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Randomized minimax estimators under simple
random sampling from a finite population

Abstract. The unknown number of items within a finite population which have a certain
property is to be estimated after drawing a sample without replacement. In case that the
estimates are allowed to be arbitrary reals and that squared error loss is assumed, an
explicit formula for the minimax estimator has already been determined by Hodges and
Lehmann in 1950. But if the analysis is restricted to integer valued estimators such a neat
Solution of the minimax problem under squared error loss is not at hand. To ensure that
the corresponding Statistical game is strictly determined randomized integer valued
estimators are considered in this paper, and sufficient conditions are derived for a
randomized estimator to be minimax as well as for a prior to be least favourable. Numerical
results are presented at the end of the paper.

1. Notation and introduction

Consider a finite population of iV items, 0 of which have a certain property. The unknown
frequency 6, which is an element of the parameter set 0 {0,1,..., N}, is to be estimated
after a simple random sample (i.e. without replacement) of size n has been drawn. The
number of items in the sample which have the specified property is a sufficient statistic
having a hypergeometnc distnbution. Therefore X {0,1,..., n} is an appropriate sample

space. In order to avoid trivial cases it is assumed that n < _V — 1. An elementary and
detailed description of the following decision theoretic framework is given in [4]. The
notation used below is basicly in accordance with that in [1]. Let A be the set of all
randomized estimators, i.e. the set of all n + 1-tupels S (ö09..., Sn) of probability
measures

N

Öx Z <*xa ' efl X € X (1)
a 0

on the action space A {0,1,...,_V} where olx0, olxN > 0 and olx0 +... + olxN 1 for
x eX and ea denotes the one-point measure which puts its mass on a. Let II be the set

of all priors, i.e. the set of all probability measures

N

* Z Pe ' h (2)
ffsO

on the parameter space & wherepo,..*,pN^:0 andpQ +... + pN l. The Bayes risk of
a randomized estimator ö with respect to a prior n according to (1) and (2), respectively,
is defined by

r(n9S)= LK(M)/>*
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where R(;ö) denotes the risk function of ö given by

1 " N /0\ /N-0\
R(0,ö) 7mZ ZoLxa(0-a)2( 069, (3)

'_V\X=0 fl=o \xj\n-xj
n/

under squared error loss. A randomized estimator öK with

r(n,ön) inf r(n,ö)
SeA

is called Bayes with respect to the prior n. The minimax risk r* is defined by

r* inf sup r(n,S), (4)
SeA neu

and a randomized estimator ö* with

sup r (n,ö*) r*
neu

is called minimax. A prior n* with

inf r (7ü*, S) sup inf r(n, ö)
SeA neu SeA

is called least favourable, and the Statistical game (II9 A, r) is said to be strictly determined
if

sup inf r(n9ö) r*
neu SeA

The following result is well known (see e.g. [6], Theorem 3.20): The Statistical game
(II9 _d, r) is strictly determined, 7t* is a least favourable prior, and ö* is a minimax estimator
if and only if (7t*, ö*) is a saddle-point in (J7, A9 r), i.e. if and only if

inf r(7t*,(5) r(7t*,<5*) sup r(7t,<5*).
SeA neu

Hodges and Lehmann consider the estimation problem as described above. The only
difference is that they assume the action space A to be the set of reals. They prove (cf. [2],
section 5, and [3], example 4.2.6) that the non-randomized estimator du defined by

^"h\m)hmr- -*•
is minimax and that the minimax risk is given by

N2 n(N-n) jn{N -n)\2
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This estimator has the obvious disadvantage that the estimates <5R (x) are not necessarily
integers whereas the unknown frequency 09 which is to be estimated, is one ofthe numbers

0,1,..., N. Therefore, it may be assumed that in apphcations the non-randomized estimator

dz defined by

öz(x) [öu(x) + ±], xeX,

is used instead ofthe non-randomized estimator öm where [y] denotes the greatest integer
less than or equal to y. However, Table 1 at the end of this paper shows that in most cases

the maximum risk

rz maxR(0,(52) (6)
0€0

of this estimator is greater than the minimax risk r* with respect to the adequate action

space A {0,1,..., N}9 i.e. the estimator Sz is not minimax.

2. Computation of minimax estimators

The Statistical game (17, A9 r) is the mixed extension of an appropriate finite game. Therefore

it follows from a well-known result of John von Neumann [5] that there exists a

saddle-point in (II9 A9 r) which can be computed by linear programming techniques (cf. [6],
Theorem 3.25 and ch. III.5). However, this approach causes great computational effort
if the population is of reasonable size _V (cf. [6], p. 206). In order to avoid this difficulty
another method is described for solving the Statistical game (17,__,r). In the following
theorem sufficient conditions are estabhshed for a prior 7t and a randomized estimator
S to form a saddle-point in (17,4 r). It is rather simple to check whether these conditions
are satisfied since this can be done by Computing the Solutions of two Systems of n + 2

linear equations. These Systems are defined by

B(X C9 0L€WLn + 29 (7)

and

Dp e, peRN+1, (8)

with matrices B (bii)Q^Ui^n^l and D (^)o__i__n+i,o__j£iv as well as vectors
fo)o<;.•__»+! and e (e,)osiSll+1 given by

V
(2i-2aj-l)(*)(N_l) for;e{0,l,...,n}

for j n +1
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for ie {0,1,..., n + l},

for *e{0,l,...,n + l},

_w={w-2--»")C)(»-0 ^^W1--»!
I 1 for i n +1

for;e{0,l,...,_V}, and

[0 for *e{0,l,...,n}
€i

[1 for i n + l

where a0,...,an and n0,...,n„ are arbitrary elements of the sets {0,1,...,iV — 1} and
{0,1, 2}, respectively.

Theorem. Let a0, ...,an be elements of the set {0,1,...,N — 1} with the following two
properties.

(i) There exists a Solution a (a0,..., a„, q) e [0, l]n + * x IR of system (7).

(ii) There exists a Solution p (p0,... 9pN) e [0,1]N +1 of system (8) with

Vi

0 for aj 1

1 for af g(0,1)
2 for ol: 0

for ie {0,1,..., n}.

Define a randomized estimator ö (ö0, ...,ön)hy

Öx *x'Zax+(l-XX)'Zax+l, *eX, (9)

and a prior 7t by

N

n _T pö e0
0 0

Then (7t, ö) is a saddle-point in the Statistical game (77,_d,r), i.e.

(a) (17,_d,r) is strictly determined,
(b) the prior 7t is least favourable, and
(c) the randomized estimator S is minimax.

The minimax risk is given by r* q. The minimax estimator is uniquely determined
in case that the matrix B is non-singular, px +... + px+N„n >0 for xeX, and

#{0e<9|/?0>O}>n + 2.
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Proof. Subsequently it is shown that the randomized estimator S is an equalizer rule and
that it is Bayes with respect to the prior 7t. According to (3) the risk function of the
randomized estimator S is given by

1 " /0\//V —0'
RV>V 713\ £ [*x(0-ax)2 + (l-OLx)(0-ax-l)2](

/N\x=o \xj\n-x
n)
1 n /0\/_V-0
-p- I [oLx(20-2ax-l) + (0-ax-l)2](
iv\x=o \xj\n-x

for 0 e 6>. Hence it follows from the hypothesis (i) that R (0, S) q for 0 e {0,1,..., n +1}.
This risk function has the form of a polynomial in 0 of degree n +1 at most, and therefore
it has to be constant. In particular it follows that R (0, ö) q for 0 6 0, i.e. the randomized
estimator ö is an equalizer rule.
Let She a randomized estimator, i.e.

N

$x= Z ocxa-sa, xeX,
o 0

where olx0 axN > 0 and a^ +... + axN 1 for x e X according to (1). The Bayes risk
of the randomized estimator ö~ with respect to the prior 7t can be written in the form

N\x=0 a=0

where the function hx is defined by

hx(a) a2. £ U-2a-Z 0 U
0_=o\x/\n-x/ 0=0 \x/\n-xj

0=o \xj\n-xj
for xeX. Therefore the minimum Bayes risk of the prior 7t is given by

inf r (7t, $)___*£ inf £ «x„ M«)>
3e/l (M\x 0 ax0 «xn_;0 a 0

n J <xx0 + ...+axN l

and a randomized estimator $ is Bayes with respect to the prior 7t if and only if the
corresponding weights satisfy axa 0 for aeAx and xeX where

Ax {äeA\hx(ä) >minhx(a)} xeX,
aeA
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denotes the set of all points which do not minimize the function hx on A. Now, let x eX
be fixed. If

0=o \x/ \n-xj
i.e. if px px+N-n 0, then hx(a) 0 for ae_4 and hence Ax 0. If

" fO\fN-6\
e=o \x/ \n-xj

i.e.ifpx + + px+N_n>0, then the function nx is a parabola which is minimized on R
at

0=0 \x/\n-x e[0,N],

and hence

U\{[fl* + _]} forfl;#{i,f,...,iV-l}
U\{a*-_, a* + i} for a*e {i,§,...,JV-A}

Therefore it follows from the hypothesis (ii) that the randomized estimator ö is Bayes with
respect to the prior 7t which shows that (n,ö) is a saddle-point in the Statistical game
(17, A, r) and that the minimax risk is given by r* q.

Now assume additionally that the matrix B is non-singular, px + + px+N-n>0 for
xeX, and # {0e0\pe>0} > n + 2. Let ö' be another minimax estimator. Since the
Statistical game (ü,A,r) is strictly determined it follows that (7t,ö') is a saddle-point, too.
Therefore the hypothesis px +... + px+N_„ > 0 for x e X implies that S' can be written in
the form

K *'x' £ax+ (1 - <**) * eflx+i, x eX,

for suitable weights a'0,..., ol'„ e [0,1]. The risk function of the randomized estimator S'

satisfies R (0, ö') g for 0 e 0 with /?0 > 0. Since H (0, <5') has the form of a polynomial in
0 of degree n +1 at most it follows from the hypothesis #{0e6>|/?0>O}>n + 2 that the
randomized estimator ö' is an equalizer rule. Hence a short calculation yields B - ol' c

where a' (a'0,..., ol'„ q) e [0, l]rt + * x R. Since the matrix B is assumed to be non-singular
it follows that a a', and therefore ö =<5\ D

3. Numerical results

The theorem has been applied to determine a saddle-point in the Statistical game (17, A, r)
for a population of N 10 items and samples of size n 6 {1, 2,..., 9}. In each case the
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minimax estimator is uniquely determined whereas different least favourable priors exist
for n < 8. Table 1 contains the minimax risks rR and r* according to (5) and (4), respectively,

as well as the maximum risk r2 according to (6). In Table 2 the parameters a0,...,an
and ol0, ol„ of the uniquely determined minimax estimator according to (9) are given.

Table 1. Risks for JV 10.

n rR r* r2

1 6.25000 6.50000 9.00000
2 4.00000 4.00000 4.00000
3 2.84574 3.00000 4.00000
4 2.10102 2.24528 2.66667
5 1.56250 1.75000 2.00000
6 1.14424 1.30709 1.60000
7 0.80218 1.00000 1.50000
8 0.51020 0.63353 1.00000
9 0.25000 0.50000 1.00000

Table 2. The minimax estimators for N 10.

n 1 2 3 4 5 6 7 8 9

«o 2 2 1 1 1 1 1 0 0

«o 0.500 1.000 0.333 0.585 0.750 0.898 1.000 0.366 0.500

<*i 7 5 3 3 2 2 2 1 1

«i 0.500 1.000 0.111 0.802 0.250 0.630 0.857 0.300 0.500

«2 8 6 5 4 3 3 2 2

«2 1.000 0.889 1.000 0.750 0.343 0.714 0.228 0.500

H 8 6 5 5 4 3 3

a3 0.667 0.198 0.250 1.000 0.571 0.142 0.500

fl4 8 7 6 5 5 4

«4 0.415 0.750 0.657 0.429 1.000 0.500

<*5 8 7 6 6 5

«5 0.250 0.370 0.286 0.858 0.500

*6 8 7 7 6

«6 0.102 0.143 0.772 0.500

Ö7 9 8 7

«7 1.000 0.700 0.500

*8 9 8

«8 0.634 0.500

a9 9

«9 0.500
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Some integral inequalities

The aim of this note is to prove some integral inequalities and to find interesting
apphcations for the logarithmic and exponential functions. These relations have some
known corollaries ([3], [4], [5], [8]).

Theorem 1. Let f:[a9b] -> R(a < b) be a differentiable function with increasing (strictly
increasing) derivative on [a,b]. Then one has the following inequalities

b fa + b\
j/W^^^-^/^-y-J (1)

2- J/(0* < (b - a)f(^/a~b) + (y/b - yfi)(y/b f (b) + Ja f (a))
a (<)

(Here0<a<b). (2)

Proof. The Lagrange mean-value theorem implies: f (y) — f(x) >(y — x) f'(x) for all
(>)

x,ye[a9b]. Take x (a + b)/2 and integrate the obtained inequality:

i.e. relation (1).

In order to prove (2) consider as above the inequality f(y) — f (x) < (y — x) f'(y) with

x y/äb. Integrating by parts on [a,b] we get
(<)

)f(y)dy -(b- a)f(Ja~b) <(y- Jäb) f(y)\ -)f(y)dy
a (<) a a

which easily implies (2).


	Randomized minimax estimators under simple random sampling from a finite population

