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1 Introduction
Let / be a line in 3-dimensional space, and let r be a positive real number. The set of points
in R3 whose distance from / is not greater than r is called the infinite circular cylinder (or
just the cylinder, for short) of axis I and radius r. Two cylinders are parallel if their axes

are parallel. A collection of congruent cylinders whose interiors are mutually disjoint is

called a cylinder packing.

Given a cylinder packing, C — jC,one may inquire what portion of the space is

occupied by the cylinders in C. This question naturally leads to the concepts of local density
and global density of C defined below.

Let B(R) be the ball of radius R centered at the origin. Then the local density of C with
respect to B(R), denoted S(C, R). is the ratio between the volume within B(R) that is

Versucht man kongruente Kreiszylinder so dicht wie möglich und ohne Überschneidung

im Raum zu packen, so ist die beste Konstruktion, alle Zylinder parallel im
Bienenwabenmuster anzuordnen: Jeder Zylinder berührt dann sechs andere. Diese Anordnung

liefert eine asymptotische Dichte mit dem Wert k/sf\2 — 0.90689..., d.h. dieser
Anteil des Raums wird von den Zylindern beansprucht. Die Autoren der vorliegenden
Arbeit gehen nun der Frage nach, wie dicht man Zylinder packen kann, wenn keine
zwei parallel sein dürfen. Zwei Resultate werden gezeigt: Erstens gibt es Anordnungen

der Zylinder, so dass ihre lokale Dichte derjenigen bei paralleler Packung beliebig
nahe kommt. Zweitens wird eine Anordnung vorgestellt, deren globale Dichte den Wert
1/2 hat. Dies verbessert ein Resultat von K. Kuperberg, C. Graf and P. Paukowitsch.
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covered by the cylinders, and the volume of B(R). More formally.

OO

X Vol(C, n B(R))
S(C, R)

-,
1

4k R3ß
The global density of C, denoted S(C), is simply

0(C) lim S(C, /?),
R —> oo

provided the limit exists.

One may ask what is the greatest possible value of S(C). In lay terms, what is the most
efficient way to pack congruent cylinders in space?

Under the restriction that all cylinders are parallel, the problem is equivalent to finding the
maximum density of a packing of the plane with congruent circles. One can easily see this
by writing R3 as the union of the planes perpendicular to the cylinders' axes.

The planar problem was solved by Thue [7], who proved that the most efficient way to
pack congruent circles in the plane is to arrange them such that each circle is tangent to
six others - see Figure 1.

Figure I The densest packing of congruent circles in the plane has density n/vT2

The density of such an arrangement is given by the ratio between the area of a circle and
the area of the regular circumscribed hexagon, and it equals n/\f\2 0.90689 —
It follows that if all cylinders are parallel, then S(C) < n /\fl2.
Can one do better? This disarmingly simple question remained unsolved until 1990 when
A. Bezdek and W. Kuperberg proved in [2] that the answer is negative.

Theorem 1.1 ([2]). The maximum global density of any space packing with congruent
cylinders is n /VT2.
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This result is significant because this was the first example of a solid that does not tile the

space, and whose maximum packing density was explicitly determined.

This prompted Moser and Pach to raise the following challenge:

Problem 1.2 ([6]). Find nontrivial examples of bounded convex bodies in R3 that are not
tiles but whose maximum packing density can be computed exactly.

A first answer was provided by Bezdek 11 ], who determined the maximum packing density
of a rhombic dodecahedron that has one corner removed so that it no longer tiles the space.
In this case, the packing density equals the ratio of the volume of the truncated rhombic
dodecahedron to the volume of the full rhombic dodecahedron.

A few years later, Hales settled a long-standing conjecture of Kepler regarding the
maximum packing density of the sphere. Hales showed that this value equals
0.7404 Hales' proof relies heavily on computers, and for this particular reason, a certain

level of uncertainty about the validity of the proof lingered within the mathematical

community. In order to remove any such doubts, Hales embarked on a 15-year collaborative

project to produce a complete formal proof of the Kepler conjecture. In January 2015,
Hales and 21 collaborators submitted a paper titled A formal proofof the Kepler conjecture
[4] to arXiv, claiming to have proved the conjecture. In 2017, the paper appeared in print
in the Forum ofMathematics journal.

Returning to the cylinder case, it is not obvious at first glance whether there exists a cylinder

packing that does not contain two parallel cylinders but has positive density. Under the

restriction that no two cylinders are parallel, one might expect that the cylinders need so
much room to avoid each other that in effect the packing density always turns out to be

zero.

Surprisingly, this is not true. A subtle construction of K. Kuperberg 15] produces a cylinder
packing with density it1 /576 0.017 in which no two cylinders are parallel. Her
construction was refined by Graf and Paukowitsch [3], who obtained a nonparallel cylinder
packing with density 5/12 0.4166

In this paper, we prove two results. First, we show that there exist cylinder packings with
no two cylinders parallel, whose local density is arbitrarily close to the local density of
a cylinder packing with parallel cylinders. Second, we construct a nonparallel cylinder
packing whose global density is 1 /2, thus improving Graf's and Paukowitsch's result.

2 A local result

For any cylinder packing in space, there exists a plane which intersects the axes of all
the cylinders. This is because the number of cylinders in any packing is countable, and

therefore, so is the number of unit vectors representing the directions of their axes. Since
the unit sphere cannot be expressed as a countable union of great circles, one can select

a unit vector which is not orthogonal to any of these direction vectors. Then, any plane
having that vector as its normal vector will have the desired property.

Thus, every cylinder packing can be constructed in the following manner:

Step 1. Start with a point set A in the .v v-plane.
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Step 2. Through each point A e .4, construct a line / e R3.

Step 3. Consider the cylinders of radius r whose axes are the lines constructed in Step 2. If
the distance between any two such lines is > 2r, then the resulting collection of cylinders
is a packing.

Let A {A/, Ä2,..., A„,...} be a set of points in the .vv-plane such that the distance
between any two distinct points at' A is at least 2r. where r > 0 is given. For each A,- e A,
let /;' be the line passing through A,- and perpendicular to the .vy-plane.

Further, let Cj~(r) be the cylinder of radius r whose axis is Then {C^(r)} is a cylinder
packing with all cylinders parallel to each other. For any R > 0, denote the local density
of this packing by

A]

Z Vol (C(L(/') IT B(R))

SHA,r,«) '-' (1)

where B(R) is the ball of radius R centered at the origin.

For every A/ e A, A A 0-,, let /; be the image of if- under a rotation around the axis OA/.

Note that irrespective of the rotation angle. // is also perpendicular to OA/.
For some 0 < p < r, let Cj (p) be the cylinder of radius p having line /; as its axis. Under
the assumption that the distance between any two lines // and// is at least 2p, then {C;(p)}
is also a cylinder packing. Denote the local density of this new packing by

\A\
V v.,I (Q(p)nliH))

4.S-V3
,2»

What we intend to prove is that the lines /, can be chosen in such a way that no two
cylinders in {C/(/?)} are parallel, and the local density S{A, p, R) is not too much smaller
than the local density of the parallel packing, A1 (A, r, R). This will be made precise in the

sequel. We start with a

Lemma 2.1. Lei r - 0, R > 0 be two fixed positive reals. Consider A|(a'i,vi,0) and
A2(a'2, y2, 0), two distinct points in the xy-plane such that || A j A2li > 2r. Let 0(0, 0, 0)

be the origin, and denote ||OAi|| d\, HOA2H rT- Assume that 0 <d\ < R, and
0 < di < R. For i 1,2, let li be the line passing through A/ and having a direction
vector V/ (y,, —a, T where T is chosen such that %r2T > R4. Then the lines I \ and F
are not parallel, and the distance between tliein is at least

dist(/,,/2)>2r(l-i). (3)

Proof. Note first that the angles formed by the lines l\, /2 with the .vv-plane are

arctanfT/c/i and arctan(T/r/2),

respectively. So. if d\ r/2, the lines cannot be parallel.



Dense packings with nonparallel cylinders 93

If d] d2. then ||v 11| ||V2II, and under the assumption that l\ || l2, we immediately
obtain that \\ V2- But this then leads to A] A2. a contradiction. Hence, the lines

cannot be parallel.

We denote by c the cosine of the angle determined by the vectors OA \ and OA2 : c

cos(/A 1 OA2). Note that

OA, • OA2

||OA1||||OA2||

Also, by the law of cosines

a-|.V2 + VI.V2

d\d2
from which x\X2 + y\)'2 cd\d2.

IIA1A2II d\ + d2 — 2d\d2 cos(/Ai OA2) d\ + d2 — 2cd\d2.

It is well known that the distance between two skew lines can be computed with the
formula

dist(/i, I2)
IA1 A2 (vi x v2) I

||V| X v2

We will express the numerator and denominator separately. For the numerator, we have

x2-x, y2 y 1 0

y 1 x 1 T

y 2 a 2 T

(4)

Ai A2 • (v 1 X v2)

-T \X2-X1 yi-y i

yi -X2
+ T x2 — x\ y2-y 1

y 1 -a 1
(5)

T (x2{ + y\ +a,2 + y| - 2.V1.V2 - 2yiy2^ T(d\ + d\ - 2OA \ OA2)

T (d^+dl - 2d id-, cos(ZAiOA2)] T || A ] A2II2.

Computing the denominator, it follows that

2
IIV2 II2 - ||Vi • V2||2l|v, X v2f

(r/f + T2)(d; + T2) - (x\x2 + yi v2 + T2)2

(d2 + T2)(d2 + T2) - (cd\d2 + T2)2

d2d2 + d]r2 + d\T2 + r4 - c2d2dI - 2cd\d2T2

(d2 + d\ - 2cd\d2)T2 + (1 - c2)d2dx

(6)

- T2\\A^2\\2 + (\ -c2)d2dl

Using (5) and (6) into (4). we obtain that

1 IIv 1 X v2|| rz||AiA2||z + (1 - c2)d2d2

dist(/|./2) IIA 1A2 • (v 1 x v2)||- T2 H Ai A2||4
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1 1 — C2)d2d2 I R4

IIÄiÄ^II2 T2 IIÄTÄ^II4 ~ IIÄII2 T2\\A^2\\4
1 8r2r 1 / 1V

~ 4Ä + \6r4T2 - Ar2 \ + f) '

from which

dist(/i, /a) > ——— > 2r 1

1 + 1 /T ~ V T)
as claimed.

We can now prove our first result.

Theorem 2.2. Let R,r be positive real numbers, and let Abe a point set in the xy-plane,
such that the distance between any two points in A is at least 2r, and A is contained in
the ball of radius R centered at the origin. Then, for every 0 < e < 8r2/R4, there exists a
collection ofcongruent cylinders {C/}, all ofradius r{\ — e), with thefollowing properties:

(a) the axis of Ci passes through A; 6 A
(b) no two cylinders are parallel.
(c) every two cylinders have disjoint interiors.

(d) ô(A,r( 1 -e), R)=ô4(A,r( 1 - e), R).

Proof. Use Lemma 2.1 with T 1/e. For each A/(jt/, y,,0) 6 A, consider the line /,,
which passes through A/ and has direction vector v; (y;, —1 /e>- Also, recall that lj~

is the line passing through A, and has direction vector (0, 0, 1). Note that both /,• and I4

are perpendicular to OA/.
Let Ci and C4 be the cylinders of radius r(l — c having axes /; and I4, respectively. Parts

(b) and (c) follow immediately from Lemma 2.1. For proving part (d), note that C, fl B(R)
and C4 ft B(R) are congruent as solids in R3, as they can be obtained from each other via

a rotation having OA, as its axis. Since both {C/} and {CA} are packings, it follows that

|A| |A|

^VoKC/ n b(R)) ^ Vol (ql n b(R)).
I=i i=i

Dividing both sides by the volume of B(R), part (d) follows.

Theorem 2.2 states that for given R, and r positive numbers, if one starts with a packing
of parallel cylinders of radius r, then one can first replace each of these cylinders with a

cylinder of radius r( 1 — e) and then rotate these thinner cylinders slightly such that no two
of the perturbed cylinders are parallel. The resulting arrangement is still a packing, and

the local density with respect to B(R) is the same as the local density of the packing with
thinner parallel cylinders.

Note that in our construction, the direction vectors of the axes of the nonparallel cylinders

depend on R, the radius of the circle centered at the origin that contains the set A.
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Indeed, c must be no greater than 8r2/R4 for the construction to work. Hence, the implicit
assumption is that the set A is bounded.

If we want to produce a cylinder packing with high global density, the set A has to be

unbounded, and therefore, wc must use a different approach. We will present such a

construction in the next section.

3 An infinite packing with density 1/2

Let D(R) be the disk in R2 of radius R and centered at the origin.

Definition 3.1. Let A be a set of points in the plane. The point density of A is defined as

S(A,R)= hm — (7)
R^oo n Rl

provided the limit exists.

We next consider a special point set in the .v v-plane, which we will also denote by A.

For every positive integer d > 32. let m be the unique integer such that 2m sd< 2m+1.

Define

2 TT Jl
°

6 2m ~ 3 2m ' and {(dcosk0,dsmkd,0) : k 1,2 6-2'"}.

Finally, set
OO

A U Ad. (8)
d -32

150

Figure 2 (J Ad as a subset of the set A
d=32
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Lemma 3.2. The distance between any two distinct poin ts ofA is at least 1, and its point
density, regarded as a subset of R2, equals 2/n.

Proof. Let A\, Az be two distinct points in A. Denote d\ — ||OAi||, d2 ||OÄ2||. If
d\ f do then || A i ^42 II > Vh ~ d\ | > 1 follows from the triangle inequality and the fact
that d\ and dz are integers.

If d\ dz, then ZA\OAz > n/(3 2'"), where in is the positive integer for which
2"' < r/| d2 < 2m+1. It follows that

MM2II — 2d, sin (3^) ï 2"'+l sin > 1.

since the function x sin (^) is strictly increasing, and already for x 2 it takes value 1.

Let m > 5 be an integer and let D{2'") be the disk with center O and radius 2"'. The

cardinality of the set A H D(2"') is equal to

6 • 322 + 6 • 642 H + 6 • (2"'"1 )2 + 6 2"' 6 (210 + 212 + • • • + 22"'~2 + 2"')

22"'+i + 6-2'" -2".
Hence, the point density of A equals

22m+1+6-2'"-2" 2
lim ^ -.m—.>co j[ 2Zm 71

3.1 The construction

Fix a real constant L > 6 and define K VL2 — I. Note that

L2
— <1.03 and K < L <2K. (9)
K2

The exact value of L is not important as long as both inequalities (9) are satisfied. The

reason for these choices of L and K is going to become clear soon.

For a given point A,(x;, y ;, 0) e A we denote d\ ||OA,-|| Jx2 + y2. Let I2- be the

line that passes through A,- and is orthogonal to the .v v-plane.

We associate with A/ another line, //, in the following way:

• the line // passes through A/

• the direction of// is given by the vector v,- (y/, — .v;, Kef + L).

The selection of the direction vectors is the critical part of the construction. Let us look at

our choice for v,- a bit more closely.

First, notice that v; OA, 0, so /; is obtained by rotating /(x around A/ in the plane that

passes through A/ and is orthogonal to OA/.
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Second, let ß(d;) be the tangent function of the angle formed by the line /; with the xy-
plane. Then

Kclj + L Kdi + L L
ß(di) —, K + ~. (10)

/.vr + yf di di

Hence, ß(dj gets smaller as d, increases. In particular, for any two distinct points A,•, A / e

A such that d\ < dj we have ß(dj) > ß(dj). This means that lines /, and lj cannot be

parallel. Also, if A,- and Aj are two distinct points in A with r/, dj, then it is still
impossible for /,• and / j to be parallel.

Indeed, in this case ||v;|| ||v/||, which implies v; v/, that is, (v/, —.v,-, Kd\ + L) —

(yj, —x j, Kdj + L). But this forces A,- Aj, a contradiction.

At this point we have the lines /;, no two of which are parallel. These lines are going to be

the axes of the cylinders in the packing we are planning to construct. The delicate part is

to prove a lower bound for the distance between any two such lines.

Our choice of the set A is very similar to those in Kuperberg [5], and Graf and Paukowitsch

[3] papers, although our set has higher point density. Also, in both those papers, ß(d) is a

strictly decreasing function of d.

Kuperberg takes ß : [2, oo) —»• (1, \/3 ]. to be some strictly decreasing function of d, such

that ß(2) i/3, and lim ß(d) 1. So the lines intersecting the .vv-plane close to the
d—>OQ

origin form angles of about 60° with the .v v-plane. and this angle decreases to about 45°
for lines intersecting the ,v v-plane far from the origin.

Next, Kuperberg proves that the distance between any two lines is at least 71/8^3
0.226 and shows that this eventually leads to a cylinder packing of density n2/51b
0.0171

Graf and Paukowitsch select their ß(d) 2.0896/ arctan(c/), for d > 1. For this explicit
choice of ß(d), they prove that the distance between any two lines is at least 1, which is

optimal, and then present a cylinder packing with density 5/12 0.4166

While this result is much better than Kuperberg's original estimate, their choice of the

function ß(d) leads to some awkward computations, which require heavy use of complicated

Taylor series estimates. On the other hand, our definition (10) of ß(d) generates a

much simpler algebra and eventually helps us produce a better result.

We will need the following result later on.

Lemma 3.3. Let L > 6 be a fixed real number, and let K — VL2 — 1. Then for every
x > .32, the following inequalities hold true

/ tt \ (x + 1 )2 L2 (.v + 1 )2
1 -COS — )> 1.03- r~— > —^ • (11)

\3x/ 2.V4 K2 2.v4

Proof. Consider the function

tW'ÏTiff1-«'©) 1121
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It is easy to show that <p(x) is increasing for x > 32, and that lim <fi(x) n2/9
x -->00

1.0966

Substituting x 32. we get (p{32) 1.03017 as claimed. The second inequality is an
immediate consequence of (9).

3.2 A lower bound for the distance between two lines

We will next study the most critical part of our construction, namely providing a lower
estimate for the distance between any two lines.

Lemma 3.4. Let A\ (x\, y 1, 0) and Ax — (x2, >'2, 0) be two distinct points in A as

defined in (8). For i - 1,2, let di yjxf + y? and v; (y;, —x,-, Kd, + L), with L, K

satisfying (9). For i — 1,2, let /,- A; + tv, be the line passing through point Ai and
having direction vector v,\ Then

dist(/i, h) > 1. (13)

Proof. Note the result above is optimal, as there are infinitely many pairs of points A\,
>

A2 in A with ||Ai A2II 1. A key role in the sequel is played by the cosine of the angle

determined by the vectors OA 1 and OA2. Thus we introduce the following notation:

c — cos(ZAj OA2).

Note that

ÖAi-ÖAx x\x2 + y\y2
c >— trom which *1X2 + yTV2 cd\dx. (14)

IIOA1HIIOA2II d^ch-

Again, we use the formula that gives the distance between two nonparallel lines in space:

dist(/],/2)
IA1A2 • (v 1 x v2)|

||V| X v2||
(15)

As before, we will compute the numerator and denominator separately. For the numerator,
we have

Ai A2 • (vi x v2)
-V2 -XI

VI

y2

y2 - vi

-X\
-X2

—(Kd\ + L) X2-X1 y2 — y\
y2 -X2

0

K d\ -\~ L
Kdx + L

+ (Kd2 + L) X2-X1 V2-.V1
VI -X]

{Kd\ + L) [x\ + y\ - x 1 ,v2 - yiy2) + (Kd2 + L) (x2 + y2 - x\x2 - yiy2)

(Kd\ + L)(rf| — cd\d2) + (Kd2 + L)(d2 — cd\d2).
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After rearranging with respect to the powers of 1 — c we finally obtain

Ai A2 (vi x v2) (1 - c)d\d2{Kd\ + Kd2 + 2L) + L(d2 - d\ )2. (16)

As for the denominator of (15), similar computations give that

I|V| X v2||2 ||V| ||2||v2||2 - (v, • v2)2

(vj" + AT + Ar/[ + L)'^j ^v2 + a2 + {Kd2 + L)-^j

- (y I y2 +x\x2 + (Kd\ + L)(Kd2 + L))2

(d2 + (Kd\ + L)2) (r/22 + (Kd2 + A)2) - (cdxd2 + (Kdx + L)(Kd2 + L))2

r/j"r/y + d\(Kd2 -f- L)~ + r/y (Kd\ + L)~

- c2d2d% - 2c d\d2(Kd\ + L)(Kd2 + L).

After arranging with respect to the powers of (1 — c) we obtain

II Vi x V2II2 -(1 - c)2d2d2 + 2(1 - c)d\d2 [(Ä"2 + 1 )d\d2 + L2 + K L(d\ + d2)

+L2(d2-dx)2,

and taking into account that K2 + 1 — L2 we end up with

IIV] x v21|2 —(1 -c)2d2d2 + 2(1 -c)d{d2\iL2(\+dxd2) + KL(dx +r/2)]

+L2(d2 — d\)~.

Since we intend to show that\A\A2 (vi x v2)| > ||vi x v2|| it is natural to consider the

difference

A := I A\A2 (v I x v2)|2 - Il v I x v2||2.

Using equalities (16) and 17) wc obtain

A (1 - c)2d\d%{Kd\ + Kd2 + 2L)2

+ 2(1 — c)d\d2(K Ld\ + K Ld2 + 2L2)(r/2 - d\ )2

+ L2(d2 — r/i )4 + I — c)2d2d2

-2(1 — c)d\d2 [/,2(1 +dxd2) + KL(dA + «/2)] - /,2(r/2 - d\ )2,

which after some simplifications can be written as

A (1 -r)2r/2r/22[l + (Kd{ + Kd2 + 2L)2] + L2(d2-dt)2 [(d2 - dx)2 - l] (18)

+ 2(1 -c)d\d2\KL(d\ + d2)((d2 - d\)2 - [) + l2(2d; - 5duh + 2d2 - 1)].
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Observation 3.5. Note that by our selection of the set A we have that

L2{d2-dx)2 [(ch-tf)2- l] >0.

This is true since for any point A; e A, the distance || OAj || dj is a positive integer.

Hence, L2(d2-d\)2 [(d2 - dx)2 - l] >0, 1 + (Kdx + Kd2 + 2L)2 > K2(d\ +d2)2, and
1 — c > 0, from which it immediately follows that

A > (1 - c)2d2d2_K2(d\ +d2)2 + 2(1 - c)d\d2KL(d\ + d2)((d2 - d\ )2 - 1)

+ 2(1 - c)d\d2L2(2d2 - 5d\d2 + 2d2 - 1).

The right-hand side becomes 0 if 1 — c 0, and therefore in this case A > 0, done.

Assume that c < 1, and let A' be the quantity obtained after dividing the right-hand term
of the inequality above by 2(1 — c)d\d2\

K^
A' —(\-c)did2(di+d2)2 + KL(dl+d2)((d2-di)2-l)+L2(2d2-5dld2+2d^l).

We plan to prove that A' > 0.

Clearly, A' is symmetric with respect to d\ and d2, so we can assume without loss of
generality that d\ £ d2. We also know that there exists an m > 5 such that 2"' < d2 <
2m +1

We will now prove the following statement:

L2 (d2 + 1 )2
1 - r > — • (19)" K2 24

Since 2"' < d2 < 2m+1 it follows by our choice of the set A that /LA i OA2 > n/(?>-2m) >
j:/(3 d2), from which

1 — c > 1 — cos (———) > 1 - cos ——^
V3 • 2m / — \3 d2)

>
L2 (d2 + 1)

K2 24
where the second inequality is due to the fact that the function 1 — cos is a decreasing

function and the third inequality follows from Lemma 3.3 with x d2, and thus, (19) is

true.

Looking at A' we can see that the first term is clearly nonnegative and so we can plug in
the lower bound we obtained into 19) to get

A' > • Uln-+.l)'d\d2(d\ +d2)2 + KL(d, +d2)((d2-dl)2 - 1)
^ K 2d*

+ L2(2dl - 5d\d2 + 2d2 - 1).
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We know that d\ < + and since these are integers there exists a nonnegative integer n so

that d,2 d\ + n. Next, we substitute this expression into our inequality and simplify to
obtain the following lower bound for A':

L2(d\ + « + \ )~d\(2d\ + « )2 w2 ^7. ~F~ K L(2d\ H~ n)(ti — 1)
4(rfi+«)3 (20)

+ Z.2(2<r/p - 5dx(di +n) + 2(d\ + nf - 1).

Clearly, if we show that (20) is nonnegative, then so is A'. Multiply (20) by 4(d\ + n)2

as that does not change the sign. After factoring and tidying up the expression we are left
with a quartic polynomial in d\:

(8Kn2 - 4Ln -8K + 8L)d4 + (28AT«3 - 3Ln2 - 28Kn + 16Ln)d]

+ (3bKn4 + 14Ln3 - 36Kn2 + 10Ln2 - 8Ln)d2

+ (20Kn2 +2\Ln4 -20Kn2 + 2Ln2 - 11 L,r)d\
+ (4Knh + 8/,/j5 - 4Kn4 - 4Ln2).

To make things simpler, we give numerical values to K and L. Taking L 7 and K
V49 — 1 4V3 it would suffice to prove that the coefficients of the above polynomial are

nonnegative for all n > 0.

Indeed, we have

32n/3n2 - 32V3-28n + 56 «(32^3« - 28) + (56- 32^3) > 0,

112V3«3 - 112V3n - 21/r + 112«

n(112V3«(« - 1) + (II2V3-21)(n - 1) +91) > 0,

144x/3ii4 - 144V3«2 + 98//3 + 70«2 - 56«

2«(72s/3n(n2 - 1) +49ir + (35« - 28)) > 0,

80V3«5 - 80x/3«3 + 147/z4 + 14«3 - 77«2

/r(80v/3«(/r - 1) + (147/r -77) + 14«) > 0,

I6V3«6 - 1 ö/)«4 + 56«5 - 28«3

«3(16V3/Ï(«2 - 1) + (56«2 — 28)) > 0.

Now it is clear that the whole expression is nonnegative. Thus A' > 0 and the proof of
Lemma 3.4 is complete.

We are now in position to prove the main result of this paper.

Theorem 3.6. There exists a cylinder packing C whose global density is 1 /2, and no two
cylinders in C are parallel.
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Proof. Consider the set A as defined in (8). For each point A,• (jc;, v,, 0) e A, define two
lines as follows:

/^ A; + (0,0, l)f
and

li Ai A (yi, -xi, Kdi A L)t,

where dj yjxf A y(2. L 7, and K — 4\/3.

Let C2- and C, be the cylinders of radius 1/2 whose axes are lj- and respectively.

Then, clearly {C/1} is a packing with parallel cylinders, while by Lemma 3.4 {C/} is also a

cylinder packing, but no two cylinders are parallel to each other. Moreover, since for every
R > 0 we have that B(R) n Cj~ and B(R) n C, are congruent, it follows that

,S({Cy }, R) <5({C,}, R),

and after letting R —> oo, the global densities of the two cylinder packings are also equal
to each other:

b({C,:L}) <S({Q}).

But it is easy to see that the density of {C3-} can be expressed as the product of the point
density of A (which by Lemma 3.2 equals l/n and the area of the perpendicular cross-
section of a cylinder in {C(- }. Hence, the global density of [CA] equals

I
2 /11

Combining the last two equalities, we obtain the desired result.

4 Conclusions and directions for future study
We constructed a cylinder packing with global density 1/2, with no two cylinders being
parallel. The natural question is whether we can do better.

In fact, K. Kuperberg [5] conjectured that there exist such packings with density arbitrarily
close to nIn light of our result in Theorem 2.2, this may very well be the case.

The weak part of our proof is the choice of the point set A; this set has point density of
only 2/n 0.6366 In comparison, the point set

A {(m/2,«V3/2) : m An even, m, n integers}

has point density 2/V3 1.1547 and the minimum distance between any two points
of A is still equal to 1. Of course, A is the unit equilateral triangle lattice, hence by Thue's
result, it is the densest planar point set with this property.

So why not use A instead of A! The answer is simple: for every point A,- 6 A, the distance

dj || O Ai || is an integer. This is not the case with the lattice A.

We used this fact in estimating the quantity A defined in (18); see also observation 3.5.
To be precise, the term L2Uh — d\)2 [((A — d\ )2 — l] is always nonnegative if d; are
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all integers. This allowed us to ignore this term altogether and, in the process, reduce the

problem to a linear inequality in 1 — c; see the step that lead to the definition of A' in (3.2).

But of course, if we choose A instead of A, L2(d2 — d\)2 [(do — d\)2 — l] could very
well be negative. And then, showing that A > 0 becomes a quadratic inequality in (1 — c).
Not only is this inequality more difficult to work with, but several computer experiments
indicated that it may not even be true.

One final remark regarding our cylinder packing.

The angle formed by the line /, with the .w-plane is arctan(/f + L/d,). This means that
lines that intersect the Ay-plane closest to the origin have slopes of K + L/32, while the

lines that intersect the Ay-plane far from the origin have slopes close to K. Once L (and
therefore K) is fixed, this creates a cone having ()z as its axis, which is completely free of
any cylinders. In other words, there are arbitrarily large holes in our packing. We measure
the size of the hole by the radius of the largest sphere that can fit in that region.

One interesting question is whether a nonparallel cylinder packing exists, all of its holes

being of bounded size.
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