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for some coherent sheaf J of ideals of (9X. An open analytic subspace of
(F, (9x) is just a restriction (U, (9X | £/), U open in F. An analytic subspace

of an analytic space (X, 0X) is a closed analytic subspace F, 0y) of the open
analytic subspace (C Y u F, 0Cy^y) of (X $*)> provided C F u F is indeed

open in X, i.e. F is locally closed in F.

Examples. The " single point " (0, C) is an analytic subspace of the
" double point " (0, C {xj/(x2)), but not conversely. The double point is,

however, a closed analytic subspace of, e.g., (C, 0C). A " point " of an

analytic space will always mean a single point embedded in (F, (Px) by means
of a map (0, C) -> (F, 0X).

1.3. Operations on analytic spaces.

In this section we shall write F for the analytic space (F, (Px).

a) Product. By a general definition in the theory of categories, a

product of two analytic spaces F, X' is a triple (Z,n,n ') where Z is an analytic

space and 7i : Z F, it' : Z -> F' are two morphisms with the following
property :

Given any analytic space F and any pair / : F ->F,/' : F -> X' of
morphisms there exists a unique morphism g : Y -> Z such that / n o g,

f ' n' o g.
For example, the product of CZ and Cq is Cp+q, according to proposition

1.2.4.

We shall see that a product of analytic spaces always exists. The uniqueness

of g clearly implies the uniqueness of the product (Z, n9 n') up to
isomorphism; we denote one such Z by F x F'.

To prove that the product always exists, let us suppose first that F and

F' are special models, i.e. Fis defined by a triple (£/,/, F) where U is open
in C", F is a finite-dimensional complex linear space, and / : U -> F is an

analytic map; similarly for X'. We claim that the special model Z defined

by (Ux U',f x/', F X F') is a product. Indeed, from the description of
the morphisms into a special model provided by Proposition 1.2.5. it follows
that we have natural maps n :Z-> X,%Z-» induced by the pro-
ections UXU'-> U,UXV-»•U'.Also,if /: Y-* and X'
are given, g : Y-»•Zisdetermined by

f/ X U \Y x
X' -*U' /
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In the general case we take I X l'as the ringed space whose topological

underlying space in the cartesian product of the underlying space of X and

X ', and whose structure sheaf is given locally by the product of local models

for X and X'. (From the uniqueness "up to isomorphism" of the product
results that these sheaves stick together in a well-determined way).

u

b) Kernel of a double arrow. If X ZX Y is a double arrow, i.e. a pair
V

of morphisms, a kernel X ' of (w, v) is an analytic subspace of X such that
the morphisms of an arbitrary analytic space Z into X' are exactly the

morphisms h of Z into X such that u oh — v o h. In other words, if i : X'-+
X is the natural map of X' into X, the morphisms h : Z -» X' satisfy
1/0/0/7 v o i o h and if a morphism g: Z -» X satisfies u o g v o g,
then g i o h for some h : Z -> X'. To prove the existence of the kernel
it suffices, again, to do this locally, i.e. for special models. If X is defined by
(£/,/, F) and Y by (F,g, G) we may (perhaps, after restricting U) extend

u and v to maps ü, v : U E where E denotes the complex linear space of
which V is an open subset. The kernel is then defined by the triple

(UJ x (ü—Ö), FxE).
It follows from the Proposition 1.2.5. that this special model satisfies the
universal property of kernels.

t

Example 1. The kernel of C ZX C is the simple point {0}, t denoting the

identity of C.

t
Example 2. The kernel of C C is { 0 } counted as a double point.

f + t2

c) Fiber product. If u : X S and v : Y -» S are given morphisms of
analytic spaces, the fiber product Xxs Yof and over S is the kernel
of the double arrow

Mo n

X x 7^ S
Voit'

where n : XXY —> X and it' :XX Yare the maps defined by the
product. Note that when S is a simple point, x s x Y.

One may also introduce the category of analytic spaces over 5". Its
objects are morphisms u :X->• Sof an analytic space X onto S and its
morphisms are morphisms / : XYsuch that the diagram
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w\ /v

s

is commutative. The product in this category, i.e. the object satisfying the
universal property given above for the product Ix X, is then exactly the
fiber product X x s

Y. If S is a point, we have the category of analytic
spaces.

Example 3. If U and V are open subspaces of an analytic space X, the

open subspace Un Fis isomorphic to I7x XV. We may thus define, in general,
the intersection of two analytic subspaces X' -> X and X" -» X of X to be
the fiber product X' * xX".

Example 4. If ç : Y -> X is a morphism of analytic spaces and ae X
a point, i.e. a map a : (0, C) -> X we may consider the space Y (a) Yxxa.
It is natural to call this the inverse image of a under <p and to denote it by
cp-1 (a); its underlying space is exactly cpo1 (a).

Jf(p0 (b) a, then ®Y(a),b is &Y,b taken modulo the image under cp1 : 0Xta->
-> @Y)b °f maximal ideal in 0x>a.

Example 5. The pull-back of a linear bundle E over X by a map Y -» X
is exactly Y*XE.

1.4. Relations between reduced and non-reduced spaces.

We shall first characterize those analytic spaces which are reduced.

Proposition 1.4.1. A analytic space (X, (9X) is reduced if and only if
(VX)X has no nilpotent element for x arbitrary in X.

Proof. The necessity of the condition is obvious for Gx can be considered

as a submodule of cêx if (X, Of) is reduced.

Conversely, if 0X>X has no nilpotent elements, we shall prove that in
any local model (V, Of) for (X, Of), a germ g at a e V which vanishes on V
belongs to the ideal J defining 0V. The Nullstellensatz implies that gk g Ja
if k. is large enough. But it is then clear that g e J>a if is free from
nilpolent elements.

Given an analytic space (X, Of) we can associate to it a reduced space
in the following way. YttJrx be the ideal in 0X>X consisting of all nilpotent
elements (the nil-radical of 0). Then Jf — UJfx is a coherent sheaf by the

Oka-Cartan theorem, for in a local model (V, Of) for (X, Of) we have

jrx (J>'I*Y)X where «/' is the sheaf of germs vanishing on V and J the
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