaces, which do not extend to a complete Einstein metric [39], [251.

Lott proved in [30], that if the sequence (Mn,gs{t)) of blow downs has a limit
for s oo, then this limit Ricci flow is an expanding Ricci soliton. In special cases

such as in dimension three and four [30| and for homogeneous metrics on nilpotent
or certain solvable Lie groups this is known to be true [28], [3],

Problem. Show that for any immortal homogeneous Ricci flow solution any blow
down subconverges to an expanding Ricci soliton on a locally homogeneous space.

Notice first, that such an expanding limit soliton might be flat even if the

scalar curvature of the approximating Ricci flow solution is negative for all times.

For instance on the isometry group E{2) of the Euclidean plane there exists a

homogeneous immortal solution to the Ricci flow such that ||R(£(0)llj?(r)) %

exp(—ct) and scal(g(/)) % — exp(—2ct) for c > 0 (see [21]). It follows, that
the curvature is so rapidly decreasing that any geometric limit solution must be flat.
Notice also that the norm of the curvature tensor is not controlled by the absolute

value of the scalar curvature in this example in contrast to Type I singularities.
Let us now turn to immortal homogeneous solutions, for which there exists a

constant cg0 > 0, such that cg0 < supw„ ||R(g(/))|| • t for all t e [0, oo). At first
hand, one might hope that the bracket flow introduced by Lauret in [29] might be

helpful establishing the existence of a nonflat expanding limit soliton. Recall that
the bracket (low is a geometric flow on the set of Lie brackets, which is equivalent to

the Ricci flow. In example 4.4 in [27] Lafuente and Lauret provide an example
of a Type III solution (in fact an expanding soliton), such that the norm of the

corresponding bracket flow solution tends to infinity. It follows of course that the
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above blow downs will converge to the nonflat expanding soliton given. This limit
soliton can however never be obtained by considering any normalized bracket flow.

The paper is organized as follows: In Section 2 we prove Theorem 1, in Section 3

Theorem 2, and in Section 4 Theorem 4. Theorem 3 is proved in Section 5, and in
Section 6 we present a proof a Spiro's result.

It is a pleasure to thank Jorge Lauret and John Lott for helpful comments.

2. Finite time singularities of homogeneous Ricci flows

In this section we will provide the proof of Theorem 1. Furthermore we will show
that the norm of the curvature tensor is controlled by the scalar curvature.

Recall that by [26] we may assume that for a homogeneous Ricci flow g(t)te[o,T)
with finite extinction time T < oo we have scal(#(0)) 1.

Theorem 2.1. A homogeneous Ricci flow [M", g(t))te[o,T) with finite extinction
time T develops a Type I singularity.

Proof. From the evolution equation for the scalar curvature along a solution to the

Ricci flow we know s'(t) > 2
• s2(t), where we have set s(t) := scal(g(/)). Let

h [0, T). As is well known, if .v(fo) 0, this implies

<2-'>

Wo) n
' F to>

Since by assumption s(0) 1, we conclude T < §. Furthermore, we get

.*(/) < (2-2)
2 (T-t)

for all t <= [(), T). If not, then there exists t0 e [0, T) such that .y(/0) 2(T-t") for
some e > 0. From (2.1) we deduce for all t [to. T) that

T — to T + £•/(> _ e(T — to)
' < TT7 += ~irr ~iTT •

Contradiction.
Let now K(t) := ||R(g(f ))||g(o denote the norm of the curvature tensor at time

[0. T). We will show below that there exists a constant C > 0, such that
K\t) _
j(r) < C for all t [0, T). This implies by (2.2)

C-n
(T-t)-K(t) < (T — t) s(t) C < -

which shows that we have a Type 1 singularity.
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It remains to show that is bounded for f e [0, T). Suppose the contrary:

Then there exist times t, G [0, T) with tt —> T and /. Moreover, we can

assume that

mi max < —-— / e [0, J >

s(t)

Since the scalar curvature, i.e. s(t), is not decreasing, K(ti) > K{t) for all t G [0, f,].
We set Q, K(tt) and rescale parabolicly at t tj by setting

gi(t) Q, -g(t, +

The solutions g, live on (- Q, ti, Q, (T — t,)). Moreover the norm of the curvature
tensor of g, (0) equals to 1 for all f.

Recall that the doubling time estimate for the Ricci flow roughly says, that the

maximum of the norm of the curvature operator cannot grow too fast too soon as

time increases. More precisely, if (Mn,g(t)) is a complete solution to the Ricci
flow with bounded curvature and if || R(g(0))||^(o) 5 K for a constant K > 0, then

for all t £ [0. y^] one has || R(g(0)IU(/) 5 2AT (cf. [15], p. 213). In particular the

Ricci flow exists on the entire interval [0, y^].
In the above situation this implies that any of the solutions gt(t) exist as long

as t [0. yyr]. It follows that the above intervals converge (along a subsequence

possibly) to (—oo, Too) with Too > 0.

By the choice of the t, we have || R(gi(0)llg, (t) < 1 for t 6 (—t, • Qi, 0], In

general, we do have of course no injectivity radius bound from the below. But due to

Theorem 5.12 in [30] there exists a convergent subsequence converging to a solution

on an etale groupoid which is Riemannian.

For the convenience of the reader let us recall how a complete Riemannian
manifold (Mn,g) with section curvatures between —K2 and K2 for some K > 0

can be considered a Riemannian groupoid G (see Example 5.7 in [30]). Given

r G (0, ^), for any p G M" the exponential map exp^ : TPM" -> Mn restricts to a

local diffeomorphism from the r-ball Br{Qp) in TpMn to Br(p) c M". We endow

Br(0p) with the pull back metric (exp^O?). Let now {/?,},e/ be points in M",
such that (J,e/ Br(pi) Mn. One defines a Riemannian groupoid G with

G(1) |_| |(w,,u7) e Br(QPi) x Br(0P/) : expP((u,-) exp^ (u7-)j

i.jeJ

and
G<0) \_\Br(0Pl)

i el

by r(vt,Vj) v,,s(v,,v,) Vj and (v,-, vj) (vj, Vk) (u/,u^). Then G is

isometrically equivalent to (M", g).
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For v e G(0), that is v Br(0p), the orbit Ov consists of precisely those

points Vj e Br(0P/) with expPj{vj) exp/,(n). A pointed groupoid (G, Ov) is

a groupoid G equipped with a preferred orbit Op. Now the smooth convergence of
a sequence of pointed «-dimensional Riemannian groupoids with uniform sectional

curvature bounds as above implies in particular, that on each of the balls Br(0Pj) of
fixed radius r > 0 the above defined pull back metrics converge to a limit metric on

Br(0Poo) in C°°-topology (see Definition 5.8 in [30]).
Since in our situation all the metrics considered are homogeneous the pull back

metrics are locally homogeneous. Now by [36] a Riemannian manifold (M",g) is

locally homogeneous if and only if any function on Mn that can be expressed as a

polynomial in the covariant derivatives of the curvature tensor V;, V,-2 • • • V,r Rjkim
and the inverse metric tensor gl->, by contracting indices, is actually constant
on Mn. This clearly shows that the limit metric on the limit ball is locally
homogeneous as well.

We conclude that this groupoid is a locally homogeneous, ancient solution goo(0
to the Ricci flow with nonnegative scalar curvature. At time t 0 we have
II R(^oo(0))||goo(o) 1, but scal(goo(0)) 0, since the function ^ is scale

invariant and by assumption we had /
sca|(g.(0)) • Hence the limit

solution is locally homogeneous and Ricci flat, hence by Theorem 6.2 flat. This
is a contradiction to the fact that the norm of limit curvature tensor is 1 at t 0.

Remark 2.2. We have shown above that for any homogeneous Ricci flow solution

(^(0)fe[o,r) with scal(g(0)) > 0 there exists a constant Cg0 > 0 such that for all
t [0, T) we have

l|R(g(0)IU(r) 5 Cg„ scal(g(/)).

3. An algebraic proof of Bochner's theorem

As is well known by a theorem of Bochner [7] a compact homogeneous manifold
cannot admit a Riemannian metric of nonpositive Ricci curvature unless it is flat.

Moreover, the only compact homogeneous manilold admitting flat homogeneous
metrics is the torus ([6], 7.61). Hence Theorem 2 follows from Theorem 3.2.

In this section we will provide an algebraic proof of the above result for compact,
locally homogeneous spaces (see Section 6). A locally homogeneous space G/H is

called compact, if the Lie algebra jj of G is the Lie algebra of a compact Lie group G.
Recall that G (G, x ••• x Gs x Tr)/V, where Gi Gs are compact,_simply
connected, simple Lie groups and T is a finite subgroup of the center of G. As a

consequence G G, x-xGjXR".
Since the isotropy group H is not assumed to be a closed subgroup of G,

ln general the locally homogeneous space G/H cannot be extended to a globally
homogeneous space (see [25]). In particular, Stoke's theorem is not applicable.
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Theorem 3.1. Let G/H be a connected, compact, locally homogeneous space. Let g
be a homogeneous metric on GjH, which is not flat. Then the Ricci curvature of g
is not nonpositive.

Proof. Since G/H is a compact, locally homogeneous space, there exists an Ad(G)-
invariant scalar product Q of g. Let p denote the orthogonal complement of the Lie
algebra b of H in g. Then p is Ad(//)-invariant. Let B denote the Killing form of G

and let g g^ © a be the decomposition of g into its semisimple part g^ [g, g]

and its center a 3(g). Notice that a is the kernel of B, whereas on g5 the Killing
form B is negative definite. Let p„ := p H n and let p^ denote the ^-orthogonal
complement of pn in p. Then, since pn is Ad(//)-invariant, so is p,s. Notice that

on pi the Killing form B is negative definite.

Any G-invariant metric on G/H corresponds to an Ad(//)-invarianl scalar
product g on p. Using Q := Q\v we may write

g(v,w) Q(P -v,w),

where P is an Ad(//)-equivariant endomorphisms of p, which is positive definite.

Using the decomposition p p5 © pn we write

The endomorphism Pss of p^ is positive definite. Next, let (e\ e„) denote

an (7-orthonormal basis of Eigenvectors of Pss corresponding to eigenvalues

p 1 p„ > 0. We set ej := ej/^fpi for 1 < i < n. Then {e\,...,en) is

a g-orthonormal basis of p^. We extend (e\,...,en) to an g-orthonormal basis

(e\ en,en + i en+t) of p. Then by [6|, (7.38) for „t e p we have

n+l n+I
ric(g)(.v, x) -\B(x,x) - ± II + \ Y Q(le>-?j}v p(x))2

i 1 1,7 1

Using [p, p]p [p, p]Pv we arrive at

» n

ric(g)(.r,.v) > -\B{x,x)- ££ ||[*.<?,-JpjJ + 1 £ Q(\ei,ej]Vs, P{x))2
< ' 1,7=1

+ 1EE Q({ei^j}Vs,P{x))2-\ Y, ll[-v-cU']p.v \\l •

' 17=«+l i=n+l
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Next, we show that the sum of the fourth and fifth term is nonnegative for an

eigenvector .v 6 p.s of Pss corresponding to the largest eigenvalue p. We have for
/ e {1 n} and j e {n + 1 n + 1}

Q([e,,ej]Vs, P(x))z-Q{[x,e,]Ps, P(e,))2

p2 Q([e,,e,].x)2 - p2 Q([x,ej],e,)2

(P2-Pf)-Q([e„ej],x)2> 0,

since Q is Ad(G)-invariant and consequently ad(u) skew symmetric for any reg.
It remains to show that in the above estimate for ric(g)(.v, x), for x p^ as

above, the sum of the first three terms is positive. Firstly, the second and the third
term depends only of Pss and not on the other components of P. Secondly, we
denote by g' the 0-orthogonal complement of p„ in g, that is g' 1} ® p^. Then g'
is a subalgebra of g. Moreover, the Killing forms of g and g' restricted to their

semisimple part g.s [g, g] [g', g'] agree. It follows that we may assume that B is

negative definite on p and that P Pss.

For any Ad(//)-invarianl scalar product g on p, there exists a decomposition
P Pi © • • • © pr of p into Ad(G)-irreducible summands, such that P is diagonal
with respect to Q. That is, we have

g pi 0|p, 1 1 pr- 0|p,

with pi pr >0. Likewise, we have P\Vi p, id|Pl. For each 1 < / < r, we
set — B\Pi b, Q|P( and d, dim p,. Notice, that by assumption we have b, > 0

for all /. Moreover, we set

[iß] ^QWa.eßley)2

where the sum is taken over {ca}, {eß}, and {ey), g-orthonormal bases for p,, py,
and pk, respectively. Notice, that [/jk] is invariant under permutations. By [401, (see

also [441), if .r e pi is an eigenvector of P with Q(x.x) 1 corresponding to the

largest eigenvalue p P\ of /J, then we have by the above estimate

ridgXA-.-v) > A-. (id,!,, - tiijk 1 Ac-f)
Notice that it is not difficult to deduce this formula from the above formula for the

Ricci tensor of g. By [44[, the identity

r

d,bi 2d,c, + [ijk] (3-2)

i.k i

holds. Fora 0-orlhonormal basis {r,} of h, here Ce!h - E, adz' °ad^ denotes
the Casimir operator and (Cß|h )|P( c, idp,. Recall that c, > 0 with c, 0 if and
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only if [fj, p,] 0. Notice that the proof of Wang and Ziller carries over to compact,
locally homogeneous spaces. We obtain

,u V-ri -,i2P2k-P2 V-n-M P2- P2J~ P2k + PjPk
d\b\- > [ly— 2dyc{+ > [1jk]

PjPk jA= i PjPk

Since p is the largest eigenvalue of P we have pz — pz — p\ + Pj Pk >0 for all

1 < j, k < r. As a consequence ric(g)(x, x) > ^ > 0. This shows the claim under

the assumption that dim p^ > 0.

If p5 0, then p C o, that is g t) © a. Since 1) is an ideal in g we have 1) 0

(by our definition locally homogeneous spaces are almost effective, see Section 6).

Consequently g is abelian, which implies that any locally homogeneous metric on

G/H is flat (cf. [6], (7.30)).

As we have seen in the proof of the above theorem, a homogeneous metric g
on G/H can be considered an endomorphism P of p using a background metric Q.
It follows from the above proof that if g is not flat, then there exists x p^ with
Pss(x) P x, g(x, x) 1 and

b
ric(x, x) > —

4p

Here, —b denotes the largest negative eigenvalue of the Killing form B, restricted to
the semisimple part g^ of g. An immediate corollary of this is

Theorem 3.2. A homogeneous Ricci flow on a compact locally homogeneous space
M" G/H has finite extinction time, if G/H does not admitflat metrics.

Proof. As in the proof of Theorem 3.1, given an Ad(G)-invariant scalar product Q

on g, we consider the decomposition p p^ ® p„ of the (7-orthogonal complement p

of I) in g, where pa p n 3(g) and p5 denotes the ß-orthogonal complement of pa

in p.

Along a locally homogeneous solution (g(0)/e[o,7") t0 ^e Ricci flow on G/H
we consider the function

<p(t):= max{g(0(y,y) I y e Pi and ||y||ß l}.
Recall that <p(t) is nothing but the largest eigenvalue of Pss(t) in (3.1). Then by
[ 15, p. 531 ], for the Dini derivative

d+<pf^ <p(t + s) - (p(t)
—-—(/) := limsup
dt s—>o,i>o s

we have

d+(p

dt (t) max{-2ric(g(0)(x,x) | g(?)(x,x) <p(t) and xepj, ||x||e 1}.
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Using the estimate of Theorem 3.1 we conclude ric(g(f))(x, x) > | > 0 for any
such x e pJ; where b denotes the smallest eigenvalue of (—ß)10s.x0s.• This shows

that T < Too.

If a compact, locally homogeneous space G/H admits a flat metric, by [41] G/H
is globally homogeneous and flat. It follows from the proof of Theorem 3.1 that G

does not have any compact factor, thus G is abelian. But then any homogeneous
metric on G/H is flat.

4. Immortal solutions of homogeneous Ricci flows

In this section we give the proof of Theorem 4. Before doing so let us note that

on the isometry group E{2) of the Euclidean plane there exists a homogeneous
immortal solution to the Ricci flow such that ||R(g(0)llg(/)) ^ exp(—ct) and

scal(g(f)) sa exp(—let) for a positive constant c > 0 (see [21]). Hence for
immortal solutions the norm of the curvature tensor is not controlled by the absolute

value of the scalar curvature, which was true for homogeneous solutions with a

Type I singularity by Remark 2.2. Moreover, the above example provides parabolic

rescalings g, (/), defined on [0, oo) with ||R(g, (0))|| 1, which converge on (0, oo)
to the flat metric. Recall also that locally homogeneous metrics maybe incomplete.

Theorem 4.1. An immortal locally homogeneous Ricci flow develops a Type III
singularity.

Proof. Let (g(/))[o,<x>) denote an immortal locally homogeneous Ricci flow solution.

If the initial metric is flat the claim follows. If the initial metric is not flat, then by

rescaling we may assume that scal(go) -1. As above we write s(t) scal(g(r)).
By (2.1) we get lim,_>oo s(t) 0.

In a first step we show that K(t) := || R(g(0)||g(0 must be bounded. Suppose

this is not the case. Then there exists a sequence {/,} of times converging to infinity,
such that / K(tt) and K{t) < i for all t [0. t,). We may assume that
11 > Next, we choose t, e (0, /,), such that

16 -Kit,)
' (4'1}

This is possible, since for t, 0 we have t, > 16.^0), whereas for /, /,• we have

° < Setting Qi '= ^(h)> we consider the parabolic rescaling

gAO-Q.-g^ + ^j <4-2)

Notice that at time t 0 the norm of the curvature tensor of the metric g, (0) equals
to 1 for all i and that by (4.1) for given t,, t, we have t, t, T if and only
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if / jg. As a consequence, by the doubling time property a locally homogeneous

limit flow goo(/) will exist on [0, -A] with || R(goo(-j^))|| > 1 since K(t,) > K(t,).
Of course the scalar curvature of the limit flow is nonpositive. On the other hand

side the scalar curvature of the limit metric must vanish at t -A since / K(t,)
and | scal(g(r, ))| < 1. As in Theorem 2.1 we obtain a contradiction.

In the second step we suppose that K(t) is bounded but does not converge to zero
for t —> oo. Hence there exists a sequence {/,} of times converging to +oo and a

constant e > 0, such that K(t,) > e Since lim,-^ s(t) 0, we can argue as above

to exclude this case as well.
We conclude that K(t must converge to zero for 1 -»• oo. We suppose that the

solution g(t) does not form a Type III singularity. Then there exists a sequence {tt}
of times converging to infinity such that

K(tt)
6 + 1

and K(t) < for all t e [0, r,). We may assume t, > 16.^0) • As above we

choose tl 6 (0, t,), such that the identity (4.1) holds. Again we consider the parabolic
rescalings g, (t) as in (4.2). By the choice of the sequence {t,} we have

r(i)KM (4.3)
ti -r 1

with /(/') < /. On the other hand side the doubling time property yields

K(r,) i i i
2 >

K(tt) K(t,) (f, + 1) K(t[) (tt + 1 + |(yKfi,)) ' (') "b

i 1

16-K(i,)' 16

We deduce

i > r(i) >
2 16

In the final step we show that || R(g, (j^))|| is bounded from the below by a positive
number. This follows from (4.1) and (4.3), since

i h + 1 i (j _
1

Mali* /(/) 6 + 1 r(i) V 16 •/•(/) + 1

Let #oo(0 denote a locally homogeneous limit solution for the sequence (#,(/)),
defined on (0, jg]. By the above computation we have || R(g, (j^))|| [^,3] for

large /. Since ,v(0) -1 we deduce from (2.1) that |.v(/)| (1 + ^ • /) < 1 for all

t > 0. As a consequence, at time t t, we have

K(t,) i 2 \ 2-i>—— 1 + --6 > (4.4)
|.y(/,)| t, + 1 V »7 »

It follows, that the scalar curvature of the limit solution #oo(0 at time t
vanishes. Again, this is a contradiction.
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5. Collapsing of homogeneous Ricci flows

In this section we will prove Theorem 5.14, from which Theorem 3 and the results

on the longtime behavior of the Ricci flow mentioned in the introduction below
Theorem 3 follow.

Let (g(0)/e[o,r) be a homogeneous Ricci flow on M", which develops a Type I
singularity. Recall that by [26] we may assume that scal(g(0)) 1. As is well
known there exist constants c(n) > 0 and Cg{) > 0 such that

^<l|R(s(0)IU<^
for all t e [0,7") (see e.g., [17]). Moreover, since for such homogeneous Ricci
flows the norm of the curvature tensor is controlled by the scalar curvature (see

Remark 2.2), there exist constants cg0 > 0 and Cg0 > 0 such that

< -seal(g(t)) < ^ (5.1)

for all t e [0, 7"). Let now (f/),-epj be any sequence in [0, T) with lim,--».^; T.
Let Qi := scal(g(f,)) and

yi('):=a'4+i)-
The homogeneous Ricci flow (g,(/)) is defined for t e [— Qiti, (T — ti)Qi) and

we have scal(g, (0)) 1 for all / N.

By Theorem 1.4 in [ 17], when setting A, := scal(g(f,)) and

g,(f):=A,.s(r + l).
then (g,(/)),(=n subconverges to a nonflat shrinking soliton (goo(0)re(-oo,0)'
which of course is homogeneous. By (5.1) we know that scal(g(f,)) for

<4 [c'g(), Cg,,]. Notice now that

t t Ci +1
T +

scal(g(f,))
'' + T '' +

scal(g(/,))
U +

scal(g(fl))
'

Hence g, (r) := g, (/ - c,). As a consequence, (g, (0)/sN subconverges to a nonflat
homogeneous shrinking soliton (g00(0)/6(-oo,r00), with > cg0 > 0.

The results of [37] imply that the homogeneous shrinking soliton goo(0) is

UP to finite covering the Riemannian product of a compact homogeneous Einstein

manifold with positive scalar curvature and a flat space (M"~fc,gflat)
endowed with a Gaussian shrinking soliton. In particular the Ricci curvature of any
such limit soliton is nonnegative.



556 C Böhm CMH

Remark 5.1. In [ 11 ] an example (g(0)ie[o,r) °f a homogeneous Ricci flow solution

on A/12 Sp(3)/Sp( 1)3 has been discussed, where the Ricci curvature of g(t) is

not nonnegative lor all t > T0 and some T0 e (0, 7").

Since scal(goo(0)) 1, it follows that there exists a constant r^ > such

that the eigenvalues of Ric(goo(0)) are either equal to or to zero. Here, for a

Riemannian metric g the Ricci-endomorphism Ric(g) is defined by

nc(g)( g(Ric(g) •, •).

Theorem 5.2. Fat a homogeneous Ricci flow with finite extinction time the dimension

of the Einstein factor of any limit shrinking soliton does only depend on the

initial metric.

Proof. There exists f < T such that for all t > T the eigenvalues of the Ricci

endomorphism of

g{t) := scal(g(0) • g(t)

come in two blocks. The positive ones are bounded from the below by ^ and the

small ones are bounded from the above by Otherwise, there exists a sequence
(fl)ieN °f times converging to T, such that at least one eigenvalue of Ric(g,(0)) is

contained in [-^. ^-]. By passing to a subsequence the same is true for the Ricci
endomorphism ot a limit soliton goo(0). Contradiction.

Notice though, that for different initial metrics the dimension ot the Einstein
factor may vary For the product Einstein metric on S2 x S2 the Einstein factor
of the limit soliton is of course 4-dimensionaI, whereas for any other homogeneous
initial metric the dimension of the Einstein factor is 2-dimensional.

We turn now to a class of homogeneous spaces, where we can describe how
the limit Einstein factor Eis related to the original homogeneous space M". Let
Mn G/H be a connected compact homogeneous space such that G and H are

compact Lie groups not necessarily connected. Let Q denote an Ad(G)-invariant
scalar product on g and let p denote the Q-orthogonal complement to 1) in g. Then
for any G-invariant metric g on G/H there exists a g-orthogonal decomposition
p pi © • • • © pr into Ad(//)-irreducible summands, such that

g Xl-Q\Vl l---±xr-Q\Vr (5.2)

where x, i xr >0. For any nonempty index set J C {1,..., r} we set

PJ '= ©Py •

jeJ
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Assumption 5.3. We assume that the moclals pi pr arepairwise inequivalent.

An example would be a homogeneous space where both G and H have the same
rank. As is well known, under Assumption 5.3 the Ricci endomorphism also respects
the above decomposition of p; in general this is not true anymore.
Remark 5.4. There exist homogeneous spaces G/H which admit diagonal metrics

as in (5.2) allowing some of the moduls p, and py- being equivalent, such that the

Ricci endomorphism of all such diagonal metrics still respects this decomposition.
All the results proved in this section can also be obtained in that more general case.

So let (g(t))[o,d be a homogeneous Ricci flow and assume that Assumption 5.3

holds. We write

g(0 *,(')-ÖL -l---±A7(O-0k (5-3)

for all t G [0, T) and call x\(t), xr(t) the eigenvalues of g(t).
Lemma 5.5. Let (g(t ))[o,T) be a homogeneous Ricci flow with finite extinction time

and scal(g(0)) 1. Then, under the Assumption 5.3 there exists a nonempty subset

/ C {1} and a positive constant I'oo £ Vn 2]' such that the following holds

true: For any e > 0 there exist T (e) < T, such that for all t > T (e)

II Ric(g(0)lP/ - Ax> • idp/1| || Ric(g(0)|P/C || < e.

Moreover, for any m £ I, I G Ic and t > T(s) we have

££(1

x,n(t) 5 xm(T(e))
"

(5'4)

T — t \ 2eCk'v

(55)

Proof From Theorem 5.2 it follows that there exists an index set / C {1,..., r}
and T0 < T^, such that for all t > To the eigenvalues of Ric(g(0) corresponding
to p; are bounded from the below by whereas all the eigenvalues of Ric(g(/))
corresponding to p7c are bounded from the above by Here Ic denotes the

complement of / in {1 /•}. Since for any sequence of times (/,);era converging
to T there is a limit shrinking soliton (along a subsequence), the eigenvalues of
Ric(g(0) must pinch more and more. This shows the first claim.

Let rm(t) denote the eigenvalue of the Ricci endomorphism Ric(g(?)) restricted

t° pm,m 1 r. Then, under Assumption 5.3 the Ricci flow equation is nothing
but x'm(t) -2 • ,vm(0 • rm(t), m 1 r. Since Ric(g(f)) scal(g(f))
Ric(g(/)) we deduce from (5.1) and the first claim the estimates (5.4) and (5.5) by

integrating the above differential equation.

In the next steps, we describe the index set I in Lemma 5.5 more precisely.
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Definition 5.6. Let (#(0)r6[o,r) be a homogeneous Ricci flow on a compact
homogeneous space GjH with finite extinction time. Suppose that Assumption 5.3 holds.

Let {ta} denote a sequence of times converging to T, such that the metrics

ga seal g{ta)

converge to a nonflat limit soliton metric g^.
We assume that at such times ta the eigenvalues x\(ta) xr (ta) of g(ta) can be

ordered in blocks in the following manner. There exist nonempty, pairwise disjoint
subsets /[ 11 of [ 1 r} with

{1 r( /1U-U/<
such that the following holds

(1) For any 1 < ,s < i there exists a constant Ds > 0 such that for any i, j £ Is

we have x' < Ds for all a £ N.
* j \ *a)

X (/
(2) For 1 < s < s < I and any i £ ls and any j £ Ij we have fi^ -> oo for

a —> oo.

(3) For any 1 < s £ t there exists a permutation ns of Is {n\,...,n
< •• < such that xn^n\)(ta) <•• < for all« 6 N.

Let [f, },6n be any sequence of times converging to T. We claim, that

we can always extiact a subsequence {ta} as in Definition 5.6. To this end,

as noticed above we can assume that along a subsequence {ta} of the

metrics ga converge to a nontrivial homogeneous shrinking soliton. Furthermore,
it is clear that the eigenvalues .xq(ta) xr{ta) can be assumed to be ordered

along a subsequence, that is there exists a permutation n of {1 r}, such that

•*7r(i)(ffl) < • • • < Xjx(r)(ta) for all a £ N. Next, the ratio is either bounded

along a subsequence of {?„}, or it diverges. This shows that the index sets /[,..., li
can be chosen as above. Notice that the index sets may depend on the

subsequence {ta} chosen.

Corollary 5.7. Let (g(0)re[o,:r) a homogeneous Riccißow on a compact
homogeneous space G/H with finite extinction time T. Suppose that Assumption 5.3

holds. Let \ta J denote a sequence of times converging to T as in Definition 5.6.

Then the index set I from Lemma 5.5 satisfies / I\ U • LJ Is for some 1 < s < i.

Proof This follows directly from the estimates (5.4) and (5.5) in Lemma 5.5 and the

definition of the index sets I\,... fit in Definition 5.6.

This result says, that the "small" eigenvalues of g(ta) are the eigenvalues x(ffl)
with/ £ / and the "large" eigenvalues are those Xj(ta) with j £ Ic {1 r}\I.

Recall that on a homogeneous space G/H an intermediate Ad(//)-invariant
subalgebra E b © Pe, Pe C p, is called toral (nontoral), if p( is (not) an abelian

subalgebra of g.
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Lemma 5.8. Let (g(f ))re[o,r) he a homogeneous Ricci flow on a compact homogeneous

space G/H with finite extinction time. Suppose that Assumption 5.3 holds and
let {ta} he a sequence of times as in Definition 5.6. Then there exists Sq G {1,.., £},
such that tS()-1 := (i©p/, ®-• ©£>/ is a toral and £S() := £j0-i ©P/.s-0 a nontoral
subaigebra of g, respectively. Moreover there exists a constant C(G, H) > 0, only
depending on G/H, such that

C(G, H)
scal(g(/a)) <

('a)

Proof By [44], lor a homogeneous metric g as in (5.2) we have

seal«-i£ —-J t m\ —2 ' Xj 4 ' XiXr
i t 1 K

(5.6)

X '(tSince lima_>oo scal(g(fa)) +oo, we deduce that the terms [ijk] • J a, must be

bounded for / G I\, j G Is and k e Is> with s 7^ s'. Consequently

[/./,/,'] 0 (5.7)

for s .v'. This shows that ti := b © p/, is a subaigebra. Moreover, it follows from

(5.6) that scal(g(fu)) 5 for a constant C(G, H) > 0 depending only on
"

JTl ('I [

the pair H C G. If f i is a nontoral subaigebra, the claim follows.
So suppose that f i is a total subaigebra. By [/1 /j /j ] 0 we deduce

I ' V* f M xi(,a) 0 xj Ua) \
SCd g a

2 ^ X,(ta) 4 ^ 'J
\.Xj(ta)*kVa) Xj (ta)xk(ta)J

,e/i i'e/|,/,it6/f

+ i y V [iJk]. Xi[ta)
2 ^ x,(ta) ^

c Xj(ta)xk(ta)
ie/f I,J,keif

Using the identity djb, 2cjdi + Yl"j k=il'Jh] (c'"- (2-2)) and the vanishing of the

Casimir operator restricted to p/,, we see that the terms of the first line of the right
hand side can be simplified to the following nonpositive term:

i.yE (1 -——x'Ua) )*°-
2 71Y xi(ta)

c.
V Xk(la) 2x, (ta)xk(ta)'e/i j,kel ,c

Here we have used [ijk] [ikj] and the estimate 2 — .v - 2 < 0 for x > 0. Since

scal(g(/a)) —+oo for a —> oo we obtain by induction the claim.
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For an intermediate Ad(//)-invariant subalgebra £ of g we denote by //(£) the

subgroup of G generated by H and the connected Lie subgroup K$ of G with Lie

algebra 6. Notice that the Lie algebra of //(£) equals to £, but that in general //(£)
might be disconnected.

For an Ad(//)-invariant intermediate subalgebra £ and for a G-invariant metric g
on G/H as in (5.2) we denote by

gK/H g|pf

the induced metric on K/H, where K //(£).

Lemma 5.9. Let g be a homogeneous metric on a compact homogeneous space

G/H as in (5.2). Suppose that there is an index set Ie C {1such that
£ — 1) © p/( is it subalgebra of g. Then for m l\ we have

d £ S ('-LJ*Ä))A
v /Ae/f '

Proof. For m e |1 r} the following identity for the Ricci tensor of a

homogeneous metric g as in (5.2) holds true (cf. Section 3):

Ric(g)| P m

(2dmcm + - g [mjj] pr + jp VnM ' (2 ~
^7 -p~k+7prk

idP,„

XjXkJ J 2 dm xm

where we have used (3.2) again. By the above, the Ricci tensor of {K/H, gK/H) is

given by

Ricw)u L<„+ E yp-G-Z-tL + A.))."*-.
\ jMIt

4 V XJ Xk xJxkJ) dmXm

Since £ is a subalgebra of g, we deduce from the identity [/e/p/fC] 0 for m e I(
the claim.

The next lemma shows, that even when a nontoral subalgebra £ is not the Lie
algebra of a compact subgroup of G we may chose a subalgebra £ of £, which is the
Lie algebra of a compact subgroup. Under the Assumption 5.3 this is trivial if both

groups G and H are connected, since then the isotropy representation contains at
most one trivial summand. which must be one-dimensional.
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Lemma 5.10. Let G/H be a compact homogeneous space and let t be a proper,
intermediate, nontoral, Ad(H )-invariant subalgebra of g. Then there exists a
nontoral Ad (H)-invariant subalgebra f oft containing 1) properly, which is the Lie

algebra ofa compact subgroup of G.

Proof By [12], Chapter 0, Theorem 5.1 there exists N e N with G C 0(2N). The

negative of the Killing form on 0(2/V), denoted by Qn, induces an Ad(G)-invariant
scalar product Q on g, which we will use in the proof of this lemma.

Let ct be any abelian subalgebra of g, corresponding to a compact subgroup A

of G. Let t denote any maximal torus of g with act. Our first claim is, that the

Q-orthogonal complement a1 of a in t also corresponds to a compact subalgebra
of G. This is seen as follows: Conjugating the group G in 0(2A) we may assume
that t is contained in the standard maximal torus Tn (Sl)N of 0(2N). We

denote by Si,...,sn the standard £>JV-orthonormal basis of TeTm and identify
TeTtf with R^. Since A is compact by assumption, the subalgebra a, considered as

a subset of R^, has a rational basis a i ,am e As a consequence the Qn-
orthogonal complement of a in RN also has a rational basis, hence corresponds

to a compact subgroup of Tn. Now the Q-orthogonal complement a1 of a in t
equals totOajy. Since both t and ajj are Lie algebras of compact subgroups the

above claim follows.

Next, we claim, that if b C t is the Lie algebra of a compact subgroup and if
7i : t —> a-1- denotes the Q-orthogonal projection onto a1, a as above, then 7r(b)
is the Lie algebra of a compact subgroup as well. When considering t a subspace

of R^v as above, both a and a1, respectively, have a basis iq,..., vm e ZN and a

basis uq wP-m £ ZN, p dim t. Now any vector in tflZ^ can be written in
this basis with rational coefficients. The second claim follows.

We decompose t t, ® 3(f) and b lq © 3(b) into its semisimple part and its

center. Since [t5, t^], it follows from

ß(3(t). W 0(3(6). [E,.t,]) 0([3(«). U W 0

that both these decompositions are ^-orthogonal. Using Iq C 6^, we can assume
that fs ^ bj. since otherwise f is a toral subalgebra.

We denote now by its, respectively ji}, the Q-orthogonal projections from £

onto and 3(6), respectively. Both projections are Ad(//)-invariant. Furthermore,
we denote by Uj := (3(b)) a"d by n3 := ^"3(3(b))- Let t be a maximal torus of g

with a.s © 3(6) C t. Notice that 3(b) C t. Next, we set L := t fl ts. Then ts is a

maximal torus of with ds C ts. Let denote the (5-orthogonal complement of ts

'n t. Then, since 3(£) is orthogonal to U, it is orthogonal to L, hence contained in tjh
As a consequence a, C t^\ Since ts is the Lie algebra of a compact subgroup of g,

by the above so is t^. We denote by n : t -» t^1 the <2-orthogonal projection. By
the above tt(3(b)) 03, since 3(f) C and 3(b) Ctj® 3(£). As a consequence, a3
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is the Lie algebra of a compact subgroup of G. It is also clear that ct3 is Ad(//)-
invariant. We set now E E,s © a,. Clearly E is a proper Ad(//)-invariant subalgebra

of h and E, which is compact.

Next, we show that under Assumption 5.3, Ad(//)-invariant intermediate subal-

gebras always correspond to totally geodesic immersed submanifolds of G/H.
Lemma 5.11. Let G/H be a compact homogeneous space and suppose that

Assumption 5.3 holds true. Let K be a proper intermediate subgroup, that is

H < K < G. Then K/H is a totally geodesic submanifold of G/H, possibly
immersed though.

Proof. Since H < K, the Lie algebra E f) © pt is Ad(//)-invariant, hence

pt as well. It follows from Assumption 5.3 that pe p,•,©•• © piy for
1 < /'i < • • • < is < r. Due to formula (7.27) in [6], for Killing vector fields X. Y, N

on G/H one has

2g(V* Y. N) g([X. Y], N) - g([N, X], Y) + g([Y, N], X).

By assumption, every G-invariant metric on G/H has the special form described in

(5.2). We deduce that for X.Y e pe and N 1 E we have g(VxT, N) 0 since

Q([X. Y].N) 0([*,(V],K) 0.

If the intermediate subgroup K is compact, then K/H is compact and totally
geodesic.

After these algebraic and geometric preliminaries we come to our first important
result on homogeneous Ricci How solutions on G/H, satisfying Assumption 5.3. For

a homogeneous Ricci flow solution (g(0)fe[o,T) we denote by xmjn(/) the minimum
of the eigenvalues .V] (/) xr(t) from (5.2). Notice that for a sequence {ta} as in
Definition 5.6 we have xn[{n^(ta) xmm(ta).

Lemma 5.12. Let (g(0)/e[o,r) a homogeneous Ricci flow on G/H with finite
extinction time. Suppose that Assumption 5.3 holds and let I C {1 r\ be the

subset from Lemma 5.5. Suppose that scal(g(0)) 1. Then there exists an e > 0
such that for all t e [0, T) one has

Proof. If such an e > 0 does not exist, then there exists a function c : N —> N with
limu-xx) c(a) +oo and a sequence {ta} as in Definition 5.6 converging to T, such

that for all a e N we have c(a) xn^ni^(ta) < x(a), where

To simplify notation we permute the moduls p i,..., pr and assume that

•D (la) < X2(ta) < "• < Xr(ta)
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for all a e N. That is we have

h ={1.2 /1}, 12 {' i + I '2} 1 • • h — {'£-1 + 1
> • • Hi f}

In this notation we have x\(ta) .vmj„(/a) and the above estimate reads

c(ci) x{(ta) < x(a). (5.9)

Notice that we can and will pass to a subsequence of {ta} whenever this is convenient.

By Lemma 5.8 we know that N b 0 p/, is an Ad(//)-invariant subalgebra
of g. Suppose that N is nontoral. By Lemma 5.10 there exists an Ad(//)-invariant
subalgebra N of ti, which is the Lie algebra of a compact subgroup ^1 of G

containing H. By Lemma 5.1 1 K\/H is a compact, totally geodesic submanifold
of (G/H,g(ta)). We rescale the metric g(ta) by scal(g(/ö)) J- to obtain the

_
X(i

metrics ga, which converge to a nonflal limit soliton. By the very definition of fii, the
induced metric g{ta)^]/H 's 8'ven by eigenvalues of order x\(ta). When rescaled

by j- this means by (5.9) that the eigenvalues of (ga)K]/H converge to zero for
a -* 00. It follows that the injectivity radius of (K\/H, (ga)#,///) converges to

zero for a —> 00 and consequently also the injectivity radius of (G/H, ga). But this
is impossible, since the limit soliton has the same dimension as G/H.

This shows that in the sequel we can assume that f 1 is a toral subalgebra of g.
By Lemma 5.8 we conclude that c .v(| + i(fa) < xa for all a e N and a constant
c > 0. Next, we assume that there exists C > 0 such that xa < C x,1 + i(fa) for all
« 6 N. By Lemma 5.9, using that Ric(ttfAT, ///) 0, we see that the largest positive
term in Ric(g„)|P/i is of order Since lhis term converges to zero

fora 00 due to ,v„ < C -Xil + iUa) we deduce Ric(ga)|P/| -> Ofora ->• 00. But
this contradicts Corollary 5.7.

This shows that in the sequel we can assume that c{a) „v,l + i(ta) < x(a).
Since e, is a toral subalgebra t2 N © P/2 is an Ad(//)-invariant subalgebra of g

by Lemma 5.8. If t2 is nontoral, then we see as above, that the injectivity radius of
(G/H, ga) converges to zero for a —> 00. Contradiction.

As a consequence we can assume in the sequel that f2 is toral. By Lemma 5.8 we
conclude that c-.r,2+i (/„) < xa for all a e N and a constant c > 0. Next, we assume
that there exists C > 0 such that xa < C .v,2+i (ta) for all a N. By Lemma 5.9,

aPplied to the toral subalgebra t2 we see that the largest positive term in Ric(ga)|PE2

is of order —+ Since thjs term converges to zero for a -» 00 due to

xa < C Xj2+i(ta) we deduce Ric(ga)|Pt -> 0 for a -> 00. Again we obtain a

contradiction. By induction the claim follows, since the limit soliton is not flat.
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Knowing that the scalar curvature of scal(g(r)) is as large as possible we can

deduce the following

Lemma 5.13. Let (g(t))te[o.T) be a homogeneous Ricci flow on G/H with finite
extinction time. Suppose that Assumption 5.3 holds and let I C {1 r) he the

subset from Lemma 5.5. Then we have

(1) The space t' h © p/ is the Lie algebra of a compact subgroup K of G with
dim K/H dim £*,.

(2) There exists C > 0, such that for all t > 0 and all m,m e I we have

(3) The Ricci curvature of g(t) restricted to p/ is up to lower order terms given

by the Ricci curvature of sca\(g(t)) g(t)fc/H-

Proof. Let (Za)aeN be any sequence as in Definition 5.6. We suppose again, to

simplify notation, that xi{ta) < •• < xr{ta) for all a e N (see Lemma 5.12).
Recall that ga g(ta) and that scal(ga) 1 for all a 6 N. Furthermore,

by Lemma 5.8 and Lemma 5.12 there exists constants e(G/H) > 0 and C > 0, such

that

s{G/H) x\(ta) < x(a) < C • X\{ta) (5.10)

for all a e N. From Lemma 5.8 it follows that { f) © p/, is a nontoral subalgebra
of g and that [/i IsIs>] 0 for.? ^ .v', 1 5 s' < I.

We will show that for m e fs with .v > 2 we have Ric(ga)|P/„ -> 0 for a —r oo,

using (5.10) and the fact that the limit manifold (M^.goo) has nonnegative Ricci
curvature. Notice that by Corollary 5.7 it is sufficient to show this for m i\ + 1.

We deduce this from (5.8): We examine for m ii + 1 terms for g g(ta), which
when multiplied by x\(ta) % xa can possibly have a positive limit for a -* oo.
Since [/1 f If\ 0 no such terms occur in the first sum of (5.8). In the second sum
such terms could occur for j e I\ and k e I2 However since k > m i + 1 we

have, using xm(ta) < Xk(ta), that + xj*t")xk\ta) - This means that also

such terms cannot force Ric(gü)|Pm to become positive when a -> 00. We deduce

I — 1\ from Corollary 5.7.

Since the above is true for any such sequence {/„} we deduce that (2) holds. To

this end notice, that if (2) does not hold, say along a sequence {/,•} converging to T,
then we may pass to a subsequence as in Definition 5.6. However, since (2) does not
hold, we cannot have I\ I for such a subsequence. Contradiction.

We show now the claim (3): To this end we will show below that for any structure

constants with lijk] > 0 and i e / and /', k Ic one has —> 1 for t —* T. ItL J '
_

J Xk(t)
follows from Lemma 5.9 that Ric(g(/))|P/ equals to Ric((g(0)*:///) up to terms of
lower order. This shows (3).
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Moreover, since we know that Ric(g(/))|P/ has a uniform positive lower bound
for large / we deduce that the Ricci curvature of the g{t)K/H on K/H has a positive
lower bound, too. It follows that K/H is compact, hence K must be compact as

well. This shows (1).
We suppose now that there exist indices with [imm] > 0, i el and m ^ m e Ic

such that for a subsequence {ta} converging to T we have Xff,(ta) > (1 + £o)xm(ta)
for all «eN and some £o > 0. As above we assume Xi (ta) < • • • < xr(ta). By the
above we have 1 1 j. Moreover, m > in and mjh e ISo for some 2 < so < I
since [/i ISIS>] 0 for s ^ s'. We choose m and hence sq minimal.

From (5.8) we deduce that the term -[imm] „ in the formula for
xi \!a)xm va)

R'c(g(/a))lpm is of order —-jUy. Notice that for this term the corresponding positive

term [imm] ,*"{[!"],
^ in (5.8) is strictly smaller than the first term. This holds true

xi Va)xm va)
for any such i e I\ and any such m e IS().

Since the Ricci curvature of the limit space is nonnegative there must be further
positive terms of order

x l,ay Thus, there are indices i,j e I\ U ••• U /i0_i such

that [ijm] > 0 and Xifc"')x"(ta) 's °f 0I'der xytit) or larger; indices in Is, s > so, can

obviously not occur and indices in ISo are already covered by the above. Assuming
' < j we see that we cannot have i e /1, since then j e ISn would follow from
Ulis Is] Ofor S ^ S.

We pick the minimal index i e IS{, 2 < ,V| < ,s0 — 1, with that property. From

(5.8) we deduce that the term —[ijm] • the formula for Ric(g(f£j))|Pj. is

of order ' or larger. As above we conclude that there must also be large positive
M \HI)

terms [ijk] By the minimality of the above m e IS() if these indices

are of type [/] ISI /^J, that is j e I\ and k e IS], then we must have 1 for
ö -> oo. From (5.8) we deduce that such terms to not contribute to terms of order

It follows as above that j,k e 12 U • • U /.s,-i.
Assuming j < k we pick the minimal index j e ISl,2 < £2 < — 1, with

that property. Inductively we may assume j e h- But the only positive terms which
X (tcould make up for such a negative term are of type [ijk] (tJu)xk (ta)

where ' e h
and k e /2. Hence we have shown that in our above assumption we must have had
,n £ Ii- Since [/t l\I2] 0 we obtain a contradiction.

Recall also that for the intermediate subgroup K from Lemma 5.13 we denoted
ky SK/H the metric on K/H induced by a homogeneous metric g on G/H.

Theorem 5.14. Let (g(t))ie[o,T) be a homogeneous Ricci flow on G/H with finite
extinction time. Suppose that Assumption 5.3 holds. Then there exists a compact,
n°ntoral intermediate subgroup K such that the metrics

8k/hU) sealig(t)) gK/HU)
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subconverge to an Einstein metric on K/H for any sequence \t, },eu converging
to T Moreover, the limit Einstein factor E^ is diffeomoiphic to K/H

Proof By Lemma 5 15, the eigenvalues of g(t) scal(#(0) • g(t) lestucted to pt,
where t' b © p/, have a urn form positive lower and an upper bound Moieover,

Ric(#(0)|p, equals to Ric((^(/))^-///) up to terms of lower older
We consider now a nonnalized Ricci flow, which keeps the volume ot gK/HO)

constant To this end, let scal^///(g) tr(Ric(g)|P/) and k dim K - dim H
Then the following K/H-volume normalized Ricci flow

g'(t) -2(nc(g(0) - £ • seal/f///(f(0) • #(0) (5 11)

is equivalent to the Ricci flow on G/H and leaves the volume of gK/HÜ) constant

This follows the same way proving that unnormalized Ricci flow and Ricci flow

are equivalent The solution g(t) can be obtained (up to parametrization) from a

solution g(t) to the Ricci flow by rescaling to keep the volume Hk/hO) constant

It follows from Lemma 5 13, (2) that for a solution g(t) the eigenvalues of g(t)
restricted to pe are bounded uniformly As a consequence, for any sequence of

times {/,} converging to T there exists a subsequence {ta} such that gK/HUa)
converges to a limit metric g^^ on K/H Using Lemma 5 13 and Lemma 5 5

again, we conclude that g/H must be an Einstein metric with positive scalar

curvature Since by Lemma 5 12 the scalar curvature scal(?(/)) is of order
_ 'miiu' /

the metrics gKjuUa) en K/H conveige to a limit Einstein metnc, too This shows

the first claim

Finally, we show that the homogeneous spaces (K/H, gK/n(ta)) converge to

the Einstein manifold (££,, g^) We use that (G/H, g(ta)) converges to (M^, goo)

in pointed C°°-topoIogy It follows that the tangent spaces of the totally geodesic
submanitolds (K/H gK/nOu)) converge to the tangent space of the Einstein factor

(^oo- <?<x>)' since ^ese are precisely the directions where the Ricci cuivature is positive

As a consequence (K/H, gK/H(ta)) converges to (E^, g^f) in C°°-topology
By Theoiem 1 I in [ 10] the limit Einstein factor E^ is difteomoiphic to K/H

There are two easy consequence ot the above convergence result

Corollary 5.15. Under the assumptions of Theorem 5 14 we have. If on K/H
there exist onlx finitely main solutions to the homogeneous Einstein equation, then

gK/H(l) converges for t -» T to an Einstein metric on K/H

Proof It there are only finitely many solutions to the Einstein equation on K/H,
then gK/H(') must of couise converge to one ot those metncs by Theorem 5 14

Corollary 5.16. Under the assumptions of Theorem 5 14 we have It there exists a
solution (g(t)),g[o T) mc/i that gK/H(I) does non converge to an Einstein metric
on K/H for t -> T, then on K/H there exist infinitely many solutions to the

homogeneous Einstein equation
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6. Locally homogeneous Ricci flat metrics are flat

Recall the following result

Theorem 6.1 (Alekseevskii, Kimel'fel'd [2]). Let (Mn ,g) be a complete, homogeneous

Ricci flat manifold. Then (M" ,g) is flat.

Notice that there is a very short proof using the Cheeger-Gromoll splitting
theorem (cf. [6], p. 191). Later, Spiro observed in [41] that the above theorem is

of local nature. For convenience, we provide a proof of Spiro's result following
Spiro's original approach.

We recall that a Riemannian manifold (M",g), not necessarily complete, is

called locally homogeneous, if for any two points p,q e M" there exists a local
isometry mapping p to q. Each locally homogeneous space is uniquely described
by its so called infinitesimal model. The Nomizu construction associates to each
infinitesimal model a Lie algebra g, a subalgebra 1] and a reductive decomposition
0 1) © p (see [42]). Notice that g is the Lie algebra of the full local isometry group
of the Riemannian metric g on M".

Since there might be also smaller local Lie groups acting locally transitively
on M" the following algebraic definition of a locally homogeneous space has been

introduced, for instance in [41 ] or in [29]:
Let G and H be connected Lie groups with G simply connected and H C G.

Let g and fi denote the Lie algebras of G and H, respectively. We call G/H a locally
homogeneous space, if the following conditions hold:

(hi) There exists an Ad(//)-invariant complement p of 1) in g.

(h2) There exists an Ad(//)-invariant scalar product (•, -)p on p.

(h3) The Lie algebra 1) does not contain any nontrivial ideal of g.

Notice that (hi) is equivalent to ad(x)(u) 6 p for all x 1] and all tep, where

ad(a-)(u) [x, u] just denotes the Lie bracket of g. Condition (h2) is equivalent to

(ad(*)(u), tu)p —(u, ad(u)(tu))p for all .v e fi and all v, w e p. Notice that (h3)
ensures that the locally homogeneous space G/H is almost effective.

Having such an algebraic locally homogeneous space one may determine a

locally homogeneous metric g on a local quotient M" as described in [41].
The space G/H is regular or globally homogeneous, if H is a closed subgroup

of G. By [25] there exist locally homogeneous spaces which are not globally
homogeneous.

Theorem 6.2 (Spiro [41 ]). Let (X", g) be a locally homogeneous Ricci-flat mani-
f°ld. Then (X",g) is flat.

Pr°of Let G.H be as above and let the homogeneous metric g be induced by an
Ad(7/)-invariant scalar product (-,-)p on an Ad(//)-invariant complement p of h

ln g. We assume that H is not a closed subgroup of G.
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We define a scalar product on f) as follows:

(-*'•.f)b := — trp (ad(x)|p oad(j')lp).

We claim, that (•, •)[-, is Ad(//)-invariant. This is seen as follows: By (h2) we have

for any orthonornral basis (e\ en) of p. We need to show that for v ^ 0 the

right hand side is positive. If not, then a short computation shows that the kernel £

of (•, •)[, is Ad(//)-invariant and [6, p] 0. Hence, £ is a nontrivial ideal of g, which

was excluded by (h3).
The Ad(//)-invariant scalar product (•,•)[, and (-,-}p on 1) and p respectively,

induce an Ad(//)-invariant scalar product (•, •) on g by requiring (f), p) 0. Notice
that for x G h ad(.v) acts skew symmetrically on g with respect to this scalar product.

Let H denote the closure of H in G and let t) denote its Lie algebra. Furthermore
let t]1- denote the orthogonal complement of \) in ly Since (•, •) is Ad(//)-invariant
it is Ad(//)-invariant as well. Consequently, ad(x) acts skew symmetrically on g

fori G I)-1.

We turn now to curvature computations. We denote by go the G-invariant metric

on G, which corresponds to (•, •) and by gn the //-invariant metric on H, which

corresponds to (,•)(,-
By Lemma 2.1 of 1321, for x G we have RiCgG (x, x) > 0 and RicffG (x, x) 0

if and only if (,v.[n,u;]} 0 for all v,w G g. Using the O'Neill formula
for the Riemannian submersion (H,gn) -* (G,gG) (G/H,g) with totally
geodesic fibers (cf. [6], (9.36c), [6] 9.80 - this computation works also for locally
homogeneous spaces), we conclude that R\cgG(x,x) 0, since Ric^ 0 by
assumption.

It follows that b1- -L [g. g]. Let p denote the orthogonal complement of fj

in g. Then [g. h © p] ± f)1, that is b © p is an ideal in g. As is well known
this ideal corresponds to a closed normal connected subgroup N of G, since G

is simply connected (cf. [381, p.81). Since N is closed and H C N we would
conclude H c N. This is of course a contradiction, meaning that H must have been

closed.

It should be mentioned that Spiro's result shows that any locally homogeneous

space with nonpositive Ricci curvature comes from a global homogeneous space.
Notice also that by [43] the space of globally homogeneous spaces is dense in the

space of locally homogeneous spaces.

(.v,.v)h II[*.*«]II 2

P
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