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Der Satz über die Division mit Rest läßt sich auf die Partialbruchzerlegung anwenden.
Hat man in der Produktdarstellung (4) quadratische Faktoren q (s) s2 + ß s + y und ist

Px
dort etwa Qx qm, dann läßt sich der zugehörige Partialbruch — in (5) mit degPx <2m
durch Division mit Rest in die bekannte Form ^

Px(s) _bms + cm bm_xs + cm_x bxs + cx
+ —/_/_._«-_ + • • • + 77T— \P)

(q(sT (q(s))m (q(s))m~1 q(s)

mit eindeutig bestimmten Konstanten bx,cx, ...,bm,cm bringen. Das Verfahren wird am
folgenden Beispiel erläutert.

Beispiel. Ist etwa Px(s) 2s5 — s* + 4s3 + 1 und Qx(s) (s2 + l)3, so führt wiederholte
Division durch s2 + 1 auf

2s5-s* + 4s3 + l (2s3 - s2 + 2s + l)(s2 + 1) - 2s,

2s3-s2 + 2s+l=(2s- l)(s2 + 1) + 2,

und damit lautet die Partialbruchzerlegung (8) in diesem Fall

2s5-s4 + 4s3 + 1

_
2s 2 2s-l

(s2 + l)3 " " (s2 + l)3
+

(s2 + 1)2
+

s2 + l'
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On a discrete Dido-type question

We start with the following well-known fact [1]. If D is a simply connected domain ofthe
Euchdean plane with area s/(D) whose boundary is divided into a segment and a simple

curve r of length L (F), then $4 (D) • L2 (T) with equality if and only if D is a
2'7C

hemicircle. In other words if we have a simple curve T of given length L(T) in the
Euchdean plane, then the area of its convex hüll is maximal ifand only if T is a hemicircle

1

i.e. «a/ (conv F) g • L2 (T). Reading these sentences we immediately thought of the
2-71

following discrete version of the above problem. We call it a discrete Dido-type question
since it is related to the well-known Dido-problem of Hajos ([3], [4], [5]) and also it is

related to the problem of [2], but we believe it to be a new question.



El. Math., Vol. 44, 1989 93

Definition 1. A subset S ofthe Euchdean plane is polygonally connected if given any two
points X and Y in S there exist points X0 X,XX,..., Xk_x, Xk Y such that

P= (J Xt-xXt is contained in S, where X^^Xi is the segment joining X^ and
; i

^,(1 __. i _S &)• The set P is called a polygonal path from X to Y.

Problem. Suppose that we have a finite number of segments in the Euchdean plane such
that they form a polygonally connected subset ofthe plane (Fig. 1). Provided that we may
not change the lengths of our segments find the polygonally connected arrangement the
area of the convex hüll of which is maximal.

Figure 1

Conjeeture. The extremal arrangement is the polygonal path of the segments which is

inscribed a hemicircle (Fig. 2 a).

Of course the order ofthe segments in this polygonal path can be arbitrary. Also, it seems
to be true that the polygonal paths mentioned above are the only extremal arrangements
except the case of three segments (Fig. 2 b).
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Figure 2 a Figure 2 b

In the present note we are going to prove the following two theorems, the first of which
supports our conjeeture and the second of which shows that our problem can lead to
some interesting configurations in the higher dimensional Euchdean Spaces as well.

Definition 2. A graph is simple if it does not contain loops or parallel edges, and a graph
is connected if for any two vertices there exists a path of the edges from one vertex to the
other.

Theorem 1. Let Gn be an arbitrary connected simple graph of n edges (n 4) embedded
in the Euchdean plane such that the edges are segments. If GHn is the polygonal path of
n segments which is inscribed a hemicircle and the segments of which are congruent to
the n segments of Gn, then the area $4 (conv Gn) of the convex hüll conv Gn of Gn is smaller
than or equal to the area s/ (conv GH„) of the convex hüll conv GHn of GHn with equality
if and only if Gn is a polygonal path inscribed a hemicircle (Fig. 3).
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Figure 3

Remark 1. In Theorem 1 the set G„ of n segments is obviously a polygonally connected
subset of the Euchdean plane. However the converse is not true i.e. there are polygonally
connected arrangements of n segments in the plane which cannot be represented as

G„-sets. This shows the difference between Theorem 1 and our conjeeture.

Theorem 2. Let Gdd+X be an arbitrary connected simple graph of d + 1 edges embedded
in the d-dimensional Euchdean space (d 2) such that the edges are segments. If GSd+ x

is the star formed by the d + 1 segments of Gdd+
x where the center of the star GSd + x is in

the interior or conv GSd+ x and is the center of the altitudes of the simplex the vertices of
which are the endpoints of GSd+x (Fig. 4), then for the d-dimensional volumes of
convGj+i and conv GSd+x we have the inequality

F(convG^+1)^ V(com GSdd+x).

1

Remark 2. It is easy to see that the inequalities s4 (D) • L2 (F), s/ (conv F)
l 2 - n

• L2 (F) of the introduction are simple corollaries of Theorem 1. So also the well-
2 • n

known isoperimetric property ofthe circles follows from Theorem 1.

conv

^6 dH

Figure 4
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First let us see the proof of Theorem 1 It is an easy exercise to show that

sf (conv G3) sf (conv GH 3) (1)

Let (€n {Gn\ Gn is a connected simple graph of n edges embedded in the Euchdean plane
such that the edges are segments of the given n lengths} Because of the theorem of
Weierstrass there exists a GJ e ^ such that sf (conv G„) fg sf (conv GJ) for any Gn e <%n

We are going to show that GJ is a polygonal path inscribed a hemicircle
Furtheron we suppose that n ^ 4 and because of (1) we may suppose the inequahty

sf (conv G„_ x) sf (conv GHn_ x) (2)

also From those we prove that GJ is a polygonal path inscribed a hemicircle, which then

proves Theorem 1

Proposition 1. GJ is a tree

Proposition 2. If V is a vertex of degree one of the graph GJ, then V is a vertex of the

convex hüll of GJ
The proofs of these two propositions are easy exercises which can be left to the reader

Proposition 3. If Vx and V2 are two vertices of degree one of the graph GJ, then they are
consecutive vertices (of conv GJ) on the boundary of conv GJ

Proof Suppose on the contrary that Vx, V2 are two vertices of degree one of the graph
GJ which are not consecutive vertices of conv GJ on the boundary of conv GJ This means
that there are vertices C7{1>, U[2\ U2{1\ U{22) ofthe convex hüll of GJ such that U^, Vx, U{x2)

is a tnplet of consecutive vertices and also U_j1), V2, U^2) is another tnplet of consecutive
vertices of conv GJ (Fig 5)

C2)

w€»'«
Vy* W

Figure
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Obviously the edge Vx WX(V2W2) of GJ is orthogonal to the line U[1} U[2)(U^ U{22)).

Without loss of generality we may suppose that the lengths of the segments Ux{i) U[2\
U{21) U{2) satisfy the inequality U^ U[2) U^ U{2). Now let V2 be the interior point ofthe
segment W2 VI such that V2 K/ VXWX. In other words we put the segment Vx Wx in a new
position namely, in V2 V{, which obviously yields a new graph GJ'e^„. It is easy to see

that

sf (conv GJ') - sf (conv GJ) ^ \ • Vx Wx • (U^ U(22) - U[X) U{x2)) ^ 0. (3)

But GJ' is a connected simple graph of (n — 1) edges in the Euchdean plane where the
edges are segments of the given (n — l) lengths, since the degree of V2 was one in GJ.
Hence, because of (2), we have

sf (conv GJ') sf (conv GH„ _ x) (4)

where GHn_x is the polygonal path formed by the (n — 1) segments of GJ', inscribed a

hemicircle such that the last segment is W2 V{ (Fig. 6)

W

Figure 6

Let Vx be the other endpoint of the diameter of the hemicircle of GHn_x. Here

£ VI W2 Vx | and so £ V{ V2 Vx > f consequently we can rotate V2V{ about the point
V2 into the new position V2 Vx' such that the arising polygonal path GJ" e (€n satisfies the

inequality

sf (conv GH„_ x) < sf (conv GJ"). (5)

Thus on account of (3), (4), (5) we get that sf (conv GJ) < sf (conv GJ") with GJ, GJ" e %n

which is a contradiction.

Proposition 4. The total number of the vertices of the graph GJ the degree of which is

equal to one is two.

Proof: Because of the Proposition 3 the total number of the vertices of the graph GJ the
degree of which is equal to one is at most three (and of course is at least two). Now
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Figure 7

suppose that GJ possesses three vertices of degree one. On account of the Proposition 3

the convex hüll of the graph GJ will be the triangle A Vx V2 V3 where Vx, V2, V3 are the
vertices of degree one in GJ (Fig. 7).

Because of the Proposition 1 and 2 the graph GJ possesses one vertex V with degree three
and each vertex different from VX,V2,V3,V has degree two. Considering the path ofthe
graph GJ from V to Vt(i 1,2,3) it has to be the segment VVt otherwise we could increase
the area of the convex hüll of GJ. Also, the segment VVX is perpendicular to the side V} Vk

of the triangle A Vx V2 V3({i,j,k} {1,2,3}). Finally at least one of the segments
VVX, VV2, VV3 consists of at least two edges of GJ because n 4 (Fig. 8). This clearly
yields a contradiction, namely it is enough to apply the method of Fig. 6 to the configuration

of Fig. 8.

Now the rest of the proof of Theorem 1 is more or less a routine exercise. Namely,

Figure 8

\

a e
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Proposition 5. GJ is a convex polygonal path of n segments

Proof From the Proposition 4 we get that GJ has two vertices Vx and V2 with degree one
and all the other vertices have the degree two In addition Vx and V2 are consecutive
vertices of conv GJ on the boundary of conv GJ (Proposition 3) We claim that

G* bd(conwG*)\]Vx,V2[ (6)

where b d means the boundary of the corresponding set and ] [ means the
corresponding open segment If (6) were not true, then as the Fig 9 shows a simple reflection
about a point or any other transformation which preserves the lengths of the edges of GJ
and the Connectivity of GJ could increase the area of the convex hüll of GJ which would
yield a contradiction

-O

Figure 9

Proposition 6. GJ is a polygonal path of n segments of the given n lengths which is

inscribed a hemicircle

Proof Using the notations of the previous proof it is enough to show that if X is an

arbitrary vertex of GJ different from Vl9 V2, then ^VXXV2 \ Because of the

Proposition 5 the path from Vx to X of GJ is a convex polygonal path and also the path
from X to V2 is a convex polygonal path If -£VXXV2+ f, then a rotation about X can
move the path from Vx to X into a new position when the area of the convex hüll of the

new GJ will be larger than in the starting case which is a contradiction (see Fig 10)

This completes the proof of Theorem 1

Now let us turn to the proof of Theorem 2 We sketch the main steps only without going
into details
First of all it is not hard to show that GSd+ x is uniquely determined up to congruent
transformations if we know the lengths of the d + 1 segments On the other hand let

{Gd+x\Gd+x is a connected simple graph of d + 1 edges imbedded in the d-%d+i
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Figure 10

dimensional Euchdean space such that the edges are segments ofthe given d + 1 lengths}
Because ofthe theorem of Weierstrass there exists a GJ+ xG^d+x such that F(conv Gd + x) ^

V(convGf+x) for any Gdd+Xe%dd+X We claim that F(convGJ^) V(GS%+X) We

prove this with the help of the following transformation which transforms GJ+ x into a

graph of <£$+ x which is a star of (d + 1) segments ofthe given d + 1 lengths and the volume
ofthe convex hüll of which is equal to ^(convGJ^) From this it follows immediately
that the center of the star is in the interior of the convex hüll of the star and so it must
be the center of the altitudes of the simplex whose vertices are the endpoints of the star
Finally because of our first Observation we get that the star in question is congruent to
GSd+l and so P^convGJ+J V(con\GSd+x) really, which yields Theorem 2

The promised transformation is the composition of finite many transformations which
merease the maximal degree of the graphs in question by one Now let us see how it
happens We have a graph of ^d+ x say GJ+ x, the volume of the convex hüll of which is
maximal in ^d + x Suppose that V is a vertex of the maximal degree in GJ+X We may
suppose that there exists an edge Ux U2 of GJ+ x whose endpoints Ux, U2 are different from
K otherwise we are done Also we may suppose that G Gd*+x\Ux U2 is a connected
simple graph of d edges imbedded in the d-dimensional Euchdean space (d ^ 2) such
that the edges are segments le we may suppose that the degree of U2 is one If
dim (conv G) d — 1, then we translate the edge Ux U2 by the vector Ux V to the vertex
V, which obviously yields a graph G* of ^d + x the maximal degree of which is larger than
the maximal degree of GJ+X by one and finally F(convG*) V (com G%ix) If
dim (conv G) d, then conv G is a d-dimensional simplex because it is the convex hüll of
d (line) segments forming a connected simple graph G of d edges in the d-dimensional
Euchdean space (d 2) Now V is a vertex of conv G Consider the parallel Illumination
of the simplex convG determined by the direction Ux U2 (Fig 11)

Let Vf be the facet of conv G opposite to V If the facet Vf is illuminated (1 e for any
interior point of Vf there exists a ray ofthe Illumination parallel to Ux U2 which intersects

Vf at the given interior point going into the interior of conv G), then we translate the edge

Ux U2 ofthe graph GJ+ x by the vector Ux V to the vertex V otherwise we translate Ux U2

by the vector U2 V to the vertex V Let VV* be the new edge (segment) at the vertex V
in both cases forming a new graph G* of %>$+

x together with G Finally let us denote the

orthogonal projection of conv G onto the hyperplane H by P (conv G) where H is a

hyperplane orthogonal to the line Ux U2 It is not hard to show that
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n

conv

W
Va

Figure 11

F(conv G*) F(conv G) + -sf [P(conv G)]VV*
d

F(conv G) + --sf [P(conv G)] • Ux U2
d

where sf(...) means the (d — l)-dimensional volume of the corresponding set) and
1

F(conv GJ£x)g F(conv G)+--sf[P(convG)] • Ux U2. Hence F(conv G*) F(conv GJ*x)
d

where G* is a graph of ^d+ x the maximal degree of which is larger than the maximal
degree of GJ+ x by one.
This completes the proof of Theorem 2.

A. Bezdek, Math. Inst, of the Hungarian Acad. of Sciences, Budapest
K. Bezdek, Eötvös Lorand University, Department of Geometry, Budapest
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