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I Elemente der Mathematik

Polygons of the Lorentzian plane and spherical Simplexes

Frangois Fillastre

Francis Fillastre obtained his Ph.D. from the University of Neuchätel and the Univer-
sity of Toulouse in 2006. Presently, he is lecturer at the University of Cergy-Pontoise
in France. His interests lie in polyhedral geometry, convex geometry and relations
with Lorentzian geometry.

1 Introduction
It is a common occurence that sets of geometric objects themselves carry some kind of
geometric structure. A classical example for this is the set of all conformal structures on a

given compact surface. Riemann discovered that this set, the "space" of conformal structures,

can be described by a finite number of parameters called moduli. The corresponding
Parameter or moduli space turned out to be a very interesting geometric object in itself
whose study is the subject of Teichmüller theory.

On a more basic level, one can consider spaces consisting of objects of elementary
geometry like (shapes of) polyhedra in Euclidean space. Thurston [Thu98] found that in
this case, the corresponding moduli space carries the structure of a complex hyperbolic
manifold, and he established a link with sets of triangulations of the 2-sphere.

Bavard and Ghys [BG92] considered sets of polygons in the Euclidean plane. Fix a compact

convex polygon P with n > 3 edges and let V(P) be the space of convex polygons
with n edges parallel to those of P. The elements of V(P) are then determined by the
distances of the lines containing the edges from the origin, which gives n parameters. Fol-
lowing [Thu98], Bavard and Ghys proved that on the space of parameters, the area of the

Ein mächtiges Instrument bei der Untersuchung konvexer Mengen ist die Stützfunktion,

also die Distanz vom Ursprung zu den Stützebenen der Menge. Diese Definition
verwendet die Euklidische Struktur des umgebenden Raums. Wie sieht die Situation

aus, wenn man die Stützfunktion statt im Euklidischen Raum im Lorentz-Minkowski-
Raum betrachtet? Die vorliegende Arbeit geht dieser Frage am Beispiel von ebenen
konvexen Polygonen nach. Es stellt sich heraus, dass die Menge dieser Polygone selbst
eine interessante geometrische Struktur trägt. Ausgangspunkt bildet dabei eine
Beobachtung von Christophe Barvard und Etienne Ghys aus dem Jahr 1992.
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polygons m T(P) is a quadratic form, and they computed lts signature. The kernel of the

correspondmg bilmear form has dimension 2 (due to the fact that area is invariant under

translations), and there is only one positive direction. Hence, up to the kernel, one gets a

Lorentzian signature. As a consequence, the set of elements of V(P) with area equal to

one, considered up to translations, can be identified with a subset of the hyperbolic space
HP-3. This subset turns out to be a hyperbolic convex polyhedron of a special kmd: lt
is a Simplex with the property that each hyperplane contammg a facet meets orthogonally
all but two hyperplanes contammg the other facets. Such simplices are called hyperbolic
orthoschemes. The dihedral angles of the orthoscheme can be computed from the angles
of P, and [BG92] contams a list of convex polygons P such that the orthoscheme obtamed
from P is of Coxeter type, i.e., has acute angles of the form n/k, k e N. This list was

previously known [IH85, IH90], but lt appeared lt was mcomplete [Fill 1].

In this paper we consider a class of non-compact plane polygons whose moduli space is
a sphencal orthoscheme. These polygons, the Lconvex polygons mtroduced m Section 3,

are best descnbed not m terms of the Euclidean geometry on R2, but as subsets of the
Lorentz plane. Instead of the area we will consider a suitably defined coarea that turns out
to be a positive definite quadratic form on the parameter space, an n-dimensional vector

space. Restrictmg to coarea one we obtam a subset of the unit sphere m that parameter
space, and this subset is shown to be a sphencal orthoscheme. Moreover, any sphencal
orthoschem can be obtamed m this way.

It is amusmg that m [BG92] Euclidean polygons led to Lorentz metncs and hyperbolic
orthoschemes, while m the present paper Lorentzian polygons give nse to Euclidean metncs

and sphencal orthoschemes. The author does not know lf there is a way to obtam
Euclidean orthoschemes from spaces of plane convex polygons.

2 Background on the Lorentz plane
Recall that the Lorentz plane is R2 equipped with the Lorentz inner product, that is the
bilmear form i x\y\ — xzyz Anon-zero vector v can bespace-hke ((v, v)\ >
0), time-like ({v, v)\ < 0) or light-like ({ü,ü)\ 0). The set of time-like vectors has two
connected components, and we denote the upper one, the set offuture time-like vectors, by

T {x e R2|(v, x)\ < 0, xz > 0}

The set of unit future time-like vectors is

EI {x e R2|(v,v)i —l,X2 > 0},

which will be the analog of the circle m the Euclidean plane, see Figure 1. In higher
dimension, the generalization of EI together with lts mduced metnc is a model of the

hyperbolic space, m the same way that the unit sphere for the Euclidean metnc with lts
mduced metnc is a model of the round sphere. In particular, lf the angle between two
unit vectors m the Euclidean plane is seen as the distance between the two correspondmg
pomts on the circle, the (Lorentzian) angle between two future time-like vectors v and y
is the unique (p > 0 such that
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Fig. 1: The cone T of future time-like vectors and the curve EI of unit future time-like
vectors.

(see [Rat06, (3.1.7)] for the existence of (p). The angle (p is the distance on EI (for the
induced metric) between v/^/—{x, x)\ and y/y)i-
T and EI are globally invariant under the action of the linear isometries of the Lorentzian
plane, called hyperbolic translations:

In all the paper we fix a positive t. We denote by {Ht} the free group spanned by Ht.

3 f-convex polygons
Let a G T. We will denote by

the line that passes through a and is parallel to the 1-dimensional subspace orthogonal to

a under (•, -)i.

Definition 3.1. Let (rj i, rjn), n > 1, be pairwise distinct unit future time-like vectors
in the Lorentzian plane (i.e., rp G EI), and let h\, ,hn be positive numbers. A f-convex
polygon P is the intersection ofthe half-planes bounded by the lines

The half-planes are chosen such that the vectors rp are inward pointing. The positive
numbers hi are the support numbers of P.

A f-convex polygon is called elementary if it is defined by a Single future time-like vector
t] and a positive number h. Note that for each k, (Hf(hrf))L is tangent to hM. (the upper
hyperbola with radius h). Hence a f-convex polygon is the intersection of a finite number
of elementary f-convex polygons.

(2)

a1- := {x G R2|(v,a)i (a,a) 1}

(Hf(hirp))L^k eZ,Vi l n.
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Example 3.2. Let to sinh *(1), so

H,° := "f V2

Let us denote by P\ the elementary -convex polygon defined by the vector r\ (J) and
the number h 1, see Figure 2a. The elementary fo-convex polygon P2 of Figure 2b is
obtained from p\ by a slightly change of rj and h. Their intersection forms the /^-convex
polygon of Figure 2c.

Lemma 3.3. A t-convex polygon P is a proper convex subset of R2 contained in T,
bounded by a polygonal line with a countable number of sides, and globally invariant
under the action of(Ht).

Proof The group invariance is clear from the definition. P is the intersection of a finite
number of elementary f-convex polygons, so we only have to check the other properties in
the elementary case. Actually the only non-immediate one is that an elementary t-convex
polygon is contained in T. Let us consider an elementary t-convex polygon made from a

Single future time-like vector rj and a number h. Without loss of generality, consider that
h 1. Let u and v Hf (?]) and let v be the intersection between u1- and v±.
As (x, u) 1 (x,v)i — 1, v is orthogonal tou — v, which is a space-like vector (compute
its norm with the help of (1)). Hence x is time-like, and as u1- and v1- never meet the past
cone, v is future. It is easy to deduce that the t-convex polygon is contained in T.

Note that as a convex surface, a f-convex polygon can also be a F-convex polygon (for
example it is also invariant under the action of any subgroup of (Ht)), but we will only
consider the action of a given (Ht).
Given a f-convex polygon P, we will require that the set of elementary f-convex polygons
such that their intersection gives P is minimal, i.e each rjt is the inward unit normal of
a genuine edge ev of F. The edge at the left (resp. right) of ev is denoted by et-\ (resp.

et+\). Let pt be the foot of the perpendicular from the origin to the line containing ex

(in particular, pl htrh). Let pn+\ be the Vertex between ex and et+\. We denote by
hn+\ (resp. hn-1) the signed distance from pt to pn+\ (resp. from pt to Pi-u): it is

non-negative if pt is on the same side of el+\ (resp. et-\) as P. The angle between rjt and

rji+\ is denoted by (pt. See Figure 3.

Lemma 3.4. With the notations introduced above,

ht cosh^ - hl+\ ht cosh^-i - ht-\
hll+1 — htl-1 — (3)

smh (pt smh (pl—\

Proof By definition, hn+1 is non-negative when {pt — pt+\, ^+1)1 < 0, i.e.,

—(äi+i - ht cosh^) > 0.

Hence
h,+i - h, cosh tp, n —

hn+i j v \P11-\-1 Pi Pn-\-1 Pi) 1 •

\hi+i — ht cosh cpl |



148 F. Fillastre

(a) A part of the ^-convex polygon P\. For the Lorentzian metric, all the edges have

equal length and all the angles between edges are equal.

(b) A part of the tQ-convex polygon P^- For the Lorentzian metric, all the edges have

equal length and all the angles between edges are equal.

Fig. 2: To Example 3.2.
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Up to an orientation and time orientation preserving linear isometry, one can take rji (J).

In particular p{ (°) and O//+O2 hj hence

(Pii+l ~ Pi> Pii+1 ~ Pi) 1 (Pii+ l)l*

We also have rji+{ (^^), and as (pu+i, rjM)i -hi+1 we get

-Ä/+1 + hi coshpi
(pu+1)1 — •

smh (pi

The proof for hu-1 is similar, considering rji-1

4 The cone of support vectors

Let P be a f-convex polygon. Choose an edge and denote its inward unit normal by
r\\. We denote the inward unit normal of the edge on the right by 772, and so on until
rjn+1 Ht (7/1). The edges with normals rji,... ,rjn are the fundamental edges of P. Note
that with this labeling, if (pi is the angle between rji and 77/+1, we have

(p\ + (p2 + * * * + (pn (4)

The number /i; (P) is the support number of the edge with normal rji, and h(P) (/z 1 (P),
..hn(P)) is the support vector of So P is identified with a vector of Rn, in such a

way that rj\,... ,rjn are in bijection with the Standard basis of W1. Of course P is uniquely
determined by its support vector.

Definition 4.1. Choose rj e EI and let (p\, (p2, •• • (pn he positive numbers satisfying (4).
The cone of support vectors V((p\, (p2, (pn) ls the set of support vectors of t-convex
polygons with inward unit normals rj\ rj, rji+\ H^frji).
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A priori the definition of V depends not only on the angles cpt but also on the choice
of rj. Actually choosing another starting rj' e H, the hyperbolic translation from rj to
rj' gives a linear isomorphism between the two resulting sets of support vectors. Hence

V((pi, (p2, • • •, (pn) could be defined as the set of f-convex polygons with ordered angles

i(pi, (p2,..., (pn) up to hyperbolic translations. Note also that if s is a cyclic permutation,
then V((ps{i),..., (ps{n)) is the same as V(<pi,..., (pn)-

It is possible to prove that Vi(p\, (p2,..., (pn) is a convex polyhedral cone with non-empty
interior in W1, but this will be easier after a suitable metrization of W\ that is the subject
of the next section.

5 Coarea

Definition 5.1. Let P e V((pi, (p2,..., (pn)- The coarea ofP is

where the sum is on the fundamental edges, and t(P) hH-\(P) + hu+\(P) is the

length ofthe ith fundamental edge (hence positive).

Geometrically coarea(,P) is the area (in the sense of the Lebesgue measure) of a
fundamental domain for the action of Ht on the complement of P in T. The main point is that
hyperbolic translations (2) have determinant 1, so they preserve the area, which is then

independent of the choice of the fundamental domain, see Figure 4. Moreover the area of
a triangle with a space-like edge e of length l and 0 as a Vertex has area ^lh, if h is the
Lorentzian distance between 0 and the line containing e. (To see this, perform a hyperbolic
translation such that e is horizontal and compute the area.) Note that the coarea depends
not only on the polygonal line P but also on the group (Ht), so it would be more precise
to speak about 'V-coarea", but as the group is fixed from the beginning, no confusion is

possible.

For a given cone of support vectors, the coarea can be formally extended to Rn with the

help of (3): for h eW1,

If n 1, there is only one angle between the unit inward normal r\ and its image under

Ht, which is equal to t, and coarea(/z) h2 c°ss1^71 •

If n > 2, we introduce the mixed-coarea

with
hi cosh^_i hi—i ht cosh^ - ht+\

ti(h) := — VK —
smh (pi—i smh (pt

(5)
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which is the polarization of the coarea. Actually, it is clearly a bilinear form, and

coarea(?/£, rjj)

0

1 1

2 sinh<^_i
1 1

2 sinh (pk
1 /cosh (pk-1 cosh

2 \sinh^_i sinh (pk

if 2 < 17 — & | < n + 1

if j k — 1

if 7 & + 1

j k

(6)

so coarea is Symmetrie. We also obtain the following key result.

Proposition 5.2. The Symmetrie bilinearform coarea is positive definite.

Proofi As cosh (pk > 1, the matrix (coarea(w£, uj))kj is strictly diagonally dominant, and

Symmetrie with positive diagonal entries, hence positive definite, see for example [VarOO,

1.22].

The Cauchy-Schwarz inequality applied to support vectors of f-convex polygons gives the

following reversed Minkowski inequality:

Corollary 5.3. Let P, Q be t-convex polygons with parallel edges. Then

coarea(P, Q)2 < coarea(P) coarea(ß),

with equality ifand only if P and Q are homothetic: 31 > 0, V/, hi(P) lhi(Q).
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6 Spherical orthoschemes

V{(p\, (p2-> - - •, (pn) is clearly a cone in W1. Moreover it is the set of vectors of positive
edge lengths, for the edge lengths defined by (5). From the definition of the coarea, for
h G W1, 2 coarea(^ ,h)=£t (h), so rjt is an inward normal vector to the facet of V defined

by £l =0. So V is polyhedral, and it is convex because the rjt form a basis of W1. Let
us denote by V{(p\, (p2-> • • •, (pn) the intersection of V{(p\, (p2-> • • •, (pn) with the unit sphere
of (W1, coarea) (i.e., the set of support vectors of f-convex polygons with coarea one). It
follows that V is a spherical simplex. If n 1, V is a point on a line, so from now on
assumethatn > 1.

When n 2, V is an arc on the unit circle with length 6 satisfying

sinh (p2
cos 6

sinh i + (p2)

When n 3, V is a spherical triangle with acute inner angles, whose cosines are given by:

coarea(?/£, rjk+i) / sinhcpk-\ sinh(pk+\

Vcoarea(rjk, ^)A/coarea(^+i, rjk+1) V sinh(^-i + (pk) sinh(^ + (pk+\)

When n > 3, from (6) we see that each facet has an acute interior dihedral angle with
exactly two other facets, and is orthogonal to the other facets. Such spherical Simplexes are
called acute spherical orthoschemes. See [Deb90, 5] for the history and main properties
of these very particular Simplexes. Note that there are no spherical Coxeter orthoschemes,
because the Coxeter diagram of a spherical orthoscheme must be a cycle, and there is no
cycle in the list of Coxeter diagrams of spherical Coxeter Simplexes. The list can be found
for example in [Rat06].

Let us denote by Uk the line through pk (so the angle between Uk and Uk+1 is (pk), and by
X the cross ratio [Uk~i, Uk, Uk+1, Uk+2], namely if uk-1, uk, uk+1, uk+2 are the intersec-
tions of the lines Ux with any line not passing through zero and endowed with coordinates
then (see [Ber94])

- [TT TT TT TT
Uk+1 - uk-1 Uk+2 - Uk

x [Uk-1, Uk, Uk+1, Uk+2\
Uk+1 - Uk Uk+2 - Uk-1

We have the formula (see [PY12])

sinh<^_i sinh 2 — 1

sinh(<£>£_ 1 + cpk) sinh(^ + cpk+1) 2
[Uk-uUk+2,Uk,Uk+il

From a given n-dimensional acute spherical orthoscheme O we can find angles (positive
real numbers) (g)\, (p2,..., (pn) such that V((p\, (p2,..., (pn) is isometric to O. Let 0 <
A < 1 be the Square of the cosine of an acute dihedral angle of O. We have first to find
ordered time-like lines U\, U2, U3, U4. such that [U\, U2, U3, U4] i.e., we have to

prove that the cross-ratio of the lines can reach any value > 1. Choose arbitrary distinct
ordered time-like Uu U2, U4. If U3 U4 then [Uu U2, U3, U4\ 1, and if U3 U2
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then [Ui, U2, U3, U4] +00, so by continuity any given value > 1 can be reached for a

suitable U3 between U2 and U4. U\, U2, U3, U4 give angles <p\,<p2,<P3-

Now the other (pk are easily obtained as follows. Given the next dihedral angle of O (they
can be ordered by ordering the unit normals to O, see [Deb90]), the Square of its cosine
should be equal to

sinh (p2 sinh (p4

sinh(>2 + (p3) sinh(^93 + ^4)

and (p2-> (p3 are known, so we get (p4. And so on.

7 Spherical cone-manifolds

Let n > 2 and consider the orthoscheme V V{(p\,..., (pn). A facet of V is isometric to
the space of f-convex polygons with rj\,rjn (fjt means that rjt is deleted from
the list) as normals to the fundamental edges. The angles between the normals are

• • • Vi—2? Vi — 1 H~ <Pi <Pi +1? • • • Pn-

This orthoscheme is also isometric to a facet of the orthoscheme V' obtained by permuting
(ßi—1 and (pt in the list of angles. Hence we can glue V and V' isometrically along this common

facet. We denote by C(g>\,..., (pn) the (n — l)-dimensional spherical cone-manifold
obtained by gluing in this way all the (n — 1)! orthoschemes obtained by permutations of
the list (p\,..., (pn, up to cyclic permutations.

When n 3, C(cp\, (p2, ^3) is isometric to a spherical cone-metric on the sphere with three
conical singularities, with cone-angles < n, obtained by gluing two isometric spherical
triangles along corresponding edges.

Let n > 4. Around the codimension 2 face of C isometric to

N := C(<p\, ...,(pk + (pk+u ...,(Pj+ (pj+u (pn+3)

are glued four orthoschemes, corresponding to the four ways of ordering (jpk, (pk+1) and

(cpj, (pj+\). As the dihedral angle of each orthoscheme at such codimension 2 face is 7t/2,
the total angle around N in C is 2n. Hence metrically N is actually not a Singular set.

Around the codimension 2 face of C isometric to

S •= C{(p\, (pk + (pk+1 H~ (pk+2? • • • Pn+3)

are glued six orthoschemes corresponding to the six ways of ordering (jpk, (pk+\, Pk+2)•
Let 0 be the cone-angle around S. It is the sum of the dihedral angles of the six
orthoschemes glued around it. As formula (7) is Symmetrie for two variables, 0 is two
times the sum of three different dihedral angles. A direct computation gives (k 1 in the

formula)

cos(0 /2)
sinh<^ 1 sinh^?2 sinh^?3—sinh(^1+^2+^3) (sinh<^ 1 sinh<^2+sinh<^2sinh<^3+sinh<^3 sinh<^ 1)

sinh(^i+^2)sinh(^2+^3)sinh(^3+^i)
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Düring the computation we used that

sinh(a + b) sinh(Z? + c) — sinh a sinh c sinh b sinh(a + b + c)

which can be checked with ^ (cosh(v + y) — cosh(v — y)) sinhv sinh};. The analo-

gous formula in the Euclidean convex polygons case was obtained in [KNY99].

For example when (pt (p Vz, we have

cos(0 /2)
2cosh(y)2 + sinh(y)2

2cosh(^?)3

The function on the right-hand side is a bijection from the positive numbers to ] — 1, 0[,
hence all the 0 g]27T, 3tt[ (the dihedral angle 6 g]7t/3, 7t/2[) are uniquely reached. In
particular C is not an orbifold.

The cone-manifold C comes with an isometric involution which consists of reversing the
order of the angles (q>\,..., (pn).

8 Higher-dimensional generalization

The generalization of t-convex polygons to higher-dimensional Minkowski Spaces is as

follows. Let us consider the d-dimensional hyperbolic space M.d as a pseudo-sphere in
the d + 1-dimensional Minkowski space Md+l, and let T be a discrete group of linear
isometry of M^+1 such that Wd / T is a compact hyperbolic manifold. A T-convex poly-
hedron is, given rj\,... ,r\n e M.d and positive numbers h\,..., hn, the intersection of
the future sides of the space-like hyperplanes (y (h*7/0)^ Vy G T. The mixed-coarea
is generalized as a "mixed covolume". For details and computation of the signature, see

[Fill3]. Actually for a given set of many combinatorial types may appear, and one has

to restrict to type cones (cones of polyhedra with parallel facets and same combinatorics).
It should be interesting to investigate the kind of spherical polytopes that appear.

Another related question is to look at the quadratic form given by the face area of the

polyhedra (in a fundamental domain) and its relations with the moduli Spaces of flat metric
with conical singularities of negative curvature on compact surfaces of genus > 1 (the
quotient of the boundary of a Y-convex polyhedron is isometric to such a metric).

The analogous questions in the convex polytopes case are the subject of [FI 13]. The
moduli space of flat metrics on the sphere was studied in [Thu98].
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