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1 Introduction
We consider the Fibonacci sequence Fn)

n=0 and the Lucas sequence Ln)n=0 both of
which are solutions to the linear recurrence un+2 un+1 + un, with the initial conditions
F0 0, F1 1 and, respectively, L0 2, L1 1.

Das Problem, alle reinen Potenzen in der Fibonacci- und der Lucas-Folge zu finden,
wurde vor kurzem von drei der vier Verfasser der vorliegenden Arbeit gel öst. Hier
geben die Autoren einerseits einen Überblick über den Beweis dieses Resultats,
andererseits zeigen sie, dass die Zahlen 0, 1, 2, 3, 5 und 8 die einzigen Fibonacci-Zahlen Fn

sind, für die Fn+1 oder Fn-1 eine reine Potenz ist. Dabei ist die Tatsache erstaunlich,
dass das erste Ergebnis auf tiefen Resultaten, wie z.B. dem Satz von Wiles zur Modularit

ät elliptischer Kurven der beim Beweis der Fermat-Vermutung eine entscheidende
Rolle spielte) oder der Bakerschen Theorie der linearen Formen in Logarithmen,
beruht, währenddem sich das hier dargestellte neue Ergebnis relativ einfach gewinnen

lässt.
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The problem of determining all perfect powers in the Fibonacci sequence was a famous
open problem for over 40 years, and has been resolved only recently [9].

Theorem 1. The only perfect powers among the Fibonacci numbers are F0 0, F1

F2 1, F6 8 and F12 144. For the Lucas numbers, the only perfect powers are
L1 1 and L3 4.

Subsequent papers studied several multiplicative generalizations such as Fn ay p see

[8]) and Fn1 · · · Fnr yp with 1 r < p see [7]). Here, we consider the apparently)
non-multiplicative question Fn ± 1 y p. We prove the following result:

Theorem 2. The only nonnegative integer solutions n, y, p) of the equations

Fn ± 1 yp

with p 2 are

F0 + 1 0 + 1 1, F4 + 1 3 + 1 22 F6 + 1 8 + 1 32

F1 - 1 F2 - 1 1 - 1 0, F3 - 1 2- 1 1, F5 - 1 5 - 1 22

We note that these equations have been previously solved for p 2, 3 by R. Finkelstein
[14], [15], and N. Robbins [29]. In Section 2.6 of [1], J.A. Antoniadis gave an alternative
resolution of Fn - 1 y2.

The traditional approach to equations involving Fibonacci numbers combines clever tricks
with various elementary identities connecting Fibonacci and Lucas numbers. This is the
approach we follow in proving Theorem 2. By contrast Theorem 1 was proved by
combining some of the deepest tools available in number theory: namely the proof of Fermat’s
Last Theorem and a refined version of Baker’s theory of linear forms in logarithms.

In Section 2 we discuss the modular approach used in the proof of Fermat’s Last Theorem).

We also try to give the reader a feel for the modular approach through some
elementary computations connected with the proof of Theorem 1. In Section 3 we sketch the
main steps in the proof of Theorem 1. In Section 4 we give a brief historical survey of
previous results on perfect powers in the Fibonacci sequence. Sections 5 and 6 build up to
the proof of Theorem 2, which is completed in Section 7. In the final section we briefly
mention a related open problem.

2 The modular approach and Fibonacci powers

In this section we would like to make a few remarks on the modular approach used in
the proof of Fermat’s Last Theorem. We also give the reader a feel for how the modular
approach works by carrying out some very explicit and elementary calculations connected
with the Fibonacci perfect powers problem. It is appropriate to point out that equations
Fn y p and Ln yp have previously been solved for small values of the exponent p by
various authors; we present a brief survey of known results in Section 4.

Wiles’ proof of Fermat’s Last Theorem [35], [34] is certainly the most spectacular recent
achievement in the field of Diophantine equations. Although the proof is very deep, the
logical structure of the proof is easy to understand. There are three main steps:
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i) Associate to a non-trivial solution of xp
+ yp z p what is now known as a Frey

elliptic curve 1:

Ex,y,z : Y 2 X(X + x p X - yp

ii) Ribet’s Level-LoweringTheorem[28] and theModularityTheorem 2 together imply
that Ex,y,z is associated 3 to a cuspidal newform of level 2.

iii) There are no newforms at level 2, hence we have a contradiction.

We may attempt to apply the same strategy to other Diophantine equations. For example,
sensible Frey curves are available for Diophantine equations of the form

axp
+ byp czp axp

+ byp cz2 ax p
+ byp cz3 p prime).

If a ‘sensible’ Frey curve can be constructed, then we may apply step ii) and deduce that
the Frey curve is associated to a newform of a certain level N, which depends on the
Diophantine equation we started with. However, whilst there are no newforms at level 2 nor
at a handful of other small levels, there are newforms at all levels N > 60. Thus step iii)
fails in general. Several alternative strategies do apply in special cases see for example
[3], [13], [16]), though there does not seem to be a general strategy that is guaranteed to
succeed.

A fact that had been underexploited is that the modular approach when applicable) yields
an infinite number of congruence conditions for the solutions of the Diophantine equation
in question. Namely, for a fixed prime exponent p which is not too small), if we choose
a good prime l all primes are good except for finitely many) then we obtain congruence
conditions on x, y, z modulo l. For an explicit example of how the modular approach
furnishes congruence conditions on the solutions, see below. For the above equations it
is difficult to exploit this information successfully since we neither know a bound for the
exponent p, nor for the variables x, y, z. This suggests that the modular approach should
be applied to exponential Diophantine equations; for example, equations of the form

ax p
+ byp c, ax2 + b cy p p prime).

For such equations, Baker’s theory of linear forms in logarithms see the book of Shorey
and Tijdeman [32]) gives bounds for both the exponent p and the variables x, y. This
approach through what are known as linear forms in logarithms and Thue equations) has

undergone substantial refinements, though it still often yields bounds that can only be

described as ‘astronomical’.

1Non-trivial means xyz 0. In step i), we may suppose that x, y, z are coprime integers and p is a prime,
and for technical reasons that will not concern us, we need to suppose p > 5, reorder the variables x, y, z and
change signs so that x -1 mod 4) and 2 | y.

2TheModularity Theorem states that all elliptic curves are modular. Wiles proved this for semi-stable elliptic
curves, which was enough for the proof of Fermat’s Last Theorem. Since then the proof of the Modularity
Theorem has been completed in a series of papers the last of which is [5].

3We do not explain here what newforms are, nor the precise relationship furnished by Ribet’s Theorem
between Frey curves and associated newforms. We do however, later on, give an example were we explain this
relationship in terms of down-to-earth congruences.
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The proof of Theorem 1 marked the first time the modular approach has been combined
with Baker’s theory. We shortly sketch the main steps of the proof of Theorem 1 for
Fibonacci numbers. Before that we illustrate the modular approach in this case by providing
a few details. We are concerned with the equation Fn yp with p prime. For technical
reasons we restrict to the case p 7. The Frey curve needed depends on the class of n
modulo 6, and we restrict our discussion to n 1 mod 6). We associate to the solution
n, y, p) the Frey elliptic curve

En : Y2 X3 + Ln X2 - X.

Ribet’s Level-Lowering Theorem tells us that this is associated to a cuspidal newform of
level 20. The only such newform itself corresponds to the elliptic curve

E : Y2 X3 + X2- X.

We did not explain the precise relationship between Frey curves and the newforms
associated to these by Ribet’s Level-Lowering Theorem. In the present context, it is easy to
state the relationship in terms of very simple congruences. Let l 2, 5 we are excluding
2 and 5 as these are ‘bad’ primes in the present context). Let N(l) denote the number of
solutions X, Y to the equation E modulo l; we can write this as

N(l) #{(X, Y : 0 X, Y l- 1 and Y2 X3 + X2 - X mod l)}.

We let Nn l) denote the corresponding quantity for En:

Nn l) #{(X,Y : 0 X, Y l - 1 and Y2 X3 + Ln X2 - X mod l)}.

The relationship between En and E can be expressed as follows:

I) if l y then Nn l) N(l) mod p), and

II) if l | y then N(l) -1 or 2l + 1 mod p).

To get a feel for these congruences and the information they give let us take l 3. By
counting we see that N(3) 5. If 3 | y then II) tells us that 5 -1 or 7 mod p);
in other words p | 6 or p | 2. Both are impossible as p 7. Hence 3 y. By I)
we deduce that Nn 3) 5 mod p). Looking closely at the definition of Nn we see that
Nn 3) depends only on the congruence class of the Lucas number Ln modulo 3. A little
counting tells us that:

• Ln 0 mod 3) implies Nn 3) 3 and so 3 5 mod p), that is p | 2 which is

impossible;

• Ln 2 mod 3) implies Nn 3) 1 and so 1 5 mod p), that is p | 4 which
again is impossible;

• Ln 1 mod 3) implies Nn(3) 5 and so 5 5 mod p); this last case is true
regardless of the value of p.
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We deduce that Ln 1 mod 3). What does this tell us about n? The reader is asked to
compute modulo 3 the first say) 30 terms of the Lucas sequence Ln starting with L0 2.

Once that is done, a little reflection will convince the reader that Ln 1 mod 3) precisely
when n 1, 3, 4 mod 8). However, we started out by assuming that n 1 mod 6).
Thus we are now able to deduce that, if n 1 mod 6), then n 1 or 19 mod 24). We
would in fact like to show that if n 1 mod 6) then n 1. Notice that we have shown
in this case that if n > 1 then n is at least 19. An important step in our proof of Theorem 1
is to show that if n > 1 then n 109000. The following elementary exercise will give you
a feel for how this is done.

Exercise. We continue with the assumptions that p 7 and n 1 mod 6).

a) Show that N(7) 5.

b) Make a table of values for Nn(7) and deduce that Ln 1 or 3 mod 7).

c) Show Ln 1 or 3 mod 7) implies n 1, 2, 7, 11, 13, 14 mod 16).

d) But we know from the above that n 1 or 19 mod 24). Deduce from this and c)
that n 1 or 43 mod 48).

Note from part d) of the exercise that if n > 1 then n 43. Before all we could say was

n 19. Thus by considering one value of l we have been able to increase our lower bound
for n by a factor of 43/19˜ 2.26.

3 Scheme of the proof of Theorem 1

The main steps in the proof of Theorem 1 for Fibonacci numbers are as follows the case

of Lucas numbers is similar, and in fact simpler):

i) We associate Frey curves to putative solutions of the equation Fn y p with even

index n and apply the modular approach. This, together with some elementary
arguments is used to reduce to the case where the index n satisfies n ±1 mod 6).

ii) We then show that we may suppose that the index n in the equations Fn y p

is prime: this is essentially a result proved first by Pethö [25] and Robbins [30]
independently).

iii) Using Binet’s formulæ – see 1) below – one sees at once that the equation Fn y p

implies that the linear form

n loga- logv5 - p log y

is very small here and below we write a 1 + v5)/2). Then a lower bound
for linear forms in logarithms gives an upper bound on the exponent p. Applying a

powerful improvement to known bounds for linear forms in three logarithms we get
that p < 2 × 108.

iv) Knowing that p < 2 × 108 in the Fibonacci case, we apply the modular approach
again under the assumption that the index n is odd. We are able to show, using the
congruences given by the modular approach, that n ±1 mod p).
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v) As seen in step iii), the equation Fn yp yields a linear form in three logarithms.
However we know that n ±1 mod p). In this case the linear form in three
logarithms may be easily rewritten as a linear form in two logarithms. For example,

if n kp + 1, then we can rewrite as

p log(ak/y) + log(a/v5).

The bounds available for linear forms in two logarithms are substantially better than
those available for linear forms in three logarithms. Applying [17] we deduce that
p 733. A serious improvement!

vi) We reduce the equations Fn yp to Thue equations; these are equations of the

form G(u, v) 1 where G is a binary form of degree p. We do not solve these

Thueequations completely, but we computeexplicit upper boundsfor their solutions
using classical methods see for example [6]). This provides us with upper bounds
for n in terms of p. To be precise, we prove that n < 109000, which is a rather large
bound for an index.

vii) We show how the congruences given by the modular approach can be used, with the
aid of a computer program, to produce extremely stringent congruence conditions
on n. For p 733 in the Fibonacci case, the congruences obtained are so strong
that, when combined with the upper bounds for n in terms of p obtained in iv), they
give a complete resolution for Fn yp.

Let us make some brief comments.

The condition n ±1 mod p) obtained after step iv) cannot be strengthened. Indeed,
we may define Fn and Ln for negative n by the recursion formulæ Fn+2 Fn+1 + Fn

and Ln+2 Ln+1 + Ln. We then observe that F-1 1 and L-1 -1. Consequently,

F-1, F1, L-1 and L1 are p-th powers for any odd prime p. Thus equations Fn y p and

Ln yp do have solutions with n ±1 mod p).

The computations in the paper were performed using the computer packages PARI/GP

[2] and MAGMA [4]. The total runningtime for the various computational parts of the proof
of Theorem 1 was about a week.

4 A brief survey of previous results

In this section we give a very brief survey of results known to us on the problem of perfect
powers in the Fibonacci and Lucas sequences, though we make no claim that our survey
is exhaustive.

Before stating specific results on Fibonacci and Lucas numbers, we note that Pethö [24]
and, independently, Shorey and Stewart [31] proved that there are only finitely many perfect

powers in any non-trivial binary recurrence sequence. Their proofs, based on Baker’s
theory of linear forms in logarithms, are effective but yield huge bounds. We now turn to
specific results on the Fibonacci and Lucas sequences.

• The only perfect squares in the Fibonacci sequence are F0 0, F1 F2 1 and

F12 144; this is a straightforward consequence of two papers by Ljunggren [18],
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[19] see also [21]). This has been rediscovered by Cohn [11] see the Introduction
to [20]) andWyler [36].

• London and Finkelstein [22] showed that the only perfect cubes in the Fibonacci
sequence are F0 0, F1 F2 1 or F6 8. This was reproved by Pethö [25],
using a linear form in logarithms and congruence conditions.

• For m 5, 7, 11, 13, 17, the only m-th powers are F0 0, F1 F2 1. The
case m 5 is due to Pethö [26], using the method described in [25]. It has been
reproved by McLaughlin [23] by using a linear form in logarithms together with the
LLL algorithm. The other cases are solved in [23] with this method.

• If n > 2 and Fn y p then p < 5.1 × 1017; this was proved by Pethö using a linear
form in three logarithms [27]. In the same paper he also showed that if n > 2 and

Ln yp then p < 13222 using a linear form in two logarithms.

• Another result which is particularly relevant to the proof of Theorem 1 is the
following: If p 3 and Fn yp for an integer y then either n 0, 1, 2, 6 or there is
a prime q | n such that Fq y

p
1 for some integer y1. This result was established

by Pethö [25] and Robbins [30] independently.

• Cohn [12] proved that L1 1 and L3 4 are the only squares in the Lucas
sequence.

• London and Finkelstein [22] proved that L1 1 is the only cube in the Lucas
sequence.

The proof of London and Finkelstein consists of solving some elliptic equations
obtained by combining 2) below with the conditions Fn y3 and Ln z3. It
is also interesting to note – as London and Finkelstein have done – that a paper
of Siegel [33] shows that determining all the cubes among Fibonacci and Lucas
numbers gives a new solution of the old famous problem of determining all the
imaginary quadratic fields with class-number one; see also a more recent paper of
Chen on this subject [10].

We end this section with very elementary results which will be useful throughout the rest

of this paper. We use Binet’s formulæ

Fn
an - ßn

v5
Ln an

+ ßn 1)

where a 1+v5)/2 and ß 1-v5)/2, that imply the following well-known relation
between Fn and Ln.

Lemma 1. For any integer n, the Fibonacci and Lucas numbers Fn and Ln satisfy the
quadratic relation

L2n - 5F2
n 4(-1)n 2)

This quickly leads us to associate the equations Fn yp and Ln y p with auxiliary
equations of the type ax2 - b cyp discussed above as examples for which the modular
method may be applied.
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5 Factorization
As noted previously, the Fibonacci and Lucas sequences can be extrapolated backwards
using Fn Fn+2 - Fn+1 and Ln Ln+2- Ln+1. Thus, for example, F-1 1, F-2

-1, and so on. Binet’s formulæ 1) remain valid for Fibonacci and Lucas numbers with
negative indices, and they allow us to show easily that

Fa Lb Fa+b + (-1)bFa-b 3)

for any two integersa, b. We use this to turn the equation Fn+1 y p into a multiplicative
instead of an additive problem. Here we are helped by the fact that F-1 F1 F2

1 and F-2 -1. A little experimentation gives a different factorization for Fn + 1
depending on the class of n modulo 4:

F4k + 1 F2k-1L2k+1, F4k+1 + 1 F2k+1L2k, 4)

F4k+2 + 1 F2k+2L2k F4k+3 + 1 F2k+1L2k+2. 5)

Thus we are led to consider four equations of the form FaLb yp. If the Fibonacci and

Lucas numbers in question are coprime we instantly deduce that both are perfect powers
and conclude using Theorem 1. This is not true in all the cases we require; the next section
provides the necessary information on the greatest common divisors of these Fibonacci
and Lucas numbers.

6 Common factors of Fibonacci and Lucas numbers

The following are well-known facts whose proofs we sketch for the convenience of the
reader.

Lemma 2. The following properties hold for all nonnegative integers n:

1) gcd(Fn+1, Fn 1;
2) gcd(Fn+2, Fn 1;
3) 3 divides Fn if and only if 4 divides n;

4) gcd(Fn+2, 3Fn) is 1 if 4 does not divide n + 2, and is 3 otherwise;

5) gcd(3Fn+2, Fn) is 1 if 4 does not divide n, and is 3 otherwise;

6) 2 divides Fn if and only if 3 divides n.

Proof Sketch)
1) The Euclidean algorithm with input Fn+1 and Fn gives the sequence Fn+1, Fn, Fn-1,

F1 1; hence, the result. Moreover, this is the “slowest” example for the Euclidean
algorithm. This is Lamé’s Theorem, proved around 1830.

2) Follows from 1) and the relation Fn+2 Fn+1 + Fn.

3) Computing the sequence Fn)n=0 modulo 3 one notes that the period is 8.

4) By 2), the greatest common divisor of the two numbers is 1 when 3 does not divide

Fn+2 and is 3 otherwise. The desired conclusion follows from 3).
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5) Similar to 4).

6) Exercise.

Lemma 3. For all nonnegative integers n we have:

1) gcd(Fn, Ln is 1 if 3 does not divide n, and is 2 otherwise;

2) gcd(Fn+1, Ln) gcd(Ln+1, Fn) 1;
3) gcd(Fn+2, Ln) is 1 if 4 does not divide n + 2, and is 3 otherwise;

4) gcd(Fn-2, Ln) is 1 if 4 does not divide n - 2, and is 3 otherwise.

Proof The proof follows easily from Lemma 2 and the relations

Ln 2Fn+1 - Fn 2Fn-1 + Fn 2Fn+2 - 3Fn -2Fn-2 + 3Fn,

which can be obtained almost directly from Binet’s formulæ 1) and the defining relation

Fn+2 Fn+1 + Fn.

7 Proof of Theorem 2

We now return to equation Fn + 1 yp. We know from 4) and 5) that Fn + 1 FaLb
where the pair of integers a, b depends on the class of n modulo 4. By Lemma 3, the
greatest common divisor of the two factors in the above products is always 1 except when
n 6 mod 8), in which case it is equal to 3. Since we already know the solutions of
Fn yp and Ln y p for p 2 Theorem 1), we only have to consider the equation
Fa 3kyp. The result for Fn + 1 y p follows from the following proposition.

Proposition 1. The only positive integer solutions n,k, p, y) to the equation

Fn 3k yp with k > 0 and p 2

are F4 3 · 1 and F12 32 · 42.

Proof By considering the Fibonacci sequence modulo 3 and 9 it is easy to see that 3 | Fn

if and only if 4 | n, and 9 | Fn if and only if 12 | n. Suppose that Fn 3k y p with
k > 1. Then 3 divides n and, by Lemma 4 below, Fn/3 3k-1z p

1 with some positive
integer z1. So, we treat first the case when k 1 and z is not a multiple of 3. Since 3
divides Fn, we get that n 4h, where 3 does not divide h because 3 does not divide z.
Then F4h F2hL2h, where F2h and L2h are coprime. Hence, F2h t p or L2h t p and

Theorem 1 implies that h 1. The conclusion is now immediate by noticing that F36 is

not a solution.

Lemma 4. For all nonnegative integer n,

F3n Fn 5F2n + (-1)n3 FnZn.

Furthermore, gcd(Fn, Zn) 3 when 3 divides Fn. Moreover, 9 never divides Zn.

Proof. Exercise.

We leave it as an exercise to the reader to discover the necessary factorizations of Fn - 1
using 3) and to complete the proof of Theorem 2 by solving Fn - 1 yp.
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8 An open problem
We conclude by posing an open problem. Find all the solutions to the equation

Fn + 2 yp p 2.

For odd n it is possible to factorize Fn+2 and solve this problem; but no such factorization
is known for even n.
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7, rue René Descartes
67084 Strasbourg Cedex, France
e-mail: mignotte@math.u-strasbg.fr

1F. Luca is supported by grant CONACyT 46755, and a Guggenheim Fellowship.
2S. Siksek is supported by a grant from the UK Engineering and Physical Sciences Research Council, and by
a Marie-Curie International Reintegration Grant.


	Fibonacci numbers at most one away from a perfect power

