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(2.8) ¥(Xe,X)^ 0

for every bounded measurable subset E of R+, and

(2.9) Wv( l,x) =0(1).

3. Transformations of O-regular
AND SLOWLY VARYING FUNCTIONS BY REGULAR OPERATORS.

3.1. The class of positive functions which are eventually bounded

away from zero and infinity has been extended to the class of O-regular
functions defined as follows :

A positive, measurable function / on R+ is O-regular if

l(Xx)
(3.1) TTT °( 1) (*-*œ)

/(%)

for every X > 0.

For example, any function I such that axa ^ I (x) ^ Axa, where a e R,

clearly satisfies condition (3.1).
The class of O-regular functions and related classes of functions have

been studied extensively by V. G. Avakumovic [8, 9, 10, 11], J. Karamata
[14], N. K. Bari, S. B. Steckin [15], M. A. Krasnoselskiï, T. B. Rutickiï [16],

W. Matuszewska [17] and others.

The closely related class of slowly varying (SF) functions, introduced

by J. Karamata ([12], [13]), generalizes the class of functions converging
to a positive limit. A positive, measurable function L defined on R+ is a

slowly varying function if
L(kx)

(3-2) ,im -m 1

x~* oo

for every X > 0.

Clearly, every measurable function on R+ which converges to a positive
limit as x -* oo is a SV function. Also, functions like

f 1 0 ^x < e sinx
«><*> { togx,*m-(2 +—>?».

and their iterations are SV functions. More generally, any measurable

function g on R+ such that cp (x) ^ g (x) ^ cp (x) + ^/<p (x) is a SFfunction.
The most important properties of O-regular and SV functions can be

stated as follows :
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Representation Theorems: If I is an O-regular function, there exist

B > 0 and bounded measurable functions a and ß on [B, oo] such that

(3.3) /(x) exp ^a(x) + for
B

IfL is a SVfunction, then for some B > 0,

/ f e(0 \
(3.4) L(x) explrj(x) + —^-dtj for x^B,

B

where r\ and £ are bounded measurable functions on [B, oo] such that r\(x) -> c

and s (x) -> Ö (x -» oo).

A proof of these results for continuous O-regular and SV functions can
be found in [12], [13], and [14]. These results were subsequently extended to
measurable O-regular and SV functions by a number of authors (see [18]

for details).
One of the typical and simplest results about the asymptotic behavior

of special linear transforms of SV functions is probably the following
result of K. Knopp [19]:

IfL is a SV function, and if L e Ji0, then

e~{t'x) L{t)dt -> 1 (x —> oo)
xL(x)

Similar results involving more or less special transformations have been

obtained by G. H. Hardy and W. W. Rogosinski [4], S. Aljancic, R. Bojanic,
M. Tomic [20], R. Bojanic and J. Karamata [21], and, in slightly different
form, by D. Drasin ([22], Th. 6). The most general result of this type,
obtained by M. Vuilleumier [23], [24], can be stated as follows:

Let G be defined by (1.1). In order that

G(L,x)
T( \"»•1 (x oo)

L(x)

holds for every SV function L eJIQ it is necessary and sufficient that, as

x — CO,

CO

(i) J V(x,t)dt->1,
0
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(ii) there exists tj >0suchthat

X 00

j I W(x,t)\ r"dt0(x-") and J | Y(x,t)\fdt
0 *

3.2. Theorem 1 characterizes boundedness preserving operators. A
natural extension of that result is the theorem which characterizes regular
operators Y with the property that Y (/, x) O (/ (x)) (x-»oo) holds for
every O-regular function leJf0. In this direction we have the following
result:

Theorem 4. Let Y\Jt0be a regular operator. In order that

(3.5) Y(l,x) — 0(l(x)) (x-> oo),

holds for every O-regular function leJt0 it is necessary and sufficient that

for all a > 0, as x oo,

(3.6) Kp (f, x) 0(xa)

and

(3.7) Mx[Oll](0 + rxXii,^(t),x) 0(x-<)

where Vy is defined by (1.5).

Likewise, as an analog of Theorem 2, the following theorem characterizes

regular operators which have the property that

Y(L9x) 0(L(x)) (x -> oo)

holds for every SVfunction Le J0:

Theorem 5. Let Y:Jt0 -> #"0 be a regular operator. In order that

(3.8) Y(L,x) 0(L(x)) (x » oo)

holds for every SV function LeJt0 it is necessary and sufficient that there

exists rj > 0 such that, as x -» oo,

(3.9) Wv(f9x) 0(x*)

and

(3.10) Wp(xto.i](0 + r«x(Uœ)(t),x)

where is defined by (2.5).
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Finally, the analog of Theorem 3 can be stated as follows :

Theorem 6. Let IF : Jt0-* be a regular operator. In order that

(3.11) ——-- 1 (x -> oo)
L(x)

holds for every SV function LeJI0 it is necessary and sufficient that

(3.12) T (I,x)-*1 (x -» oo),

and that the asymptotic relations (3.9) and (3.10) hold for some 0.

4. Proofs.

4.1. Proof of Theorem 1. The sufficiency of condition (2.2) follows
from the inequality

I <F(f,x)\^Vv(l,x)||/||

The necessity of (2.2) is proved by way of contradiction. Suppose that (2.2)
is not satisfied. Then

(4.1.1) lim sup Kp(l,x) oo
X~+ oo

In view of (4.1.1), (2.1) and the properties of it is possible to find by
induction an increasing sequence (xk) going to infinity and a sequence
(gk) of functions in J{0 such that, if Ak is defined by Ak Vw (1, xfc), then

(4.1.2) Ax ^ 16 and Ak^16Ak_u k 2,3,...,

(4.1.3) Ak16(sup I W(~~7=r x)I)2,2,3,...,
xsr+ i=i >y

and

(4.1.4) I ^ I ^1, I ¥(gk,xk) I — ^ A, fe 1,2,...

Let

00 9 i (x)
(4.1.5)

/=1
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