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Then by the mean value theorem and because
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it follows that
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In the following we restrict ourselves to these u.

From the above we get
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Now choosing r as the smallest positive solution of
71

r r (u) I cos (&+r), which implies u-\-r < - we get
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The same is true for — - < u < 0 as can be proved in the
2

same way. Thus the conditions of Theorem 4.1 are valid. In
1

particular y) is true for c — *

6. Inverse function theorems (continued).

As was indicated by the example tan u — w in the last
chapter, the assumptions of the Theorems 4.1 and 4.1 a are not
sufficient to insure that the operator T will have an inverse

i) Here we use the fact that u is real.
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defined on the whole space B2, i.e. that the equation Tu w
has exactly one solution for each w in B2. We will now obtain
conditions under which the existence of a local inverse implies
the existence of a global inverse.

Theorem 6.1. Let T satisfy the assumptions of Theorem 4.1
and let T be a continuous operator in its domain of definition, D.

Then there exists a finite or infinite number A of open
connected domains Da c= D with the properties:

U Da D, for each aeA the restriction Ta of T on Da is a
a e A

homeomorphism1) of Da onto 52, and the sets Da are mutually
disjoint.

Furthermore, if T is defined on the whole Banach space
then T is itself a homeomorphism of Bx onto B2.

This theorem implies that under the assumptions there is for
each weB2 the same finite or infinite number A of solutions
of Tu — (v, and each solution lies in a domain Da for which the
existence of a local inverse implies that of a global one.

Proof, a) We first prove the following statement: Let w±

and w2 be two points of B2 with \\w1 — w2 || < c (c from y) in
Theorem 4.1) and let Tux wv The existence of at least one
such ux follows from Theorem 4.1. Furthermore, it is shown
that there exists a sphere S (ux, rx) S1 in which the equation

Tu w has a unique solution u(w) for all w with
fjw — wx || < c. Therefore there exists a unique solution u2

in S1 of Tu w2.
Conversely, let S (u2, r2) ='S2 the corresponding neighborhood

of u2 in which a unique solution u of Tu — w for
II ^ — w2 || < c exists. Then w — weS (uq-, c) n S (w2, c),

ueS (ux, Tj), ueS (u2, r2), Tu — w, Tu — w implies u u.
If ueS2 the assertion is true because of the uniqueness of

u u (w) in S2 for || w —w2 || < c. Now, let u$S2. Then we
connect w2 with w by the straight line g cv2+^(w — w2),

0^/1^1, and consider the images Cx and C2 of this line in Sx

and S2 respectively. These images exist and form
connected curves (pt (À) eSt, i 1, 2, using the fact that

i) One-to-one mapping continuous and with continuous inverse.
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geS (wx, c) n S (w2, c) in B2 and applying the theorem that
the continuous image of a connected set is connected, which
holds in our spaces. We also have (pt (0) u2 i 1, 2,

(px (1) ^ <p2 (1) u. In the intersection S1 n S2 the

curves Ct coincide because of the uniqueness of u (w)y u {w)

in S1, S2 respectively.
We proceed with increasing X from u2 along Cv Since u$S2

there is a first point u* (with a least X X*) on C1 which does

not belong to C2eS2. However, in each neighborhood of u*
there are points of C2. Let w* w2-\rX* (w — w2), the
corresponding point with Tu* w*. Then, because of the
continuity of C2, there cannot be another point u on C2 with
Tu w*y i.e. u*eS2 and C± C2 in contradiction to our
assumption.

b) Let be a solution of Tu — 6, which exists by Theorem 4.

This theorem also yields a neighborhood S (u0 r0) S0 such
that the equation Tu w has a unique solution u (w) in S0 for
all (v with \\w || ^ c — e, 0 < e < e, and u(w) is continuous
there.

We choose a number R > 0 arbitrarily large and construct a
continuous mapping Ta~1 with Ta~1 T I defined for all w with
|| w || ^ R and with range in a certain domain of Bv This can
be done as follows:

For || (V || ^ c — E the equation Tu w has a unique and
continuous solution, u (w), if u is prescribed to lie in S0 The
(inverse-) images u for these w form a connected closed set in B1.
Let Tu (V be uniquely solvable for all w in the disk || w || ^ R1

by the continuous function u u (w) and let the set
D{Rt) {u= u(w): || (v || ^ Rx} be a connected, closed, set
containing the point u0.

Because of the continuity of T the restriction of T to D{Ri)
is a one-to-one mapping of D(Ri) onto S (0, RJ c: R2 which is
continuous in both directions, i.e. a homeomorphism. In
particular, the intersection S (iv, c) n 5 (0, RJ has its pre-
image in the corresponding intersection 5(5, r) n D(Ä } for
each weS (0, Rx) with Tu vv.



— 144 —
c

Now we consider the sphere || w || ^ /?-,_ + -= /?2. Each
2

w in the shell R± < || w || ^ R2 lies in some sphere || w— w || < c

with ||w || g We assign to these w the u u(w) with
Tu w which lies in the corresponding neighborhood S (2, r)
with Tu w. This defines u(w) uniquely. This follows
from a) since if w± and w2 are two points in S (0, RJ with
II wi II < c, i 1, 2, then w, w1 and w2 lie also in the sphere
S (w*, c) with w* \ (tf>i+w2) an(l II II ^1 • Therefore, it
follows from a) that our assumptions stated for || w || ^ Rt are

c
true also for \\w < A, -4— •II II- l-r 2

Thus, we get a homeomorphism between a certain domain
Da cz B1 and B2. Contrary to the case of a linear operator
there may be more than one such domain. If there is another
solution u*$Da of Tu w* for any w*eB2 then by the same
construction, with w* as new center, we obtain another
domain Da*, and the restriction of T to Z)a* is a homeomorphism
on Da* onto B2.

We prove that Da and Dfl* are disjoint. Let ueDa n Da*.
Then we connect u with by a curve C* lying in Da*. This
curve has an image TC* in B2, which is also a curve because of
the continuity of T. TC* has an inverse image Ca T'1 TC*
in Da given by the homeomorphism Da onto B2, which is also

a curve. Ca and C* coincide in Da n D*. Let u' be the
first point of C* from u lying on the boundary of Da. This
exists since u*$Da Then it follows from the continuity of Ca

that u'eCa c Da, in contradiction to the openess of Da. Therefore,

Da and D * are disjoint.
Let T be defined on the whole space Bx If there is only

one domain Da then the assertion is true. Let there be at least
two such domains. Then by a similar consideration connecting
two points, ueDa and u*eDa*, with the same image by a curve
one finds that T cannot be defined on the boundary of such

a domain Da. This contradicts the assumption and completes
the proof.

Corollary. If we merely require the assumptions of
Theorem 6.1 to be satisfied on a subdomain D' a D then all
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assertions remain true except the last one that T is a homeo-

morphism of B± onto Z?2. If there exist two subdomains Da
and Da* of D* then the assumptions of Theorem 6.1 cannot hold
on a whole path P in B± connecting Da and Da* : Either T is not
defined everywhere on P as a continuous operator or there does

not exist an operator K with hounded inverse satisfying a),

ß) and y) of Theorem 4.1.

A similar theorem can be stated using the assumptions of
Theorem 4.1 a as a basis.

7. Differentiable operators, implicit function theorems.

If the operator T is assumed to be differentiable in the sense
of Fréchet (section 2 c) then the operator T(Uo)can be taken as

operator K in the previous theorems and similar theorems can
be stated.

Theorem 7.1. a) Let T0 be defined on the sphere
S0 S (u0 r0) cz B1 and let

To u0 0 (7.1)

b) Let T0 have a (not necessarily bounded) derivative
T0(Uq) K at the point u0 and let K have a bounded inverse K_1
defined on B2.

c) Assume there are positive numbers r' ^ r0 and
m m (r') < || A-1 || _1 with

T0(u0+u-v)-T0 u + T0v || S m\\u~v \\ u veS(u0 r'). (7.2)

Then an Q (u0 r, a, b)-neighborhood of T0 exists in which
the equation

Tu 9, (7.3)

is uniquely solvable and the solution u (T) is continuous at
T — T0. More precisely in Q we have.

1 u (T) - i/o || ^ C I Tu0 || with a constant C. (7.4)
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