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Virtually compact special hyperbolic groups are
conjugacy separable

Ashot Minasyan and Pavel Zalesskii

Abstract. We prove that any word hyperbolic group which is virtually compact special (in
the sense of Haglund and Wise) is conjugacy separable. As a consequence we deduce that all
word hyperbolic Coxeter groups and many classical small cancellation groups are conjugacy
separable. To get the main result we establish a new criterion for showing that elements of prime
order are conjugacy distinguished. This criterion is of independent interest; its proof is based

on a combination of discrete and profinite (co)homology theories.

Mathematics Subject Classification (2010). 20E26, 20F67.
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1. Introduction

One of the main themes of Geometric Group Theory is the study of groups which
act on non-positively curved spaces. Two prominent classes of such groups is the

class of hyperbolic groups (defined by Gromov in [13]) and the class of (virtually)
special groups (introduced by Haglund and Wise in [16]). The intersection of these

two classes is quite large and its elements, virtually special hyperbolic groups, have

particularly nice properties.
Recall that a finitely generated group G is said to be hyperbolic if its Cayley graph

is a 5-hyperbolic metric space, for some S > 0 (see, for example, [2]). On the other

hand, G is virtually compact special, if there is a finite index subgroup H ^ G, such

that H is isomorphic to the fundamental group of a compact special cube complex,
whose hyperplanes satisfy certain combinatorial properties (see [16, Sec. 3]).

Since the original work of Haglund and Wise [16], many hyperbolic groups have

been shown to be virtually special. For example, in the paper [15] Haglund and

Wise showed that hyperbolic Coxeter groups are virtually compact special. In [34]
Wise proved the same for finitely generated 1-relator groups with torsion, while
in [1] Agol showed this for fundamental groups of closed hyperbolic 3-manifolds. In
fact, Agol [1] proved that any hyperbolic group admitting a proper cocompact action

on a CAT(O) cube complex is virtually compact special.
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In this paper we study conjugacy separability of virtually compact special

hyperbolic groups. Recall, that a group G is conjugacy separable if for arbitrary
non-conjugate elements x,y G there is a homomorphism from G to a finite

group F such that the images of x and y are not conjugate in F. Conjugacy
separability can be regarded as an algebraic analogue of solvability of the conjugacy
problem in a group and has a number of applications. Most prominently it is used

in proving residual finiteness of outer automorphism groups (see, for example, the

discussion in [25, Sec. 2]).
Conjugacy separability is usually not easy to show, and, until recently, only a

few classes of groups were known to satisfy it: virtually free groups [10], virtually
surface groups [23] and virtually polycyclic groups [11,29], Note that in general

conjugacy separability does not pass to finite index overgroups [12] or to finite index

subgroups [24], therefore the adjective "virtually" is important.
A group G is said to be hereditarily conjugacy separable if every finite index

subgroup of G is conjugacy separable. In [25] the first author showed that right angled
Artin groups are hereditarily conjugacy separable. This result was subsequently
used to prove conjugacy separability of Bianchi groups [7], 1-relator groups with
torsion [26] and fundamental groups of compact 3-manifolds [17], In fact, in [25] it
was shown that any virtually compact special group G contains a conjugacy separable

subgroup of finite index. But it is still unclear whether such G must necessarily be

conjugacy separable itself. In the present paper we prove this in the case when G is

hyperbolic:

Theorem 1.1. Any virtually compact special hyperbolic group is hereditarily
conjugacy separable.

Conjugacy separability of torsion-free virtually compact special hyperbolic

groups was proved in [25, Cor. 9.11], so the actual novelty of Theorem 1.1 is in

handling groups with torsion. In view of Agol's result [1, Thm. 1.1], the above

theorem shows that every hyperbolic group, admitting a proper cocompact action

on a CAT(O) cube complex, is hereditarily conjugacy separable. This gives an

abundance of new examples of (hereditarily) conjugacy separable groups, some of
which we mention in corollaries below.

For any Coxeter group W, Niblo and Reeves [27] constructed a cube complex C

on which W acts properly, and proved that the quotient complex X W\C is

compact if W is hyperbolic. It follows that any hyperbolic Coxeter group is virtually
compact special (originally this is due to Haglund and Wise [15]), hence we can use

Theorem 1.1 to deduce:

Corollary 1.2. Any hyperbolic Coxeter group is hereditarily conjugacy separable.

Note that conjugacy separability of hyperbolic even Coxeter groups was proved
in [6].

Another family of hyperbolic virtually compact special groups is given by groups
with finite small cancellation presentations. Indeed, in [33] Wise proved that many
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classical small cancellation groups, including C'(l/6) and C'( 1 /A) — T(4) groups,
act properly and cocompactly on CAT(O) cube complexes. It is well known that
such groups are hyperbolic, so Agol's result [1, Thm. 1.1] applies and, together with
Theorem 1.1, it yields

Corollary 1.3. Let G be a group with afinite C'(l/6) or C '(1/4)—T(A) presentation.
Then G is hereditarily conjugacy separable.

Finally, Theorem 1.1 implies that any group acting properly and cocompactly on
the hyperbolic 3-space is hereditarily conjugacy separable, because fundamental

groups of closed hyperbolic 3-manifolds are virtually compact special by a

combination of results of Bergeron and Wise [3] and Agol [1]. Thus we obtain
the following statement:

Corollary 1.4. Any uniform lattice in PSL2(C) is hereditarily conjugacy separable.

The above corollary could also be proved by combining results of Chagas and the

second author [7, Thm. 2.5 or Thm. 2.7] with a different theorem of Agol from [1],
claiming that closed hyperbolic 3-manifolds are virtually fibered.

Let us now say a few words about the proof of Theorem 1.1. One of the main
difficulties in it is to separate conjugacy classes of torsion elements in a finite quotient.
To this end we come up with a new approach (see Proposition 3.2) which employs
(co)homological methods and is based on a result of K.S. Brown [5] allowing one to
distinguish conjugacy classes of elements of prime order using group cohomology.
In particular we obtain the following quite general result.

Theorem 1.5. Let G be a residually finite group with vcd(G) < oo. If G is

cohomologically good then every element ofprime order is conjugacy distinguished
in G.

Recall that a residually finite group G is cohomologically good, if the inclusion
of G in its profinite completion induces an isomorphism on cohomology with finite
coefficients. An element g e G is said to be conjugacy distinguished if the conjugacy
class gG is closed in the profinite topology on G (thus G is conjugacy separable if
and only if each g 6 G is conjugacy distinguished). The claim of Theorem 1.5 can
be restated by saying that two non-conjugate elements of prime order in G are not
conjugate in the profinite completion G; in other words, the embedding of G in G

induces an injective map on the sets of conjugacy classes of elements of prime order
in G and in G. In Corollary 3.5 we prove that if, additionally, G is finitely generated
then this map is actually a bijection (in particular, every element of prime order in G

is conjugate to some element in G).
To prove Theorem 1.1 for a hyperbolic virtually compact special group G, we

first show that G is cohomologically good by proving that this property is stable

under virtual retractions (Lemma 3.1), and combining this with some results from
[14, 16,20] (our argument actually does not make use of the hyperbolicity of G

and works, more generally, for almost virtual retracts of right angled Artin groups;
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see Proposition 3.8). It follows that Theorem 1.5 can be applied to separate the

conjugacy classes of elements of prime order in G. After this we prove that every
torsion element of G is conjugacy distinguished essentially by induction on its order.

Acknowledgements. The authors would like to thank Marco Boggi, Frederic

Haglund, Dessislava Kochloukova, Ian Leary and Nansen Petrosyan for enlightening
discussions. The second author was supported by Capes and CNPq.

2. Preliminaries

2.1. Notation. Given a group G, its subgroups K, H and an element g e G, we
will write Cn(g) {h e H \ hgh~1 g} to denote the centralizer of g in H, and

Nh(K) {h e H I hKh~l K} to denote the normalizer of K in H.

2.2. Hyperbolic groups and quasiconvex subgroups. Recall that a geodesic metric

space Y is (Gromov) hyperbolic if there exists a constant S > 0 such that for any
geodesic triangle A in Y, any side of A is contained in the closed ^'-neighborhood
of the union of the other sides (cf. [2]). A subset Z c lis quasiconvex if there
is e > 0 such that for any two points z\,Z2 Z, any geodesic joining these points is

contained in the closed e-neighborhood of Z.
If G is a group generated by a finite set A c G, then G is said to be hyperbolic

if its Cayley graph T(G, A) is a hyperbolic metric space. Similarly, a subset S c G

is quasiconvex if it is quasiconvex when considered as a subset of T(G, A).
Quasiconvex subgroups are very important in the study of hyperbolic groups.

Such subgroups are themselves hyperbolic and are quasi-isometrically embedded

in G (see [2]). Basic examples of quasiconvex subgroups in hyperbolic groups are
centralizers of elements (see [4, Ch. III.F, Prop. 3.9]); this fact will be important for
our argument below.

2.3. Right angled Artin groups. A right angled Artin group is a group which can
be given by a finite presentation, where the only defining relators are commutators of
the generators. To construct such a group, one usually starts with a finite simplicial
graph T with vertex set V and edge set E. One then defines the corresponding right
angled Artin group A ,4(T) by the following presentation:

A (V || [u, u] 1, whenever (w, v) e E),

where [u, u] uvu~lv~l is the commutator of u and v.
For any subset S c V, the subgroup As (5) $ A is said to be afull subgroup

of A. It is easy to see that As is itself a right angled Artin group corresponding to
the full subgraph of T, induced by the vertices from S. Moreover, A s is a retract
of A (see [25, Sec. 6]).
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Recall that a subgroup H, of a group G, is a virtual retract if H is a retract
of some finite index subgroup K ^ G. In other words, H c K and there is a

homomorphism p : K -> H such that p{K) H and p\jj id//.
Let V1Z denote the class of all groups which are virtual retracts of finitely

generated right angled Artin groups, and let AVTZ be the class consisting of all

groups G such that G has a finite index subgroup from VIZ. We are interested

in these specific classes of groups because of the following two results: in [16]
Haglund and Wise proved that any virtually compact special group G belongs to
the class AVTZ, and in [25] the first author showed that any group H e VIZ is

hereditarily conjugacy separable.

2.4. Profinite topology. The profinite topology on a group G is defined by taking
finite index subgroups as a basis of neighborhoods of the identity element. This

topology is Hausdorff, i.e., {1} is a closed subset of G, if and only if the group G is

residually finite. In the latter case, G embeds in its profinite completion, G, and the

profinite topology on G is precisely the restriction of the natural topology of G to G.

A subset S c G is said to be separable if it is closed in the profinite topology
on G. Thus an element x e G is conjugacy distinguished if its conjugacy class
xG {gxg~x | g e G} is separable in G. It is not difficult to see that the latter is

equivalent to the property that for any element y e G, which is not conjugate to x,
there is a finite group F and a homomorphism <p : G -> F, such that f (y) is not
conjugate to <f>(x) in F. It follows that G is conjugacy separable if and only if all of
its elements are conjugacy distinguished.

2.5. Criteria for conjugacy separability. The next standard observation will be

useful (cf. [24, Lemma 7.2]):

Lemma 2.1. Let K be a subgroup offinite index in a group G and let x e K. Ifx is

conjugacy distinguished in K then x is conjugacy distinguished in G.

The following criterion was discovered by Chagas and the second author in [7]:

Proposition 2.2 ([7, Prop. 2.1]). Let H be a normal subgroup of index m eN in a

group G and let x G be any element. Suppose that H is hereditarily conjugacy
separable and the centralizer CG(xm), ofxm e H, satisfies thefollowing conditions:

(i) x is conjugacy distinguished in Cg (xm);

(ii) each finite index subgroup ofCq (xm) is separable in G.

Then x is conjugacy distinguished in G.

Note that the original condition (i) from [7, Prop. 2.1] required Cg (xm) to be

conjugacy separable, however, it is easy to see that the proof (see also [6, Prop. 2.2]
for an alternative argument) only uses the weaker assumption that x is conjugacy
distinguished in Cdx"1).
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2.6. Profinite topology on virtually compact special groups. Let VCSH denote
the class of all virtually compact special hyperbolic groups.

Remark 2.3. The class VCSH is closed under taking finite index subgroups and

overgroups.

Indeed, it is immediate from the definitions that a finite index subgroup/overgroup
of a virtually compact special group is still virtually compact special. On the other
hand, it is well known that a group is hyperbolic if and only if a finite index subgroup
is hyperbolic (for instance, this follows from the fact that hyperbolicity is invariant
under quasi-isometries; see [4, Ch. III.H, Thm. 1.9]).

The next statement easily follows from the work of Haglund and Wise in [16].

Lemma 2.4. Suppose that G £ VCSH and g £ G. Then

(a) the centralizer Cg (g) also belongs to VCSH;

(b) every finite index subgroup of Go (g) is separable in G.

Proof. Fix some finite generating set A of G. Since the group G is hyperbolic, it
is well known that centralizers of elements in G are quasiconvex (see, for example,
[4, Ch. III.F, Prop. 3.9]). Hence CgC?) is quasiconvex, so it is also hyperbolic
(cf. [2, Lemma 3.8]). In [16, Cor. 7.8] Haglund and Wise proved that any quasiconvex
subgroup of G is virtually compact special, thus (a) is proved.

To prove (b), note that every finite index subgroup N C Cg (g) is also quasiconvex
(because there is a constant c > 0 such that every element of Cg (g) is at distance

no more than c from an element of N in the Cayley graph T(G, A)). Therefore N is

separable in G by [16, Cor. 7.4 and Lemma 7.5].

Lemma 2.5. Any virtually compact special group G has a finite index normal
subgroup H < G such that H £ VIZ, H is torsion-free and hereditarily conjugacy
separable.

Proof. In [ 16] Haglund and Wise proved that every virtually compact special group G

has a finite index normal subgroup H < G such that H £ VIZ. Now, H is torsion-
free as right angled Artin groups are torsion-free, and H is hereditarily conjugacy
separable by [25, Cor. 2.1].

3. Cohomological goodness and its applications to conjugacy separability

Recall that a group G is cohomologically good, if the natural embedding G G, of
the group in its profinite completion, induces an isomorphism on cohomology with
finite coefficients. This notion was originally introduced by Serre in [30, Exercises

in Sec. 1.2.6],
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Cohomological goodness of residually finite groups behaves nicely under certain
free constructions and is stable under group commensurability (see [14,20]). We

begin this section with proving another useful permanence property:

Lemma 3.1. Suppose that G is a residually finite cohomologically good group and H
is a virtual retract of G. Then H is cohomologically good.

Proof. Since the cohomological goodness passes to subgroups of finite index (see [14,

Lemma3.2]), we may assume that// is a retract of G. Let / : G //be a retraction.
Then the profinite topology on G induces the full profinite topology on H (see, for
example, [28, Lemma 3.1.5]), hence the natural embedding / : H — G induces

an injective continuous map i : H —»• G (cf. [28, Lemma 3.2.6]). Therefore, the

functorial property of profinite completions shows that the retraction / induces a

retraction / \ G H, giving rise to the following commutative diagram, where
the vertical maps are the natural embeddings of the residually finite groups in their

profinite completions:

(3.1)

If M is a finite //-module, we can turn it into a G-module by letting the kernel
of / act trivially on M. Then for any n N U {0}, (3.1) induces the following
commutative diagram of cohomology groups:

Hn(H, M):

//"(//, M)

f Hn(G, M)

f*
Hn(G, M)

Since f oi idh and / o i id^, we can deduce that i* o f* and i* o f* are

identity maps on Hn (H, M) and Hn (H, M) respectively. In particular, the map f*
is injective and the map i* is surjective.
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Since G is cohomologically good the right vertical arrow is a bijection and we
need to show that so is the left vertical arrow. To see the injectivity, pick an element

h e Hn(H,M). Then (/* o res^)(/z) (res^ o /*)(/?), implying that h 0

if res ff(h) 0.

For surjectivity, observe that i* o res^ res^ o i* and the map on the left-hand

side is surjective, hence res^ must also be surjective.

Thus res^ is an isomorphism, as required.

The next statement establishes a connection between cohomological goodness
and separability of conjugacy classes of elements of prime order.

Proposition 3.2. Let G be a residually finite cohomologically good group offinite
virtual cohomological dimension. Suppose that G splits as a semidirect product
G H x (x), where H < G is torsion-free and x e G has prime order p. Then

the natural embedding of G in G induces an injective map between the conjugacy
classes offinite subgroups in G and in G.

Proof Fix any integer n > vcd(G). Let I [respectively, /] denote the set of
conjugacy classes of subgroups of order p in G [respectively, in G], For every
conjugacy class a e / choose any subgroup Ca, of order p, representing it in G.
Since all elementary abelian p-subgroups of G have rank at most 1 (as G H xi (x)
and H is torsion-free), we can apply a classical result of Brown (cf. Cor. 7.4 and the

Remark below it in Ch. X of [5]), claiming that there is a canonical isomorphism

r] : Hn(G,Z/p) -* Y\ Hn(NG(Ca),Z/p). (3.2)

<*/

Denote Na NG{Ca), a I. The above isomorphism t] can be defined

as follows: for each a e /, the inclusion Na G induces the restriction
homomorphism res^ß : Hn(G,Z/p) —r Hn(Na,Z/p), and rj PLe/ res^a
is the corresponding diagonal map.

For our purposes, it is actually more convenient to work with homology instead

of cohomology. For each a 6 I, the inclusion Na G induces the corestriction

homomorphism cor^ : Hn(Na,Z/p) Hn(G, TL/p). This gives a natural

homomorphism

(Na, Z/p) Hn(G, Z/p), (3.3)

as I
defined by the property that the restriction of <p to each direct summand Hn (Na, Z/ p)
is the map cor^.

Since "L/p is a field, the contravariant functor Homz//,(—,Z/ p) induces a

natural isomorphism between Hornz/p(Hn(F, Z/p), Z/p) and Hn(F, Z/p) for any
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group F (for example by the Universal Coefficient Theorem, cf. [18, Sec. 3.1, pp. 196—

197]). Applying this functor to (3.3) gives the map rj from (3.2).

If the map <p was not injective then we would have a short exact sequence

{0} -+ K -+@Hn(Na,Z/p) ^ Hn(G, Z/p) -* {0},
ael

where AT is a non-trivial vector space over Z//?. Since Z/p is a field, the functor

Hornz/p(—, Z/p) is exact, so it would give a short exact sequence

{0} -* H"(G,Z/p) X [7 Hn{Na,Z/p) -> Homz/p(K,Z/p) -* {0}.
ae I

The latter would contradict the fact that rj is surjective, as Hornz/p(K, Z/p) ^ {0}.
Therefore <p is injective. A similar argument shows that cp is also surjective, as rj is

injective. Hence the homomorphism <p in (3.3) is an isomorphism.
In particular, we see that if a\ and a2 are distinct elements of I then

<p{Hn(Nai,Z/p)) n <p(Hn(Na2,Z/p)) {0} in Hn(G,Z/p). (3.4)

By the assumptions, for each k 1,2, G H xi Cak, i.e., G retracts onto Cak.
Therefore Nak also retracts onto Cak, and hence the corestriction homomorphism

cor^S : Hn(Cak,Z/p) -> Hn(Nak, Z/p) is injective. Since Hn(Ca/c, Z/p) ^ {0}
for k 1,2 (as Cak Z/p), (3.4) shows that the natural images of Hn{Cai, Z/p)
and Hn(Ca2,Z/p) in Hn(G,Z/p) must be distinct.

Now, arguing by contradiction, assume that there exist distinct ai,ci2 e I such

that Caj is conjugate to Ca2 in G. We have the following commutative diagram
coming from the natural inclusions:

G (3.5)

C,«i c,«2

Since Cak is a closed subgroup of G,k 1,2, and G is dense in G, this diagram
induces the following commutative diagram of cohomology groups (for the vertical
and diagonal arrows see [30, Sec. 1.2.4 and Exercise 1) in Sec. 1.2.6]):

H"(G,Z/p)
"Ca,

Hn(Cax,Z/p)
scai

Hn(G,Zjp)
Cat

H"(Ca2,Z/p)

(3.6)

where res^ is an isomorphism by cohomological goodness of G.
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Let us apply the Hom^/^—, Zfp) functor to the diagram (3.6). Pontryagin duality
between cohomology and homology of profinite groups (see [28, Prop. 6.3.6]) says
that Uomz/p{Hn(G, Z/p), Z/p) is naturally isomorphic to Hn(G, Z/p). On the
other hand, for the discrete group G, Hornz/p(Hn(G, Z/p), Z/p) may not be, in
general, isomorphic to Hn(G, Zjp). However, since

Homz/p(Hn(G,Z/p),Z/p) ss Hn(G,Z/p)

(as observed above), the space Hornz/p(Hn(G, Z/p), Z/p) can be thought of as the

double dual of H„ (G, Z/p). Since there is always a canonical embedding of a vector

space into its double dual, we obtain an injective homomorphism p : Hn (G, Z/p) —>

Hn(G, Z/p), which fits into the following commutative diagram:

Hn(G,Z/p)

Hn(Cai, Z/p) tf„(G, Z/p) Hn(Ca2,Z/p)

(3.7)

where Hn (G, Z/p) is the profinite homology of G, cor^ and cor^
k 1,2.

k k

By the assumption, there exists g 6 G such that Ca2 gCaig~l. Hence we
have

«1

Glc«!

J>G«2

where : G —> G is the inner automorphism of G given by ig(h) ghg 1, for
all h G, and igle«, • Ca2 is its restriction to Cffi]. This leads to the

following commutative diagram between the corresponding homology groups:

Hn(G,Z/p)

Hn(G,Z/p)
r2

Hn(Cai, Z/p)

Hn(Ca2y 2/p)

Note that the left vertical map is the identity on Hn(G,Z/p), as it is induced by an

inner automorphism of G (this is easy to prove directly, or one can use [30, Exercise 1)

in Sec. 1.2.5] and apply the Pontryagin duality between Hn and Hn). Therefore we

can conclude that zi(Hn(Cai, Z/p)) Z2(Hn(Ca2, Z/p)) in Hn(G, Z/p). Thus,
in view of injectivity of the map p from (3.7), in Hn(G, Z/p) we must have that

*i(Hn(Cai,Z/p)) x2(Hn(Ca2,Z/p)).
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The latter gives a contradiction with the property that the natural images
of Hn(Ctt|, Z/p) and Hn(Ca2, 7Ljp) in Hn(G, 7Ljp) are distinct, which was proved
above as a consequence of the fact that the map <p in (3.3) is injective.

Therefore, Cai cannot be conjugate to Ca2 in G ifoq f a2 in I. This means that

the inclusion G <-^ G induces an injective map from / to /, as required.

We are now ready to prove Theorem 1.5, stated in the introduction.

Proofof Theorem 1.5. Let p be a prime and let x be an element of order p in G.

By the assumptions there exists a torsion-free normal subgroup H < G, which has

finite index in G. Denote G\ H(x) ^ G. Clearly G\ has finite index in G,
and Gi ^ H xi (x). Therefore Gi is residually finite and vcd(Gi) vcd(G) < oo.

Moreover, Gi is cohomologically good since this property passes to finite index

subgroups and overgroups (see [14, Lemma 3.2]). Thus the group Gj satisfies all the

assumptions of Proposition 3.2.

Consider any element y e G i, which is not conjugate to x. If y and x have

different orders, then, using residual finiteness of Gi, we can find a finite quotient M,
of G i, where the images of _y and x still have different orders, and hence they will
not be conjugate in M. Therefore in this case M will be a finite quotient of Gi
distinguishing the conjugacy classes of y and x.

So, now we can suppose that y also has order p. If (y) is not conjugate to (x)
in Gi, then, by Proposition 3.2, these subgroups are also not conjugate in Gi.
Hence y is not conjugate to x in Gi, i.e., y £ xGl. Now, the conjugacy class xGl

is closed in Gi, as Gi is compact, so xGl fl Gi is a separable subset of Gi which
contains xGl but avoids y. It follows that there is a finite quotient of Gi distinguishing
the conjugacy classes of x and y.

Thus we can further assume that (y) is conjugate to (x) in Gi. Then hyh-1 z

for some h e G\ and some z e (x). Note that z ^ x as y is not conjugate to x in Gi,
by our assumption. Consequently, z £(z) ^ £(x) x, where f : Gi —>• (x) is the

natural retraction (coming from the semidirect product decomposition of G i). Since
the group (x) is abelian, we can conclude that f (y) f (z) is not conjugate to £(x)
in it, so (x) is a finite quotient of Gi distinguishing the conjugacy classes of x and y.

Thus we have considered all possibilities, showing that x is conjugacy
distinguished in Gi. It remains to apply Lemma 2.1 to conclude that x is conjugacy
distinguished in G, as required.

Proposition 3.2 shows that, under its assumptions, the natural inclusion G —»• G

induces an injective map between the conjugacy classes of prime order subgroups
in G and in G. To complement this, we will now show this map is also surjective,
provided G has finitely many conjugacy classes of elements of prime order (the latter
will be satisfied if G is finitely generated; see Corollary 3.5 below).
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Lemma 3.3. Suppose that H is a cohomologically good group with cd(H) n < oo.
Then cd(H) < n; in particular, H is torsion-free.

Proof. If A is any simple discrete H-module, then A is finite (because H is compact
and its action on A is continuous), so Hn+l(H, A) s Hn+X(H,A) {0} by

cohomological goodness of H and the assumption that cd(H) < n + 1. Hence

cdp(H) < n for every prime p by [28, Prop. 7.1.4], therefore

cd(H) := sup{cdp(//) | p prime} < n.

Finally, since cd/,(C) < cdP(H) < oo for each prime p and every closed

subgroup C ^ H (cf. [28, Thm. 7.3.1]), and cdp(Z/p) oo we can conclude

that H cannot contain subgroups of order p, for any prime p. Thus H must be

torsion-free, as claimed.

Proposition 3.4. Let p be a prime and let G be a residually finite cohomologically
good group such that vcd(G) < oo and G contains finitely many conjugacy classes

of subgroups (or, equivalently, elements) oforder p. Then every element oforder p
in the profinite completion G is conjugate to some element of G.

Proof. Arguing by contradiction suppose that there is some element y e G, of
order p, such that C (y) is not conjugate to any subgroup of G. By the

assumptions, only finitely many conjugacy classes C\,...,Ck, of subgroups of
order p in G, intersect G non-trivially. Since each Ci, i 1,... ,k, is a compact
subset of G, avoiding the finite subgroup C, there is a normal open subgroup U
of G such that CU (T C; 0 for every i 1 Since vcd(G) < oo, G

contains a normal torsion-free subgroup K of finite index. Then the closure K, of K
in G, is naturally isomorphic to K, and hence it is torsion-free by Lemma 3.3 (K is

cohomologically good by [28, Lemma 3.2.6] and cd(K) vcd(G) < oo). So, after

replacing U by U H K, we can assume that U is torsion-free.

Now, CU is an open subgroup of G, so H G (T CU is a finite index

subgroup of G, whose closure H in G coincides with CU (see [28, Prop. 3.2.2]).
Since H n C, 0, i I,... ,k, and every subgroup of order p in G is contained
in some C, we can conclude that H has no elements of order p. On the other hand,
since CG is an extension of a torsion-free group G by the cyclic group C, of order p,
we see that CU cannot contain non-trivial elements of finite orders other than p.
Recalling that H ^ CG, allows us to conclude that H is torsion-free.

Since |G : H\ < oo we can argue as in the case of K above (using Lemma 3.3)

to deduce that H CU must be torsion-free. The latter contradicts the fact that it
contains C, completing the proof of the proposition.

Corollary 3.5. Suppose that G is a finitely generated residually finite cohomologically

good group with vcd(G) < oo. Then G has finitely many conjugacy classes
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of subgroups ofprime power order, and the natural inclusion of G in G induces a

bijection between the conjugacy classes of elements (or subgroups) ofprime order
in G and in G.

Proof By the assumptions, G has a normal torsion-free finite index subgroup H.
It follows that there can be only finitely many primes p such that G contains some
non-trivial p-subgroup. Let p be such a prime. Since G is cohomologically good,
the same is true for H, so we can use a theorem of Weigel and the second author [32,
Thm. B] claiming that Hn (H, Z/p) is finite for every n > 0. Since Z/p is a field, the

Universal Coefficient Theorem tells us that the Z/p-vector space Hn (H, Z/p) is the
dual of Hn (H, Z/p), hence the latter is also finite. Therefore we can apply a result of
Brown [5, Lemma IX. 13.2] claiming that G contains finitely many conjugacy classes

of p-subgroups.
Thus we can use Proposition 3.4, to conclude that the natural map between the

conjugacy classes of elements of prime order in G and in G is surjective. This map
is injective by Theorem 1.5, so the corollary is proved.

Remark 3.6. In the case when the group G is virtually of type FP, Thm. 8.2 in the

survey paper [ 19] asserts (without proof) that, with some extra work, a stronger version
of Corollary 3.5 can be derived from a general result of Symonds [31, Thm. 1.1] (this
was also confirmed to us by Symonds in a private communication).

An important tool for establishing cohomological goodness was discovered by
Grunewald, Jaikin-Zapirain and the second author, and, independently, by Lorensen:

Proposition 3.7 ([14, Prop. 3.6], [20, Cor. 3.11]). Let G H*B=At be an HNN-
extension of a cohomologically good group H, where the associated subgroups A
and B are also cohomologically good. Suppose that G is residually finite, H, A
and B are separable in G and the profinite topology on G induces the full profinite
topologies on H, A, and B. Then G is cohomologically good.

This allows us to show that in fact any group from the class AVTZ is

cohomologically good.

Proposition 3.8. Let G e AVTZ. Then G is residually finite, cohomologically good
and has finite virtual cohomological dimension.

Proof. By definition of the class AVTZ, some finite index subgroup H < G is

a virtual retract of some right angled Artin group A. Right angled Artin groups
are residually finite (see, for example, [9, Ch. 3, Thm 1.1]), hence H and G are
both residually finite. The cohomological dimension cd (A), of A, is equal to the

clique number of the associated graph (this follows from the fact that A acts freely
and cocompactly on a CAT(O) cube complex of the appropriate dimension; see [8,
Sec. 3.6]), therefore cd(H) < cd(A) < oo. Thus vcd(G) cd(H) < oo.

To show that G is cohomologically good, we will first prove this for all right
angled Artin groups (cf. [20, Thm. 3.15] and [21]). Let B be a right angled Artin
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group corresponding to some finite simplicial graph T with vertex set V. We will
show that B is cohomologically good by induction on | V \. If | V | 0 then B {1}
and the claim holds trivially. Now, suppose that | V \ > 0 and choose any S C V
with \V \ 51 1. Then B splits as an HNN-extension of Bs over another full
subgroup Bj, for some T C S (see [25, Sec. 7]). Since Bs and Bj are a right angled
Artin groups with less than | V | generators, they are cohomologically good by the

induction hypothesis. Recall that both Bj and Bs are retracts of B and B is residually
finite, therefore these subgroups are separable in B and the profinite topology of B

induces the full profinite topologies on these subgroups (cf. [28, Lemma 3.1.5]).
Hence B is cohomologically good by Proposition 3.7.

Thus we have shown that any right angled Artin group is cohomologically
good. Therefore, according to Lemma 3.1, the finite index subgroup H ^ G is

cohomologically good, as a virtual retract of A. Hence G is itself cohomologically
good by [14, Lemma 3.2],

Combining Theorem 1.5 with Proposition 3.8 and Lemma 2.5 we immediately
obtain the following statement:

Corollary 3.9. Let G be a virtually compact special group (or, more generally,
let G e AV7Z). Then every element ofprime order is conjugacy distinguished in G.

4. Proof of the main result

Before proving the main result we will need two more auxiliary statements.

Lemma 4.1. Let G 6 VCSTL and let x e G be an element of infinite order. Then x
is conjugacy distinguished in G.

Proof By Lemma 2.5, G has a normal subgroup H, of some finite index m e N,
such that H is hereditarily conjugacy separable. By the assumptions, xm e H is

an infinite order element in the hyperbolic group G, so its centralizer CG(xm) is

virtually cyclic (cf. [2, Prop. 3.5]). It follows that CgLx"1) is conjugacy separable.
The second condition of Proposition 2.2 follows from Lemma 2.4.(b). Therefore

we can use this proposition to conclude that x is conjugacy distinguished in G, as

required.

Corollary 4.2 (cf. [25, Cor. 9.11]). If G e VCSTL and H s; G is a torsion-free
subgroup offinite index, then H is hereditarily conjugacy separable.

Proof. Note that H e VCSTL by Remark 2.3, hence any element of infinite order
is conjugacy distinguished in H by Lemma 4.1. Since H is torsion-free, the

only element of finite order in H, the identity element, must also be conjugacy
distinguished. Thus all elements of H are conjugacy distinguished, i.e., H is

conjugacy separable.
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Clearly the same argument applies to any finite index subgroup K $ H.
Therefore, H is hereditarily conjugacy separable.

Proofof Theorem 1.1. Consider any group G e VCSTL. Choose a torsion-free
normal subgroup H < G such that n | G : H | is minimal (such H exists by
Lemma 2.5). We will prove the theorem by induction on n. If n 1 the statement

holds because H is hereditarily conjugacy separable by Corollary 4.2. So we can

assume that n > 1 and we have already established hereditary conjugacy separability
for every group from VCSTL which has a torsion-free normal subgroup of index less

than n.
We will first show that G is conjugacy separable. So, consider any element x e G.

If x has infinite order, then x is conjugacy distinguished in G by Lemma 4.1. Thus

we can suppose that x has finite order.

Set K H(x) and observe that K e VCSTL by Remark 2.3. If \K : H\ < n
then K is hereditarily conjugacy separable by the induction hypothesis, so x is

conjugacy distinguished in K. But then Lemma 2.1 implies that x is conjugacy
distinguished in G, as \G : K\ < |G : H\ < oo.

Therefore we can assume that \ K : H\ n \G : H\. It follows that G K,
i.e., G H(x) ^ H yi (x), as H is torsion-free and x has finite order (which must
then be equal to n). We will now consider two cases.

Case 1. n p is a prime number. Then x is conjugacy distinguished in G by

Corollary 3.9.

Case 2. n is a composite number. Thus n Im for some l.m e N, 1 < I, m < n.
We aim to use the criterion from Proposition 2.2, so let's check that all of its

assumptions are satisfied.

Let F H(xm) ü G. Then F e VCSTL by Remark 2.3 and F ss H y\ (Z//).
Thus F is hereditarily conjugacy separable by the induction hypothesis, as | F : H |

I < n. Evidently, F < G and |G : F\ m. Every finite index subgroup of Cq (xm)
is separable in G by Lemma 2.4.(b), so it remains to check that x is conjugacy
distinguished in Cc(xm).

Set Hi CgL*"1) n H, and observe that Cc(xm) H\{x) ^ H\ x (Z/n).
Moreover, in view of Remark 2.3, H\ e VCSTL as \Co(xm) : H\ \ n < oo and

CgLx"1) e VCSTL by Lemma 2.4.(a).
To verify that x is conjugacy distinguished in Ccix"1), consider any element

y CV;(xm) which is not conjugate to x in Cg(xm). Since xm is central in Cc(xm),
we can let L be the quotient of Cg (xm) by (xm), and let f ' Gc(xm) —L denote
the natural epimorphism.

Clearly f{H\) H\, as H\ fi ker<p {1}. Therefore <p{H\) is torsion-free and

L f(Hi)((p(x)) ^ Hi xi (Z/m), implying that L VCSTL (by Remark 2.3).

Consequently, L is hereditarily conjugacy separable by the induction hypothesis,
as \L : H\ \ m < n. Let us again consider two separate subcases.
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Subcase 2.1. Suppose that <p{x) and <fi(y) are not conjugate in L. Then there

is a finite group M and a homomorphism rfr : L -> M such that f(rp(x)) is not

conjugate to f(<p(y)) in M. Thus the homomorphism rj \j/ o f : Cg(xm) ->• M
will distinguish the conjugacy classes of x and y, as required.

Subcase 2.2. Assume that </>(x) is conjugate to 4>(y) in L. Since ker(f> c (x),
we can deduce that there is h e Cg (xm) such that hyh~l z, for some z 6 (x).

Now, z^x, since we assumed that y is not conjugate to x in Cg (xm). Therefore

x f (x) £(z) z, where £ : Co(xm) -> (x) is the natural retraction (coming
from the decomposition of Cg (xm) as a semidirect product of H\ and (x)). Recalling
that (x) is abelian, we see that £(y) %(hyh~l) £(z). Therefore f(y) is not

conjugate to £(x) in the finite cyclic group (x). Thus we have distinguished the

conjugacy classes of x and y in this finite quotient of Cc(xm).
Subcases 2.1 and 2.2 together imply that x is conjugacy distinguished in Cg (xm).

Therefore we have verified all of the assumptions of Proposition 2.2 (for G and the

finite index normal subgroup F < G), so we can apply this proposition to deduce

that x is conjugacy distinguished in G. Thus Case 2 is completed.
Cases 1 and 2 exhaust all possibilities, so we have established conjugacy

separability for any group G e VCSTL, which possesses a torsion-free normal
subgroup H < G of index n. If K ^ G is any subgroup of finite index,
then K e VCS7-L by Remark 2.3 and H fl K is a torsion-free normal subgroup in K
of index at most n. So, either using the induction hypothesis (if | K : (H fl AT)| < n)
or the above argument (if | A" : (// n A^)| n), we can conclude that K is conjugacy
separable as well. Hence G is hereditarily conjugacy separable, and the step of
induction has been established. This finishes the proof of the theorem.
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