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Zigzags with Biirgi, Bernoulli, Euler and
the Seidel-Entringer-Arnol'd triangle

Philippe Henry and Gerhard Wanner

Philippe Henry completed his PhD at the Ecole Polytechnique fédérale de Lausanne
under the supervision of Nicolas Monod in 2010. His main interests include group
theory and history of geometry.

Gerhard Wanner's Thesis was completed 1965 in Innsbruck under the supervision of
Wolfgang Gröbner. His main interest is since then numerics of differential equations.

1 Jost Bürgi's Artificium of 1586

"For many hundreds of years, up to now, our ancestors have been using this method because they

were not able to invent a better one. However, this method is uncertain and dilapidated as well as

cumbersome and laborious. Therefore we want to perform this in a different, better, more correct,
easier and more cheerful way. And we want to point out now how all sines can be found without
the troublesome inscription [of polygons] )."

(Jost Biirgi, Fundamentum Astronomien, fol. 34r-v, [14, p. 140J)

A spectacular discovery of a lost manuscript of Jost Biirgi (1552-1632). entitled
Fundamentum Astronomice, was made in the University Library of Wroclaw by Menso Folkerts

In diesem Beitrag werden mannigfache Zusammenhänge aufgezeigt zwischen dem
kürzlich wiederentdeckten Artificium von Jost Bürgi, den iterierten Evolventen von
Johann Bernoulli und der Kombinatorik alternierender Permutationen von Désiré
André. Dabei ergeben sich in ganz natürlicher Weise einfache und anschauliche
Beweise. Die Sinusfunktion, die Eulerschen und Bernoullischen Zahlen spielen dabei
eine zentrale Rolle und erlauben eine geometrische Herleitung der Reihen für tan a
und sec.r, welche die exponentiell erzeugende Funktion der Eulerschen Zickzackzahlen

darstellen. Diese letzteren kommen bereits bei Johann Bernoulli vor. Das Seidel -

Entringer-Arnol'd Dreieck lässt sich auf alternierende Injektionen erweitern, was einen
Beweis des Boustrophedon Theorems erlaubt sowie eine zweite geometrische flerlei-
tung der obigen Reihen.
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in 20131. This manuscript contains a forgotten iterative method which is also discussed

in the papers Waldvogel [30], Folkerts, Launert, Thorn [14] and Nicollier [25]. Biirgi's
work was crowned by his Canonis Sinuum, an impressive table of 90 • 60 5400 sine

values with a precision of 5 hexadecimal digits (approximately 9 decimal digits) obtained

using trigonometric identities and interpolations. This table fills 36 pages of the Funda-

mentum Astronomiœ (fol. 46v-64r), which was never published and rediscovered only four
centuries later.
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Figure 1 Biirgi's "Exemplum" in Fundamentum Astronomiœ (fol. 36r, facsimile from

http: //www. bibliotekacyfrowa.pl/dlibra) and the same calculation in base 10 (from left to right
and from top to bottom).

Biirgi's Artificium or Kunstweg. Biirgi's "skilful method" allows the simultaneous calculation

of n sine values (,vq 0, si sn) on an equidistant grid of the interval [0°, 90°]

1

Btirgi's manuscript can be consulted on the website of the Wroclaw digital library:

http: //www. bibliotekacyf rowa.pl/dlibra. It has been carefully edited by Launert [23].
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"diirch Theiliing eines rechten winckels in soüil theil als man will |partitioning the right
angle in as many parts as one likes]" [23, p. 43[. Biirgi explains his method with
calculations in base 60 for n 9 in the "Exemplum" of Figure 1, to which we have added

the same values in base 10 together with little arrows indicating the order in which the

calculations are performed. The method is graphically displayed for« 4 in Figure 2.
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From arbitrary (but cleverly chosen) initial values

(,v(),.vi,...,.v9) (0, 2, 4, 6, 7, 8, 9, 10, 11, 12),

for the sine values (to be scaled by 1 /sn Biirgi's algorithm computes iteratively

~~ 2S"

Cck~\ =ck+\ +s* n

<4+1 =s'k+ck+\ =0,..., n — 1)

s'o 0

(1)

(2)

first by downward additions for approximations to the cosines (cn_i, cn_3,..., f'i) at

the mid points, followed by upward additions for new approximations to the sines (s'()

0, ,Vp s'n (again to be scaled by 1 /s'n). From here, the method is iterated until a

sufficiently high precision is reached. The starting value cn \ ^ in (2) is due to

u +
1 —C„

The method is apparently motivated by the relations (in modern notation)

cosfv —S) — cos(x+<5) 2 sin.v sin ô, sin(x +4) — sin(x — 8) 2 cos + sin S, (3)

which Biirgi called Prosthaphaeresis and proved in his Chapter 3 by two geometrical
figures [23, p. 25]. In order to avoid tedious multiplications, Biirgi neglected the constant

factor K 2 sin S throughout his calculations and normalized the final values

4m), by one single division to ' 1.

The method seems to converge very well. For example, we see from the data of Figure 1

that the sequence of fractions

63 2064 67912 2235060
=0.1740, =0.17368, =0.1736498, =0.17364825,

362 11884 391086 12871192
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converges rapidly to sin 10° 0.17364817766693. The maximal errors of all nine values

are

Sinus 1 Sinus 2 Sinus 3 Sinus 4 Sinus 5

err 0.11602540 0.00414695 0.00015533 0.00000617 0.00000025
ratio 27.978 26.698 25.195 24.423

with an approximate convergence rate of 1 /25.

Proof of Convergence. Since the method remained unknown through all these centuries,
sound proofs of convergence were only given by contemporary authors (see, for example,
[14], [30] and [25]) in the framework of modern theories. We give here a proof, as far as

possible back in history, based on the early work of Joseph-Louis Lagrange (1736-1813)
[21] and [20]. We reverse the formulas in (2) and obtain

CM 1 "k+\ sk ck_, Ck+i ~ Sk-1 I + 2s!. - 4k-1 '

valid for k \,... ,n — \. For k =n, we have sn 2cn_^ 2 (s'n — s'n_x). This determines

a linear map M : s (si,..., s„) i-> s' (xj,..., s'n). For example, in the case of
Figure 2, the inverse of this map is given by

/V l \
S2

Li

w

/2
-1 2

-1
V
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2

-2

\
-1
2/

AA
.v M 1

,v '. (4)

vJ
For discussing the question of convergence of s î' r> s" i-> s'" we search an

eigenvector v — (v\, vn) of M, i.e., Mv Xv or v XM~lv. For all rows of the

matrix in (4), except the first and the last, this gives

vk -Xvk+i + 2Xvk - Xvk~i or vk+\ + Q - vk + vk-\ 0. (5)

This formula remains valid for all k 1,..., n, if we extend the vector v with vq 0 and

Vn +1 "«-I2-

How Lagrange found the eigenvectors of such linear maps The 23 year old Lagrange
was the first to deal with a similar problem in his work on the theory of sound3. His
method of discovery for finding an eigenvector can be explained as follows: equation (5)
is a second-order linear difference equation and can be solved by the ansatz i>k rk

(another idea of Lagrange, see [20, p. 26]), which leads by linear superposition to

f + Brk with /-|, rn roots of r2 + A — 2^r +1=0.vk Ar

By Viète's formulae no 1, thus o 1 /r\. Since no 0, we get B —A and

vk A (rk — ^r). If r is real, the condition vn+\ — nn \ cannot be satisfied. Therefore

2"(... je considère que ces équations étant toutes semblables, on peut les exprimer généralement par (...)[!
consider that these equations are all similar, we can express them generally by )]." [21, p. 74]

3
[21, Sect. 1, Chap. 111]. See also [16, pp. 28-29] for other boundary conditions and physical details.
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r must be on the complex unit circle, i.e., r e"*' for some real r/> (which we choose

between 0 and k This leads, using Euler's famous equation4, to

Dk A (e ik(f) 2iA -s\nk(/>.

The condition vn+\ vn-\ becomes, using (3),

sin(n + \ )cf> — sin(n — 1)^ 2 cos n<j) sin (f> 0

Since sin cf> / 0 (otherwise all Vk 0) we have cos nip 0 so that n(/> j, etc.

This allows n different values for cp ||,..., >7r and the eigenvectors become

(see Fig. 3, left)

kn (2) 2kn 5kit
sin—, r>k sin ——, v\ sin ——.

2n 2n 2n
,(1)

"k (k 1 ,n). (6)

From j — 2 — (r\ + /y) (again Viète's formulae) we get - 2 — (e"!' + e '^)
2 — 2 cos <j> 4 sin2 ^ and thus the corresponding eigenvalues satisfy

4/j
— — 4 sin~ — 2_ 4 sin2 — — 4 sin" —

2% 5k
h An ^3 4/i

(7)

The n eigenvectors (6) span R" and are orthogonal for (x, y) — Xd=i' xi)'i + ^xn)'n

v<2> t/2>

Figure 3 Eigenvectors 2 '1. v^\ o® and 2''1 for n 9 (left; the stars represent the extensions oq 0 and

u„_i ; convergence of the iteration s, .s', s", s'",... with 2] 1.7 and ^2 1.1 (right).

Conclusion. We see that Bürgi's method is the same as the so-called "Power iteration"
method for the eigenvector problem which is today standard knowledge. If À\ > lo >

4"(... comme nous l'enseignent les expressions exponentielles imaginaires des sinus & cosinus, si familières
aujourd'hui aux Géomètres [as we learn from the imaginary exponential expressions of sine and cosine, so

familiar today to the Geometers]" [21, p. 79].
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and we write ,v b\ü^ + b2V^ + • • • (see Fig. 3, right), we have

s{m) M>(1) + b2k%v{2) + • • • X]l(b\v(l) + (^)'"/426,2) + •••).

Thus we see that if b\ ^ 0, we have convergence in direction to the eigenvector with the

greatest eigenvalue ),\. After normalization by 1 /sjf'K the convergence is pointwise to the

eigenvector v^ (because v„^ 1), hence the coordinates of this normalized vector are
sin as claimed by Biirgi. If b2 0, the convergence speed is (jj)m.
For Biirgi's initial guess (1 we find the coefficients 6/ by numerical calculations:

10.970508, 0, 0.466576,-0.253301, 0,-0.124191,0.101454, 0, 0.083971.

So we have by miracle b2 05 and the convergence speed is (4y )"', i.e., from (7):

sin2 1 sin2 ^ 1 1

—t#- (" 9), —= (/i =90), — («->oo). (8)
sin ^ 23.5128 sin2 ^ 24.9848 25

This last limit would be ^ if h2 / 0.

We shall see in the next sections that Biirgi's method is closely related to a discovery of
Johann Bernoulli (1667-1748).

2 Johann Bernoulli's successive involutes

"Ce théorème remarquable est dû à Jean Bernouilli [This remarkable theorem is due to
Johann Bernoulli.]"

(Siméon Denis Poisson, [27, p. 440])

One hundred and ten years after Biirgi's death appeared the Opera Omnia [6] of Johann

Bernoulli in four volumes published by Marc-Michel Bousquet (1696-1762). In volume
IV ("Quocontinentur ANEKAOTA") are collected unpublished manuscripts which Johann

judged interesting for posterity. The article CLXV describes a surprising method "succes-
siva et alternante" for "cyclometricum" (calculation of n based on a fixed-point property
of the cycloid6.

Bernoulli's Theorem. Let ADB (see Fig.4) be an arbitrary curve ("curva quadibet")
whose tangents in A and B are perpendicular. Produce the tangent BF and the parallel
axis CA to infinity. Then describe through A the involute A EF of the curve ADB ending
in F, describe through F the involute FGH of the curve A £ F ending in H and continue
alternately to infinity. Bernoulli claims (without a direct proof) that at infinity we so obtain

5This phenomenon occurs for all n 0 (mod 3).
6Dc evolutione successiva et alternante curva cujuscunque in infinitum continuata, tandem Cycloidem

générante; schediasma cyclometricum [On the successive and alternating development of any curve continued to

infinity eventually generating a cycloid; cyclometric scheme] [6, IV, pp. 98-108]. A handwritten version of this
text (without title) is conserved in the University Library of Basel [7].
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identical cycloids ("Cycloides idcnticas"), whatever was the initial curve7. According to
Joseph E. Hofmann (1900-1973) "es ist das erste Beispiel, das erkennen lässt. dass sich
eine Folge wohldefinierter Kurvenbögen einem Grenzbogen nähert

Computations for the case of a circle. Johann computes the arc lengths for the case when
the curve ADB is the quarter of a circle with radius 1. We use the abbreviations9

7T

arc AB — a, arc AF i\, arc Fl K — £2, arc M O £2, etc.

We choose a point D on AB and denote by x the angle between the normal to the curve
al D and the axis CA. The successive tangents to these curves lead to a polygon D, F. G,

I. L, N. P. R, etc. We denote the arc lengths AD. AE. HG, H I, ML, which arc all
zero for .v 0, by .v 1 (x). t\(.v), .sgfv), h(x). .vs(.v), respectively10. By the property of
the involutes, the tangents DE, EG, Gl, IL,... are equal to S|, £\ — t\, si, £2 — '2. etc.

By the property of orthogonal angles, all dark angles are mutually equal and equal to dx,
hence we obtain

dt\ 5] dx, ds2 (£\ — 11) dx, dt2 .s'2 dx, dsj (£2 — 72) dx,

Beginning with si (x) x (the arc length of the circle), we integrate these equations one
after the other as

tj(x)= [X s i(Ç)dÇ, .v/+t(.v) / V j - tj(ç))dç (9)
Jo Jo

' WV shall see that the cycloids are identical for all initial curves, if we normalize the distance CB to 1. Also,
.vi (x) is only well defined, if the slope of the curve decreases monotonically.
8[18, p. 98].
4The notation a is that of Joh. Bernoulli, Euler 1111 and Legendre [24], For C\, fa. G- Bernoulli wrote b. c,

e.... (see Fig. 5) while Euler. Lagrange and Legendre used b, bh".
l0Euler 1111 wrote for these functions .v. t, s', s",
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and obtain (for a reproduction of Johann's formulas, see Fig. 5)

r2 S\(x)= X

t\(x) Y\ x3

2 4 ^ S2(x) £ 1X

tl{x)=eX- -- x3 x5 (10)
4 6 Sl(x) i2x + —^ l3 I3

t7' ' — s4(x) e3x-e2-^- Jï-

Az.-
^

j4l-*3&-2L' 1 Tr > AUn^ÙZ+lL

-^r* Zjm %;}..-f -X.1..-V r<~ *>*
)yl ä )"*-•

Figure 5 Facsimile reproduction of Johann's formulas for jy (z), tj (z) [7, fol. 245v],

The conditions //(«) £j or 0 Cj — //(«) allow the lengths £j to be computed recursively

as

0 7, - —
2!

a2

2!

a2

2!

=> C i

a2

2!

a4
+

4!
=> (2 —

5a4

~4!~

+7)— - —
4! 6!

=>• £3 —
61a6

e,C

(11)

Finally, after calculating Sj (a) from (10), we get the list of all the arc lengths:

a2 2 a2 5a4 16a5 61a6
AI' —, F H H K KM MO etc. (12)

2! 3! 4! 5! 6!

(see Johann's longer list in Fig. 6 and the still longer list in (26) below).

Rectifying the circle. Equating, for example, the curve lengths VII and VIII. and "divi-
dendo per a7", we obtain a and hence 2a 7r ~ 3.14224, so that "nostra
analogia tantillo minor est, quam Archimedea" [6, IV, p. 103]. The best approximations are
obtained by comparing the curves XII XIII and XI1I-XIV with the result

70271890 626311168
3.14159003 < k < 3.14159353. (13)

22368256 199360981
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Curva I — * i
II a1 (-—)

Ill (——)j. 2- 3

...IV s=r a* (—5v i.2. 3-4

V=*5 15
s 1.2.3.4.5'

••• vi^^'Cr^)
VII =.' c

.2. 3 ...6
272

VIII

IX 4s —^ X.

793 6
2. 3 9

.•. X=»*Ior -*°Tai
I- 2-3 10

313792XI 4"(—)v I.2.3.- II
XII *"(—^2Î2£!

1-2. 3 12^

XIII ==-'5(—£23£!iil_
x-2-3 13

....XIV=^V — X

I-2-3 141.2. 3-.-7
Figure 6 Table from [6, IV, p. 106]: all values are correct.

Remark. We can also compare the values contained in Figure 6 with the known length of
the limiting cycloidal arc, which is ~ (see (24)). So, by extracting a high-order root we get
for "Curva XIV" the better value

15/ 2-14!
7T ~ 2 ,/ 3.14159266818 with an error of 1.46-10 (14)V 199360981

But obviously Johann preferred to calculate n "sine extractione radicum, & sine compara-
tione Cycloidis" [6, IV, p. 1021.

M H ACFigure 7 The initial curve corresponding to Biirgi's values (1) and involutes.

Relation with Biirgi's algorithm. If we introduce for the superior part of the curve lengths
in Figure 4

Cj(x) lj— tj(x) — ["sj(£)dÇ- !" s,(c)dc I" Sj(é dç
Jo Jo Jx

then Bernoulli's algorithm (9) becomes nicely symmetric

cj(x) C/" s,(c)d^ sj v) Cf CjfâdÇ (15)
Jx Jo

and turns out to be identical with Biirgi's algorithm (2) in the case when n -> oo and
when the constant K 2 sin <5, which Biirgi had at first neglected, becomes the dÇ. We



150 Zigzags with Bürgi, Bernoulli, Euler and the Seidel-Entringer-Arnol'd triangle

further introduce cq(x) for the derivative of .vi (a), which is also the corresponding radius

of curvature. Biirgi's clever initial choice (1), where the values ,s/ increase twice as fast
below 30° than above, would correspond to

cq(X) -
2 if 0 < a- < f
1 if I < x < a

^l(.v) ^
2a: if 0 < a < I

aX + if I < a < a
(16)

The factor ^ assures the condition CB — 1. The corresponding initial curve then consists

of two circles of radii ^ and | respectively. Rapid convergence towards "Cycloides
identicas" can be observed in Figure 7.

3 Convergence proof

"(• • • il est, en général, plus long et plus pénible de résoudre complètement une question relative
à un nombre indéterminé de points matériels, que la même question dans laquelle on suppose
immédiatement ce nombre infini [It is, in general, longer and more painful to solve completely a

question related to a finite number of material points, than the same question in which this number
is immediately supposed infinite.]"

(Siméon Denis Poisson, Théorie mathématique de la chaleur, 1835, p. 171)

The first proof for Bernoulli's affirmation is due to Leonhard Ruler 1707-1783) in 111 ].

Lagrange, in an unpublished manuscript from 1780. asserts that Euler's method "doesn't
bring and cannot bring in mind all the light and all the conviction that one can desire on
this subject" and writes his own proof. Later proofs were given by Legendre [24, pp. 541-
5441 and Poisson [27, pp. 431-440]. But it was not until 1844 that appeared the first short

proof by Puiseux [28, pp. 397-399]".
All these proofs show, by various methods, that the arc lengths converge to

Sj(x) —> Const • sin a (andalso c/(a) Const • cos a) for j oo. (17)

With this information, say, for the curves MLK in Figures 4 and 7, we know at every
point L

• the arc length M L, as well as • the direction (defined by the angle a).

Therefore the curves are uniquely determined. We know that the involute of a cycloid is

also a cycloid12 and that the involute of a hypocycloid/epicycloid is also a similar curve.
This shows that the curves in Figure 8 (because of Fuel.111.20) satisfy

arc LM LN LP + PN —
4r sinA (cycloid, left),

(18)
2('i +f2)sin.v (hypocycloid, right),

and so have both of these properties. Thus the equations (17) lead to Johann's Theorem
and to Euler's generalization of this result to hypo/epicycloid.

' ' Lagrange's manuscript together with an introduction will be published elsewhere (see [22]).
12This result is due to Huygens in his Horlogium oscillatorium, see also [17, Thms. 1 and 3].
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Figure 8 Cycloid (left) and hypocycloid (right).

Proof of (17). Since Johann's algorithm is the same as Biirgi's (for n —» oo) and since

(17) is the same as Biirgi's claim in Section 1, the proof of (17) is immediate from what

we have proved there. Following the advice of Poisson (see quotation), the continuous case
is even simpler to understand.

Inspired by the eigenvectors (6), letting ^ > x (forn —> oo, 0 < x < §), we consider
the basis functions

sin x sin 3x sin 5.v (and also cosx cos 3x cos 5x

Linear combinations of these functions are the Fourier series on the interval [0, j\.
Because of the integration formulas

</ sin kÇ dÇ — - cos kä,
k

it J1 - cos kx (for £ 1,3,5,...) (19)
x k

(observe that cos k f 0 for odd k and

</;
I

cos kç dZ - sin kx (for all k), (20)
k

we see that the downward integration transforms any series in sin kx into a series in

cos kx by dividing the coefficients by k, and the upward integration ((^) transforms any
series in cos kx into a series in sin kx, again by dividing the coefficients by k.

In view of the integrations in (15), we develop c'o(.v) into a series in cos kx and .vi (x) into
a series in sin£x :

4 /' i
co(x) a\ cosx + r/3 cos 3x + a$ cos 5x + • • • with ay — — / co(x) coskx dx (21)

n /()

4 f"-
,s'i (x) b\ sinx + bj sin 3x + £5 sin 5x 4 with by — / .V| (x) sin kx dx (22)

n Jo
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The integral formulas for the coefficients, together with their standard proof using orthogonality,

were independently discovered by Euler [13] and Fourier (Théorie analytique de

la chaleur, 1822).

Formulas for Bernoulli's case. For the functions (10), which Johann Bernoulli had

computed, we have .vi(.v) x and hence start with co(x) 1. The coefficients ak in (21)
become 1 — |, 5 and we obtain, by the continued integrations of (15) and alternative

use of (20) and (19),

co(x) ^(+cosx — 5 cos3x + j- cos5x — j cos7x -1

5'i (x) ~ (+ sin x — p sin 3x + y sin 5x — y sin 7x + • - •

d (x) j (+ cos x — J] cos 3x + cos 5x — cos 7x -| (23)

s2(x) ^-(+sinx — y sin3x + ^ sin 5x — y sin7x -|

C2(x) J-(+cosx — y cos3x + J, cos5x — y-cos7x + • • •)

and so on. Therefore, for j -» 00, we have in the limit

4 4
si (x), S2(x), 53(x),... -* — sinx and co(x), c\ (x), c2(x), — cosx (24)

TT n

since all coefficients except the first one tend to zero. The coefficients of sin 3x converge
most slowly, therefore we have convergence ratio ^ 5

The convergence of the Fourier series for co(x), si (x) and c\ (x) is shown in Figure 9 (left,
where also a nice Gibbs phenomenon can be seen).

Formulas for Biirgi's case. If we compute the for the initial functions 16), we have
the nice surprise that aj — 0. The full series becomes

Co(x) ^ (+ cosx + j cos5x — lj cos7x — py- cos llx + cos 13x H

.y 1 (x) ^(+sinx + y sin5x — y sin7x - yy sin 1 lx -l-yy sin 13x H (25)

ci (x) £(+cos.v cos5x — y cos 7x — yj-y cos 1 lx + jy cos 13x + • • •)

and so on (see Fig. 9, right). The dominant error in v 1 (x) is due to the term sin 5x, so we
have faster convergence with ratio y ^ as observed in (8).

Nicollier found further initial conditions with still faster convergence in [25].
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4 Connection with the Euler numbers

"Haecque considcratio ad plurimas alias speculations non spernandas perducere potent. [This
consideration [the Euler numbers] can lead to many other speculations that should not be

despised.]"

(Leonhard Euler. Summarium of [11])

Euler zigzag numbers. We recall (and extend a little bit) the sequence of numbers which

appear in Johann's list of Figure 6:

En 1 E\ 1 £2=1, Et, —2, £4 5, £5 16, £(•, 61 £7 272,

£x 1385 £9 7936 £,0 50521, Eu 353792 En 2702765

£l3 22368256, Eu 199360981, £,5 1903757312, £,6 19391512145

£,7 209865342976. £]8 2404879675441 £l9 29088885112832

£20 370371188237525, £21 4951498053124096, (26)

These numbers have been rediscovered several times and are often called the Euler zig-
zag13 numbers by authors who were not aware of Johann's contribution.

Euler's Summation Formulas. We set in (23) x 0 for to, c\, C2, and x a for
.s-1, s2, vy.... and get from 12) the remarkable formulas

1 -! +! -!1
3 '5 7 + 9

1

4-
1

F +53

1 -

1 _i_ 1

7T + +
+ 5Î -75 +95

I _i !_ _2_ 1 _L _37 .S7 7 7 ' 97

17T

0!-22

17T3

2ÏÏ2*
57T5

4h2*>

61;r7
6!-28

1 +^2 +^r + 72 +<£ + '

1 + + +|F + '

1 + 70 +^ft + '

1 + 7* + ys + ,Jk ^ —
1

1K-
l!-23
27r4

3!-25

l()7r''
5Î-27

272tt8
7!-29

or, in general,

1 -
1

+
1 1 1 r2/ + l

32M-I
1

52f+l 727 + I

1

92t 1 1

1

(2£)! • 2-'52
_2f

£2f »

1 1

1 + 337 + 537 + 7^ + 9^ + "'~ (27 - 1)! 22' + '
£21-1 •

(27)

(28)

Euler numbers. Formula (27) was for Euler 19] the original motivation for studying the

numbers (26) with even indices, called the Euler numbers14 (see Fig. 10). Formulas (11).
F 2/t

together with 7* '7,^", (sec (12)), show that they obey recursions like

((A
0 =7 £(> £4 + L £2 £0. (29)

'^This terminology has been popularized by John H. Conway and Richard K. Guy during the 90s [26].
14It seems that this terminology was coined by James Joseph Sylvester (1814-1897): "Following the accepted
Continental notation, I denote by Bn (...)" and "I call the numbers E\, E2, ..En Euler's 1st, 2nd, nth
numbers, as Euler was apparently the first to bring them into notice" (Mathematical Papers II, p. 254 & p. 262).
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a I Î 50521

e — i 1 — 2702765;

y 5 e — 199360981

S zz 61 < ~ I939IÎI2I4Î
g — 138Î u zz 2404875661671 &Ç*

Figure 10 The Euler numbers printed in Euler's Institutiones calculi differentialis (1755) [10, part. 2, §224].

Only k Eig is slightly wrong.

Bernoulli numbers. The numbers (26) with odd indices are connected to Euler's great
discovery

11111 ,_A2tz)2'
1 + 2^ + 3^r + 4^r + 5^ + 6^r~' ~~

2(2£)\
Bl' '

where Bo 1, B\ Bx — B\ — 3^, B(, -E, B% are the Bernoulli
numbersl5. Indeed, if we multiply (30) by 4, and substract from itself, we obtain (28)
together with

Ext-1 •

il2e
Bit - (31)

The right-hand formulas of (10) show that they satisfy recursions like

e*=Qe'-Qe>+Qe°021

Asymptotic values. Johann's approximation method (14) can now be written

2 "V/2^ or 2^j n! (33)
E„

with a relative error of size 3~n. The estimates of (13) generalize to

2 • (2n + 1 • Exn 2 (2ii + 2) • £2/1+1
< n <

ExnW Ex„\2

An arbitrary angle b. In the second part of his work |11, §28-45], Euler generalized
Johann's Theorem to the case where the angle a j is replaced by a value b other than

j. An illustration is given in Figure 11 for the case where b < a and the initial curve is a

circle of radius 1. Bernoulli's algorithm (15) becomes here

rh
^ fy

Cj(y) (J h(l)dr], V/ + 1 v) c / Cj(ri)dri.
Jy ./()

l5They have been named by Euler: "isti Humeri, qui ab Inventore lacobo Bernoullio vocari soient Bemoulliani"
[10, part. 2, §122],
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B

For the computation of the new arc lengths cj and îy+i, we use the coordinate transforms

y — I • x, r\ • ç. dt] | • dç in the integrals and obtain recursively, by starting from

h (y) v '7 • •* (^)'si (*)> the formulas

/b\2.i / b \2j+l
Cj 00 ("J cj (x sj+100 (-) SJ +10" • 34>

The arc lengths sj and Cj, due to the ratio dtj/dÇ receive an additional factor | at
each integration. They thus tend to zero for b < a, to infinity for b > a. But when the

2

involutes are continuously rescaled by they tend to finite curves. From (24) we get

lim (£) ''^O) t - sin T v and .Hm Jcj(y) - cos ^ y/^rvVo/ b n b j >oo\bl TT b

So the limit is a hypocycloidal arc if b < a (where in equation (18) r\ | r2, compare
with the right picture of Fig. 8) and an epicycloid for b > a (Euler [11, §45]: "quae sunt
proprietates epicycloidum et hypocycloidum").

The tangent and secant functions. Another motivation for Euler to introduce his numbers

was the study of the secant function'6. Figure 11 presents an elegant access to its series.

We have b < a — j so that the iterated involutes zigzag inside a right-angled triangle
with hypotenuse sec b and legs 1, tan b. With (34) the arc lengths (12) become

/b\~ a2 b2 /byi 2a3 2b2
BA BF b, A F AH (-) — — F H FK -\a) 2! 2! \aJ 3! 3!

etc., the same expressions as before with a replaced by b. From this picture we can
immediately read off the infinite series for tan b and sec b. Since b is arbitrary, we replace this

'6"Per hos autem numéros Bernoullianos secans exprimi non potest, sed requirit alios numéros, qui in summas
potestatum reciprocarum imparium ingrediuntur" ["The secant can not be expressed through Bernoulli numbers
but needs other numbers which appear in the sums of reciprocal powers of odd numbers."] [ 10, part. 2, §224].
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letter by the more common x and have

I 00 Z7 00 Z7

sec * _L y I3L x2k tan v y x2k+1 (35)
cos* f^(2k)l h(2k + iy-

James Gregory (1638-1675) knew these results but divided out common factors so that

no structure is visible and the series "maxime videntur irreguläres". On the contrary, Euler
reduced the series "ad facilem progressionis" (see Fig. 12).

t a -V 4- 2<ft
I — 4- Frr1 yi I 1' lisr" • 28}5rs

- 4. fi jL J*i 4- 4.* - ' T 2f T 2ifTi ~ jigt 1 T" Sc^r7

_ 21 (22- I)?lr 34(24"l)SS-y3
^

2ff(2*-i)^y5 ^ 28(29-0^?
{SX— 77a ' ~ i. 2'. 3.4

' i. 2 6 ' i. 2 8

-4- &c.

fyCjeZZaf —aw4-—~—Jr4 + —~——-—- a-8-(-&c.
1.2 '1.2.3.4 1.2...6 1.2 ...8

Figure 12 The tangent and secant series by James Gregory (letter to D. Collins, 15 Februarii 1671) and by Euler
([10, part. 2, §221, §224]).

Exponential generating function of the Euler zigzag numbers. There exists a close
connection between the developments of tan x and sec x seen for the first time, according
to Désiré André (1840-1917), by Eugène Catalan (1814-1894) [2, §12], Indeed, by adding

up both series (35) we obtain the exponential generating function (e.g.f.) of the Euler
zigzag numbers. Because of

1 (X n \ (x n \ 7^, £* k
h tan x tan I —I— 1, we have tan —I— 1 > — x (36)

cosx \2 4/ V2 4/ k\
k=0

For a geometric proof of the first identity, see Figure 13.

Recursive calculation of the E^. Differentiating y(x) tan($ + j) we obtain

y' I(!+tan2 (f + D) or 2y' l+y2, y(0) tan| l. (37)

This is an initial value problem for a differential equation, to which we apply an idea of
Euler 112. §663]. We develop

E i £2 9

y= E0+ ~x+ ~2\X~ + "'
2y'= 2E\+ 2 — x+ 2~ x2 +

1! 2!

2 1 jr.2 (Eo E\ E\ Eq\ / EQ /G £1 E\ £9 £0\ 21 —f- v —J -f- En "I- + x~\-1 + + I x + • • •

0 \ 0! 1! 1! 0! V»! 2! 1! 1! 2! 0!
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2cos(| -

B

Figure 13 Proof of (36) from AH/HC AC/CB (Eucl. 111.20 and Thaïes).

We first have from y (0 1 that Eq I. Next we equalize the coefficients in the second

and third row and obtain:

This recursion for the Euler zigzag numbers was first discovered in 1879 by André by
solving a question in combinatorics17, as we shall see in the next section.

5 Connection with alternating permutations

"Toutes les formules étaient déjà connues; mais l'introduction du symbole An, moitié du

nombre des permutations alternées de n éléments distincts, leur donne, selon nous, un nouveau
degré d'intérêt. [Ail formulas were already known; but the introduction of the symbol A„,
half of the number of alternating permutations of n distinct elements, gives them, in our opinion, a

new degree of interest.]"

Alternating permutations. On May 12,1879 Désiré André 11 ] presented to the Académie
des Sciences in Paris a "probablement toute nouvelle" notion in combinatorics, that of
"permutation alternée" (today sometimes called zigzag permutations). A detailed paper
was published two years later [2].

We call a permutation o : i \ > oj of n objects [«] {1.2....,/;}

It is easy to see that by the symmetry Ok pa- n +1 — or an down-up permutation becomes a

up-down permutation and vice-versa. Therefore, for a given n, there are as many up-down
as there are down-up permutations and André raised the question of finding this number

A„ (André's notation). It is convenient to set Ao A\ — 1. For the next values, we see

17At that date, according to André, combinatorics was "une partie des Mathématiques où les méthodes étaient

jusqu'à présent fort rares, pour ne pas dire inconnues [a part of mathematics where the methods were until now

very rare, if not unknown]" (Bull. Soc. Math. Fr. 7, 1879, p. 63).

(Désiré André, [2, p. 177])

with ffj > 02 < 03 > < • • • a down-up (alternating) permutation,

with en < <T2 > 03 < > • • • an up-down (alternating) permutation.
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in Figure 14 that A 2 1, A3 2, A4 5. Comparing these numbers with the extended
Bernoulli list (26). it is not difficult to guess a general theorem:

Andre's Theorem (|1, p.965], [2, p. 170]). The numbers An counting the up-down or
down-up alternating permutations of n elements are, for all n, the Euler zigzag numbers

(26).

Figure 14 Down-up permutations for n =2,3,4.

Proof. André supposes the Ak to be known for k < n and searches all alternating permutations

of [n + 1]. Let k+1 be the position of the highest peak cr^+i n+1, the permutation
going down on both sides. This peak will thus be followed, left and right from inside
towards outside, by up-down permutations:

"k+t=n+l
> < > <in ' '

k n-k

There are Q possibilities for partitioning the remaining n points [n] in two sets with k

and n — k elements and Arespectively An possibilities to arrange these elements

as up-down permutations. Adding up (£)AkAn-k for all k, we so obtain all alternating
permutations of [n + 1], hence the double of An+\. This way of counting is precisely the

recursion formula (38) for the Euler zigzag numbers.

From here, going through the above proofs backwards, André arrived18 at formulas (37)
and then to (36), the e. g. f. tan(| + j) of the A* ("notre formule fondamentale"). Finally,
in the search for the simplest recursions, he developed a list of formulas, among which are

(29) and (32). Some years later, he discovered formula (33) by determining the asymptotic
value of the probability for a permutation to be an alternating one19.

Entringer's Lemma. Unaware of Andre's work, Aubrey J. Kempner (1880-1973) 119]

and Roger C. Entringer |8| rediscovered the alternating permutations in 1933 and 1966

respectively. While André focussed on the position of the highest peak, Entringer focussed

on the value ofo\. So we define the Entringer numbers'.

Enk # of down-up alt. perm, of {1, 2,..., n + 1] with a\ — k + 1

# of up-down alt. perm, of {1, 2,..., n + 1] with o\ n + 1 —k.

18"Ifs a very nice exercise" according to ArnoI'd [5, p. 64].
"Comptes rendus 97, 1883, pp. 983—984.
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We see in Figure 14 that the first of these numbers are E\\ 1, £21 1. £22 1,

£31 1, £32 2, £33 2. In general, they satisfy Entringer's Lemma [8, p. 242]:

E„k £«,* -1 + En—X n—k (39)

ProofofEntringer's Lemma. We simplify Entringer's proofby observing that there are two
types of reductions for alternating permutations. We are dealing with the case of down-up
permutations, the other case being similar.

1. The down-up permutations in Enk such that r>-> — 03 — 1 are, by removing o\, one-to-one
with the up-down permutations in £„_ i ,„ t (gray arrows: Fig. 15, left).

2. The remaining down-up permutations in Enk are, after exchanging the rows k + 1 k.

one-to-one with the down-up permutations in E„^-\ (black arrows; Fig. 15, right).

Figure 15 Proof of Entringer's Lemma (n 6, k 4).

The Seidel-Entringer-Arnol'd (SEA-) triangle. Starting from £00 1 and £„0 0

(n 1, 2, 3,...), formula (39) represents an elegant algorithm for computing all these

numbers (see Fig. 16). Since in this formula the indices of the second term (for n — 1 run
in the opposite direction, it is nicer to arrange them in a triangle as upwards-downwards
alternating columns: each Eng is then the sum of its neighbor above (or below) and the

one to the left, exactly as in the Biirgi-Bernoulli algorithm. This triangle was discovered

by Philipp Ludwig von Seidel20 1821-1896) and by Vladimir Arnol'd21 (1937-2010).

Applying the two bijections of the previous proof repeatedly, we fill the nodes of the entire

SEA-triangle with the corresponding alternating permutations and we obtain Figure 17. In
this picture the permutations of the first type are, along the gray arrows, one-to-one with
all permutations in £„_ 1 „ g of "opposite downing mode". They are placed inside a dotted

region.

For Seidel (1821-1896) it was an excellent means for calculating the Bernoulli numbers ("(-.. in welchem
sich wahrscheinlich die einfachste Genesis der Bernoulli'schen Zahlen ausspricht" 129, p. 158]). Sei-
del's work remained unnoticed until Dominique Dumont (1947-2007) studied anew the "Euler-Seidel matrices"

(Séminaire Lotharingien de Combinatoire B05c, 1981).
21 "To calculate the Euler and Bernoulli numbers quickly, it is convenient to use the classical Euler-Bernoulli
triangle, similar to the Pascal triangle" [4, p. 3J. "J'appelle [ce] triangle de Euler-Bernoulli parce que Pascal

ne l'a pas considéré, et parce que Euler et Bernoulli ne l'ont pas considéré non plus [I call this triangle Euler-
Bernoulli triangle because Pascal did not consider it, and because Euler and Bernoulli did not either consider it]"
[5, p. 63].
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En C

E 20

>9136<
770 C

>6366
094 C

>2272 <

296 C
>6976

320 C>0656(
120C

>3536
664 >>15872(
936C

>936
»6<

0

702765

702765

652244

551202

401024

204480

2:1965664
275792C

>689872
306448C

>383424
329984

>053440
345856 > _

353792 >
353792C

707584

353792

Figure 16 The Seidel-Entringer-Arnol'd triangle.

i z J

o T I *
I I »••••••

1 2

li« i
1 s.- :

m •

1 2

31 I f
1 2 3

3

02
ié

1 2 3

Figure 17 Filling the nodes of the SEA-triangle for n 0, 1, 2, 3,4 with its corresponding alternating permutations.
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Euler and Bernoulli numbers. By iterating (39) we have

n—1

Enn — ^ En _ijt (Andre's theorem) En (40)
k=0

This means that at the end of each column in the SEA-triangle appear the Euler zigzag
numbers, the Euler numbers above, the Bernoulli numbers below (see (31))22. This can
also be seen in Figure 17 where the number of dotted permutations in column n, which is

equal to is equal to the number of all permutations in the previous column.

The Boustrophedon Transform. If the simple algorithm (39) already produces such

interesting sequences of numbers as Euler's or Bernoulli's, one might ask which other
interesting sequences of numbers (bn appear at the end of each column in the SEA-triangle if,
instead of eo (1,0,...), we feed this triangle with an arbitrary sequence (a,,)? Figure 18

illustrates this question originally formulated by Richard Guy about this "boustrophedon"
(or "ox-plowing") transform B : (a„) '• - (bn). It was solved in 1996:

b2
rao+2a\ +Ü2 <7

a3 c
b4

5ao+8a i + 602 +4a3+04

5ao + 8ai -(-6a2-l-3a3Ta4

"«-bo
[071 C / ao+2a i+a2+a3 C

tf()+«i+«2 C „4a0+6a\ + 5a2 + 2a3+«4
ao+ai <[ 2ao+3ai+2a2+a3 C

«2 c
2ao+3ai-jj-3a2 + a3 ([

2ao+3ai +302+03+04

04

Figure 18 The Boustrophedon transform (bn) B(an).

The Boustrophedon Theorem (Millar, Sloane and Young, 126, Thm. 11).

bn =^('f)E"-kak (41)
k=o ^ '

A "sketch of proof" based on paths in a directed graph and so-called "box diagrams" is

given in [26], We understand it here more easily as follows:

Proof. Using linear superposition, we separate the coefficients of oo in Figure 18, which
are the entries of the SEA-triangle of Figure 16, and those of a\, 02. 03, etc. which are
the entries obtained by calculating the values of the image sequences of e\ — (0, 1, 0

ei — (0, 0, 1,0,...), C3 (0,0,0,1,0,...), etc. which we denote by (c j (c2), (cj etc.
We so obtain modified SEA-triangles, constructed by the same rules, but with different
initial values (see Fig. 19).

22Émile Picard (1856-1941) writes that "les nombres An de Désiré André remplaceront sans doute quelque jour
en analyse les nombres de Bernoulli et les nombres d'Euler [the numbers An of Désiré André will without doubt

some days replace in analysis the Bernoulli and Euler numbers]" (Rapport sur les travaux de M. Désiré André,
1910, Archives de l'Académie des sciences). Entringer, unaware of André's work, proved the appearence of these

numbers with a lot of analytic calculations [8].
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m 1 : 0 m 2: 0 m 3: ,0

^<*5* mc4C4

NcScS^ o^c,SdS2 i)c()^ic357
"S^c'Sc6^ ^oc^C 517 °^>c°S<25

<•<.%
9

10

10

Figure 19 The images B(em) for m 1,2,3.

We have ß(eo) (Cj) with c® Ej and (41) means that at the end of each column appear
Euler zigzag numbers, shifted and multiplied by a binomial coefficient:

m\j
0

1

2

3

0 12 3 4 5 6 7

£0=1 E|=l /•2 l £3=2 £4=5 £5=16 £fi=61 £7=272

V \'2 V3 V4 V5 V6 V7
0 1 2 3 8 25 96 427

s : 3 4\ 2 \ 2 \ 5

0 0 13 6
3 4

Vs V5
0 0 0 14

V?

\'5
20

10

V*

V'
V*

75 336

V'
40 175

Therefore it is enough to prove that for (cj) B(em) (m 1,2, 3 we have

c"=(0E>- for j > m. (42)

The key to proving equality (42) is to replace alternating permutations of [n + 1] by
alternating injective maps into a larger image set:

N+m k= * ()f down-up alternating injections {1,..., 11 +1} -» {1,..., n +1 +m]
with ai k +1

# of up-down alternating injections {1,..., n + l} —> {1,..., n + l+m)
with <7i n + l+m—k

These numbers, for m 1,2,3 respectively, are precisely the entries of the triangles
in Figure 19. Indeed, for example with m — 1, we construct Figure 20 analogously to

Figure 17. We observe that, in each column, all injections with the same initial value, after

removing this value, are built from the previous ones (according to the direction of the

arrows) in the previous column. Therefore, by construction, we again have the recursion
formula (39).

Now fix m and consider all the alternating injective maps at the top or at the bottom

(according to the downing mode) of a column. This number can be written E%+m n+m and

represent maps from [n + 1] to [n + 1 + m]. Since for all such maps <71 is fixed at the top
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12 3 4

and maps for n+1 1, 2, 3,4 arranged as SEA-triangle (missingFigure 20 Modified Entringer numbers E^_^
image values are surrounded by dotted ovals).

or at the bottom line, we are free to move: we thus have possibilities to choose m
values to avoid among the n +m possibilities in the image set and we have En possibilities
to choose an alternating permutation of the n remaining ones. So we have

E<"+m,n
m ^• E„ and thus c"j Ej-m U > m)

because j — m n.

For example, if« 3 and m — 1, after removing i7|, the 8 alternating injections on the

top of the fourth column in Figure 20 can be arranged according to the (|) 4 values not
in the image set and the £3 2 down-up permutations of the remaining values:

Remark. The Boustrophedon Theorem easily gives the link between the corresponding
e. g. f. A, B of the sequences (an), (/;„ Dividing both sides of (41) by «!, the expression
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obtained for bn/n\ is the same as that in the product

(bo + b\x + tT-v" + •• -^ + E\x H—tî-v~ + • • "^ ^«o + a\x + %.v~ + • •

B(x) =/;(.v)=scc.v I tan.v =A(x)
(43)

Therefore, the Boustrophedon transform multiplies the corresponding e. g.f. by E(x).
Otherwise, (42) shows that for j > m the j th term of the e. g. f. of the sequence B(e„, is

Qxj xm xj-m
Ej-m ' "TT — 7 • Ej—m— —.

j i ml (j — m)\

Therefore, by adding up, we see that the e. g. f. of B{em) is E(x)~^ and we obtain (43) by
linear superposition.

Differentiating (37) we get 2y" 2y' y, i.e., E" E E', hence (43) shows that

B(E\, E2, £3, • • •) (£2, £3, £4, • • •)• This can also be seen in Figure 16 by deleting the

top and the bottom side of the triangle. Furthermore, by deleting only the top (respectively
the bottom) side of the triangle, we see that

ß(£o, 0, £2,0, £4,...) (£1, £2, £3, - - -)

and

B(0,£i,0, £3. - (0, £2, £3,...).

Paths in a directed graph. In 1991, Amol'd [3, p.542] proposed another interpretation
of the Entringer numbers. He observed that (39) associates a directed graph T with the

SEA-trianglc (sec Fig. 21, left): if we concentrate all maps representing E„k in Figure 17

or £,'^| k in Figure 20 to a single node »„k by keeping the arrows, we always obtain a part
of this same graph F.

If now we choose the starting node »on and ask for the number of different paths starting
in •()() and ending in one of the nodes we have

Enk — # paths from »oo to »nk

and. in particular, Elm E„ # paths from *oo to

For example, we see in Figure 21 (right) that there are £42 4 paths starting in «no and

ending in »42: these 4 2 + 2 paths are built by the 2 £32 £41 paths ending in the

incoming nodes »32 and «41.

Moreover, we observe that by remembering the creation of the paths, we have a natural
bijection between the paths in F from »oo to •„/< and the alternating permutations in Enk.

For example, the four paths above correspond, from top to bottom and left to right, to the

four permutations in £42 from left to right in Figure 17.

In the same way, for m > 1, we have

En+m,k ~ # paths from •„,(> to k

and, in particular,

£*+!„,„ fm ("En - ("+'") En # paths from to (44)
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directed graph F •50
•44
a -s, i• 50 T »51

• 22
I ..•45

t "-s.* ^• 10 T *31 T •52•51 T »5

•00 I -•21 I »42
w* --- A >, * A ^ i• 11 r *52 T «53

»2» I *41 I

I / A w i•33 T «54

•40 I

sk. »

»55

-i

•J I,! -.UvJ

-i i-i V
'i

* -M •;
TOM

Figure 21 The directed graph f (left); paths from «qo to »42 (right).

1SA,

'X,<2C9
K K „/3C 16'<>

16

Figure 22 # of paths ending in »55 (left).

Paths ending in a given node. We now choose a fixed node, for example «55, and ask for
the number of paths starting in •„£ and ending in »55. The result is displayed in Figure 22

(left). This time, we compute these values from right to left. The first column is filled by
1 's. Then the value of any further node, for example «32, is the sum of possible paths from
the outgoing nodes »33 and »43, hence 4 + 3 7. Using (44), we understand why the dark
nodes in Figure 22 bear the values

5 ^ 0^ 1O=4) 0£2 16 ^)=0£5. (45)

"Discretizing" Johann's iterated involutes. Suppose to have a fixed angle b and a fixed

integer n. We explain the idea of the construction23 in Figure23 for the case n 5. We

fill the circular sector of radius 1 and angle b by 5 isosceles triangles of side lengths 1, 1

and s 2 sin We then construct a discrete involute to this discrete arc by attaching

23This construction was motivated by an idea of Y.S. Chaikovsky [15] who obtained in a similar manner the

Taylor series for sinus and cosinus. In his paper, the anologue of the SEA-triangle is the Pascal's triangle.
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4 triangles, all similar to the original triangles, of base lengths s2, 2s2, 3s2, 4s2 (see the

triangle to the left of Fig. 23). For the next involute, we have, for example,

ED ,v • DA s • (CB + BA) s (4.v2 + 3s2) 7s3

The integer coefficients of all these arc lengths are computed by the triangle to the right of
Figure 22. These numbers are the same as those in the white circles to the left of the same

figure, because they are formed by the same alternating addition process. The coefficients
of the total arc lengths for these involutes are the sums of the columns, i.e., the values in
the dark circles given by (45).

The same is true for any n (see Fig. 24) and, if n —> oo, the arc length of the itli involute
tends, for each i, to

£, (';)»'di E(.,.(1-i)(i-§)...o-!=i).£-.==?*,.£.

We have thus obtained a combinatoric proof of Johann 's arc lengths in Figure 6. Figure
24 becomes, for n ^ oo, the picture of Figure 11, which was the origin of the beautiful
access to the series for sec h and tan b.

Figure 24 Discrete Bernoulli's algorithm for ;/ 15, b A - 0.35.
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