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66 D. P. Sumner: A Criterion for «-Fold Transitivity of Transformation Groups

Hence GQ 4= G, G{0,<»} 4= G0. It is also clear that (G{o,<»}» * — {0}> *) is transitive, for if
x #= 0 and y 4= 0, then

.-'¦
Hence by Theorem 3, (G, X, *) is 3-fold transitive. We note that (G, X, *) is not

4-fold transitive, for then (G{0,oo}, k — {0}, *) would be 2-fold transitive.

David P. Sumner, University of South Carolina, USA
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On 1-Factorability and Edge-Colorability
of Cartesian Products of Graphs

There is no characterization of 1-factorable graphs. Thus, it is natural that many
of the results on this topic have been the determination of classes of 1-factorable
graphs. The object of this paper is to present a sufficient condition for the 1-factor-
ability of the cartesian product of two graphs. We begin with some notation and
definitions.

The vertex set of a graph G will be denoted by V(G) and its edge set by E(G).
In this paper we consider only finite, undirected graphs without loops or multiple
edges. Let G and H be two nonempty graphs for which V(G) V(H) and
E(G) O E(H) &', then the graph G' is the sum of G and Ht written G' G 4- H, if
V(G') V(G) and E(G') E(G) u E(H). A 1-factor of a graph G is a spanning 1-regular
subgraph of G. A graph is 1-factorable if it can be expressed as a sum of edge-disjoint
1-factors. The cartesian product (or product) of the graph G with the graph H, denoted
by G x H, is defined by: V (G x H) V(G) x V(H) ; £ (G x #) {[(ult vx), {u2, v2)] | ux
u2 and vtv2 6 E(H), or vt v2 and uxu2 e E(G)}.

An assignment of n colors to the edges of a nonempty graph G so that adjacent
edges are colored differently is an n-edge-coloring of G. The minimum n for which a

graph G is w-edge-colorable is its edge-chromaiic number %X(G). By a theorem of Vizing
[2], the edge-chromatic number %t(G) of a graph G is bounded by: A(G) < %X(G) <
A(G) 4-1, where A(G) is the maximum degree of G. If G is regulär, then G is 1-factorable

if and only if %X(G) A(G). Hence any theorem concerning the 1-factorability of
regulär graphs has as an immediate corollary a result concerning edge-colorability,
which is useful since there is also no characterization of those graphs which are
A (G)-edge-colorable. For other notations and definitions, we follow [1].

If Kt denotes the complete graph on two vertices, then K% x H, where H is any
regulär graph, is shown to be 1-factorable in the following lemma.
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Lemma: If H is a regulär graph, then K2 x H is 1-factorable.

Proof. If H is 1-factorable, then the result follows immediately. Hence we consider
the case that H is not 1-factorable. If H is an r-regular graph, then by a previous
remark, %X(H) r+1. Let an (f+l)-edge-coloring of H be given and let
Clt C2,..., Cr+i be the edge-color classes of E(H). Now K2 x H contains two disjoint
copies of H. Let the (r -f l)-edge-coloring of H be applied to these disjoint copies,
and assign to each edge [(ux, v), (u2, v)] of K2 x H the only color among the r -h 1

colors which was assigned to no edge of H incident with v. Hence K2x H may be

(r 4- l)-edge-colored. But K2 x H is (r 4- l)-regular. Hence #x (JC2 x H) r -h 1, and
lf2 X # is 1-factorable.

We now state and prove the main result.

Theorem: If G is a 1-factorable graph and H is a regulär graph, then Gx His
a 1-factorable graph.

Proof: Let G be a 1-factorable, r-regular graph of order px with 1-factors
Gx, G2,. Gr, and let H be an s-regular graph of order p2. Then consider the sub-

graphs GxxH,G2xKp%,..., Grx Kp2 oiGxH, where Kp2 denotes the graph consist-

ing of p2 isolated vertices. Note that these subgraphs are mutually edge-disjoint
f

subgraphs spanning G x H, and G x H Gxx H + £ G{ X Kp2. Moreover, the

subgraphs G2 x i£*>2, Gr X JC^2 are 1-regular and thus are 1-factors oi Gx H.
Hence if Gx x H is 1-factorable, Gx H is 1-factorable. Now Gx x H is a spanning
(s + 1)-regulär subgraph oi G x H consisting of />1/2 components each of which is

isomorphic to K2 x H. By the Lemma, K2x H is 1-factorable and of regularity s + l»

Let the 1-factors of K2 x H be Fv F2,..., Fs +1 in a 1-factorization of K2 X H. Select
in every component of Gx x H, the same 1-factor Fk, where 1 < k < s + 1, and
designate the resultant subgraph oi Gxx H by Fkf. Then by the choice of Fk' it follows
that Fk is a spanning 1-regular subgraph of Gx x H, and hence a 1-factor of Gx X H,
In a like manner mutually edge-disjoint 1-factors F{,F2,..., Fs\x oi Gxx H can be

obtained from each of Fv F2, Fs +x, respectively. Therefore Gxx H is 1-factorable,
which implies that G x H is also 1-factorable as previously indicated.

Corollary: li G and H are regulär graphs, and %X(G) A(G), then ^ (G x H)
J(G)+J(Ä).

We remark that the theorem gives a sufficient condition for 1-factorability
which is, however, not a necessary condition, since 1-factorable products of two
non-1-factorable graphs are known. An example of this is the cartesian product of
the Petersen graph with a triangle.

P. E. Himelwright and J. E. Williamson,
Grand Valley State College, and Southern Illinois University, USA
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