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Finally, the analog of Theorem 3 can be stated as follows :

Theorem 6. Let IF : Jt0-* be a regular operator. In order that

(3.11) ——-- 1 (x -> oo)
L(x)

holds for every SV function LeJI0 it is necessary and sufficient that

(3.12) T (I,x)-*1 (x -» oo),

and that the asymptotic relations (3.9) and (3.10) hold for some 0.

4. Proofs.

4.1. Proof of Theorem 1. The sufficiency of condition (2.2) follows
from the inequality

I <F(f,x)\^Vv(l,x)||/||

The necessity of (2.2) is proved by way of contradiction. Suppose that (2.2)
is not satisfied. Then

(4.1.1) lim sup Kp(l,x) oo
X~+ oo

In view of (4.1.1), (2.1) and the properties of it is possible to find by
induction an increasing sequence (xk) going to infinity and a sequence
(gk) of functions in J{0 such that, if Ak is defined by Ak Vw (1, xfc), then

(4.1.2) Ax ^ 16 and Ak^16Ak_u k 2,3,...,

(4.1.3) Ak16(sup I W(~~7=r x)I)2,2,3,...,
xsr+ i=i >y

and

(4.1.4) I ^ I ^1, I ¥(gk,xk) I — ^ A, fe 1,2,...

Let

00 9 i (x)
(4.1.5)

/=1
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By (4.1.2) and (4.1.4), this series is uniformly convergent and consequently
g is in M. Also, g is bounded on R+since

I (m^ v ' 9i^I ^ 119wfWe shall show now that

(4.1.6) I V(g,x) |-> oo (x-* oo),

which is impossible by (2.1). Hence, (2.2) must be satisfied.
From the definition of g follows that

I V(g,xJ
¥(Sk,xJ\

\j 7
k~x Qi

y(Z -7=^0V7
Qi

/=/< + a/7
By (4.1.3) we have

n s
Ai

>*k) : \/7

Finally, by (4.1.4) and (4.1.2)

£ Qi (0

*=/c+l y7 z z — ^4—/ /I t — /c

i=k +1 7 -\/7c i~k-\-1 4' 3Ay/Xß

Since !F is a regular operator, it follows that

00 <7/

«"( Ii=k+ l \J Ai

i l
Kp (1, xt) — V

3V A ' ' ' - 3

From these inequalities follows that

3 /— 1 r— 1 /— 1 7— 1 t
I y^,xt)iA-V4 - 4

VA - 3
VA g VA^4\

and (4.1.6) is proved.
The arguments used here are essentially the same as the ones in the proof

of Nakano's Theorem [6, Ch. IX] that the limit of a sequence of regular
functionals is a regular functional.

4.2. Proof of Theorem 2. The proof of Theorem 2 is quite similar. The

sufficiency of condition (2.4) follows from the inequality



m/,*)i^wv(i,*)||/|| •

The necessity of condition (2.4) is proved by way of contradiction. If
(2.4) is not satisfied, it is possible to construct by induction an increasing

sequence (xk) going to infinity and a sequence (gk) of functions in Ji 0 such

that, if Ak is defined by Ak W^(l9xk), the inequalities (4.1.2), (4.1.3)
and (4.1.4) are satisfied and moreover

\g(x)\< for allx^xk, k 2,3,...

and

9k 00 0 (x —> go)

The function g defined by (4.1.5) has then the properties

g (x) -* 0 (x -> oo

and

I ^ (g, *k) I -> oo (k -> oo).

This contradicts hypothesis (2.3) and the necessity of condition (2.4) is

proved.

4.3. Proof of Theorem 3. (Sufficiency). We have

I y(/,x) - c|^| Y(f-c,x)\ + I c I I V(l,x) - 1 I

Given 8 > 0, let Xe be such that \f(t) - c | ^ a for all t ^ Xe and let

91 (0 (/(0 ~ c) Z[o,x£] (0

92 (0 — (/(0 — c) X(Xe,oo) it) •

We then have

I Yif-c,x)\^\V(gl9x)\ +\T(02,x)\.
Hence,

(4.3.1) \Y(f,x)-c\^\Y(gl9x)\
+ \Vig29x) \ + \c\ \ W(l,x)-l)\.

First, we have \g2(t)\^e for every t e R+ and g2 o (1). Hence, by
definition of Wy,

(4-3-2) I Y(g2,x)\^eWv(l9x).



N
Next, we can find a simple function h £ ^x^., where E., i 1,..., N

i— 1
' *

are measurable subsets of [0, X£], such that

I h (0 I I 0 I X[o,x£] (0 and | p - h | < 8

Then

(4.3.3) I <F(gt,x)\^\W(gi+ \ T(h,x)\

— GW*p(1, x) + Y,\At\I •

1^1

From (4.3.1), (4.3.2), (4.3.3) and the hypotheses (2.7) and (2.8) follows
finally that

lim sup I W (/, x) - c [ ^ 2s || hKp (1, ||

co

and Theorem 1 is proved since s can be chosen arbitrarily small.

(Necessity). The necessity of condition (2.9) follows from Theorem 2.

The necessity of conditions (2.7) and (2.8) is obvious.

4.4. Proof of Theorem 4. (Sufficiency). Let / be any O-regular function
in Jt q. Define pa and qa by

(4.4.1) P«(x) sup Z(0Qc[o,i](0 + ^*(1,00) (0)

and

(4.4.2) tfa(x) sup Z(f)f~a,

Then it can be shown, using representation (3.3), that there exists a > 0

such that

(4.4.3) pa(x)0(xaZ(x))(x -»• co)

and

(4.4.4) qa(x) 0(x~al(x)) (x -> oo)

To show that (3.5) is satisfied, we start with the inequality

(4.4.5) I ¥(19x)\*&\¥(1Xlo,xl,x)\ + I V (Zx(3Cf00), *) I
•

First we have by (4.4.1)
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I (0 Z[0,x] (0

K0(Z[o,i](0 + faX(i,oo) (0) X[o,*] (0 (Z[o,i] (0 ~b * >(0)

— PœW (Z[0,1] (0 + * CtZ(l,oo)(0)

for all t ^ 0. Likewise, by (4.4.2), we have

J(0 X(xfco)(0— 4*0*0

for all ; ^ 0. By definition of Hp and (4.4.5), it follows then that

| f (Z, x) | ^pa(x) Kp (z[O,i](0 + r" X(i,oo)(0» *) + 4*00 (fa-*) •

Hence

I y(/,x) I ,n(0 + t-"Z(liOO)(0,x)

and (3.5) follows from (4.4.3), (4.4.4) and hypotheses (3.6) and (3.7).

(Necessity). Let a > 0 and let/e.//0 be a bounded function on i?+. Let

*(x) =(2||/|| + /(*))*«.
Then g is an O-regular function, and

i <P(/(0f,x) i f (flf.x) - »WO

Hence, by (3.5), we have

•P (/(f) f, x) O (xa) (x -> co)

for every bounded function/ in ,///0. Thus, the regular operator Wx defined

by

wx(f,x)=i«p(/(t)F,x)

transforms every bounded function in Ji 0 into a bounded function. By
Theorem 1, it follows that

(4.4.6) Kpa(l, x) O (1) (x -> öo)
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But given any g eJt0 such that | g (t) \ ^ f, we have

I V(j9,x)\ X" ;x'Vr.(i,x).

Hence, the supremum of the left hand side over all geJi0 such that
I g (t) I ^ ta must satisfy the same inequality :

\Vr(f,x)\^x«VTa(l,x)
and (3.6) follows by (4.4.6).

The proof of (3.7) is similar to that of (3.6) except that the function
ta, a > 0, has to be replaced in the argument by the function X[o,i] (0
+ ?~aX(i,oo) (0-

4.5. Proof of Theorem 5. (Sufficiency). Given any SV function
and any rj > 0, let

and

Then

(4.5.1)

and

(4.5.2)

Pn (x) sup f L(t)
O^t^x

Q. (x) sup t

Pv(x)
xn L(x)

8„(X>

x~"L(x)

1 (x —> 00

1 (x -> co)

The proofs of these relations for continuous SV functions can be found
in [12] and [13]. For measurable SV functions, the proofs follow easily

from the representation theorem.

Clearly, if Pn is defined by

(4.5.3) P„(x)sup (z[O,i](0 + ^(l.oo) (0)^(0.

it will have again the property (4.5.1).
To prove that (3.8) is satisfied, we start with the inequality

(4.5.4) I P(L,x)\^\P(LXlo,xl,x)\ + I V(Lxix,ao),x)\.
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First we have by (4.5.3),

m X[o,x](0

(X[o,i](0 + f"Z(i,oo)(0)L(0z[o,x](0(z[o,i ](0 + t~" Xu.«, ,(0)

—-P,(x) (z[o,i](0 + f aX(i,oo)(0)

for all t ^ 0. Since

L(t) Xco,x](0 — o{t n) (t-> oo),

it follows, by definition of BV, that

I ^ (^X[0,x]> x) I —L(x) + * n X(1*<sb}(0> x) • •

By (4.5.1) and hypothesis (3.10), it follows that

(4.5.5) I W (Lx[0,x]5 x) I 0(L(x)) (x -> oo).

In a similar way we have

L(0x(x.oo)(0^a, (*)**>

for all t ^ 0, and

L(t) o (f7) (t -» oo).

Hence, by definition of it follows that

I <F(LX(x,œ),x) I ^ L(x) ^ )*-» W,, (f, x).

Using (4.5.2) and hypothesis (3.9) we find that

(4.5.6) I W (LX(X}O0), x) I O (L(x)) (x -> oo)

From (4.5.4), (4.5.5) and (4.5.6) follows finally that

W (L, x) 0(L(x)) (x —> oo)

(Necessity). We shall prove first that, if (3.8) is true for all SV functions

LgJ/0, then

(4.5.7) FKp(L,x) 0(L(x)) (x -» oo)

Let / be a function in J(0 such that / (x) -> 0 (x -> oo), and let

l(x)(2 I/|| + /(*)) L(x).
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The function I is clearly a SV function in and we have

9(l,x) 21|/|| T{+

If we define WL by

/»*) yy- T(JL,x)
L(x)

then WL is a regular operator and

(4.5.8) fL(/,x) (21|/|| + /(X))_L y(z>x) _ iM f(L,x).

Since, by hypothesis, W (/, x) O (/ (x)) and !P (L, x) O (L(x)) (x->oo),
the operator !FL transforms every function / in that converges to zero
as x -> oo into a bounded function. Hence by Theorem 2, we must have

WvL( 1,x) 0(1) (x -> oo).

Take now any g eyä0 such that | g | and g o (L).

We then have

I ¥(g,x)IL(x) I \^L(x) ,x)

and it follows that

Wr (L, x) ^ L(x)]WpL(l, x) O (L(x)) (x oo)

Thus (4.5.7) is proved.
Note that we have in particular

(4.5.9) Wr(l,x) 0(1) (x —> oo)

We shall now prove that relation (4.5.7) implies (3.9).

Suppose by way of contradiction that there exists no r\ > 0 such that
(3.9) holds. Then

lim sup x~1/n Wy(t1/n9 x) oo for n 1,2,...
*-00

It is then possible to construct by induction a sequence of numbers

(x„) and a sequence (g„) of functions in such that for all n 1, 2,...,

X«+l— 2xn,

(4.5.10) Wv(tllm,xn)^nxnt"',



I gn(x)I gn(x)0 (x (x co),

(4.5.11)

and

(4.5.12)

Let

and

e(w)

I V(9«,x„) - Wv(?1A\x„)

iöW) I - ^
«1/n, for -x„M

0, 0 ^ u < xl
1

- ,xn^u < xn+u n 1, 2,

L(x) exp
8 (u)

da).

L is clearly a continuous and increasing SV function. We shall show that
L does not satisfy condition (4.5.7).

If xn t < xn+ j, we have

m
exp

e (a)
— du)
m x„

Since | g„ | ^ t1/n for all we have

I 9n{0 I X[x„,xn+j ](0 — ^ /t[x„,x„+i](0

L(0_
MX.)

'
rl/"

; Z[x„,x„ + i](0 xl„/n.
M*„)

On the other hand

L(f)
UnCO I X[x„,x„4-i](0 0 (tCO)

\Xn)

Hence, by definition of H>, for n1, 2, we have the inequality

(4.5.13) I

UXn)

By linearity of lF, we have

L'Enseignement mathém., t. XIX, fasc. 3-4. 20
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I ^ ißn X[xn,xn +1 X) I

I f 9„,Xn)I- I f (0„ X[0,xB)» O I - I Y %(*„+1,oo)> I
•

Using (4.5.11), (4.5.12) and the definition of we find that

(4-5.14) \^(9nXlxn,xn+1VXn)\

^ wva1/n,^) - ^(1,*.) - I w,. (/"»,*„).

From (4.5.13), (4.5.14) and (4.5.10) it follows that

-d- wv(tu«,x„) - HV(I,X„)
^0„) 4

1

~ 4
U ~ ^ ^ 00 (n 00 •

But this is impossible, by (4.5.7). This contradiction proves the necessity
of condition (3.9.)

In order to prove (3.10), observe first that, in view of the inequality

*MX[0,1](0 + r"X(t,«>)(0,x)

— WV (/pl.! 1* «' +t'' X(l,x)(0>Hi/' (l.X),
which is valid for all x > 1, and (4.5.9), it is sufficient to prove that for some

t] > 0

(4.5.15) HV(X[O,i](0 + ï~"Xu,*)(0 ,x)=0(x~")(x-»oo).

Suppose, by way of contradiction, that (4.5.15) is not true. Let

Kit) xio,iï(t) + r1/nX(i,ooV) •

Then we have

lim sup x1/n Wy (hn X[oiX^ x) co? n 1,2,...
x -> 00

It follows that we can find a sequence (x„) of numbers and a sequence

(/„) of functions in Jf0 such that

xx > 1, xn - oo (/î -» oo)

(4.5.16) xyWviKxw ,xn),xn)^n,n1,2,...,

(4.5.17) |/„ |^h„X[0,Xn], /„(0 o(t~1,n)oo)

and
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(4.5.18)

Define

I f (/„X«) I - 4 WZr0.x„]»Xn) •

0 0 ~ u < 1,

e(") 1
1

^ 1 o- ,x„_! — m < x„, 1, 2,

where x0 1, and let

L(x) exp (-
The function L is clearly a decreasing and continuous SV function.

Moreover, we have

(4.5.19) (-)-1/n, for xn.,^1,2,...,£(*„) -V
and

(4.5.20) hn(t)x;l,n L(xn)^L{t),for 0^t^xn,
The first equality follows immediately from the definition of L. As far

as (4.5.20) is concerned, for 0 ^ t < 1, both sides are equal to 1; for
1 the inequality follows from (4.5.19) by induction: supposing
that (4.5.20) is true for some n r, we shall prove that it is true for
n r + 1. If 1 ^ t xr, we have

K^{i)xllr+Y L{xr+1)—)-"'+1Lfc+1)
*r+l

(!)->/'L(xr)(i.)i/,(r+i)
xr xr T(xr_[_-^) xr

If xr < t ^ xr +1? we have by (4.5.19)

ftr+1(oxV;rL(x,+1) (—)-i/r+iL(xr+1) L(O.
^+i

Thus (4.5.20) is proved.
From (4.5.17) and (4.5.18) follows that

xlln"\m\^x1>nnhJ(t)Xl0,xJt)^M« m
L(x„)
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for all t^0 and

xlnfn(t)
-£-00

since fn (t) 0 for / ^ xn. Hence by definition of IHp, (4.5.18) and (4.5.16),

we find that

1

Wv (L, xn)x'tI T (/„, xn)\S*l Wr
L(x)

^ - n -» co (n -> oo).

But this is impossible by (4.5.7). This contradiction proves the necessity of
condition (3.10).

4.6. Proof of Theorem 6. (Sufficiency). We have to show that for every
SF function LeJi0

(4.6.1)

First we have

W (L, x)
(4.6.2)

L(x)

Y(L,x)lim v 7
1

x-> oo L(x)

L(x)
> + I ÎP(l,x) - 1 I

•

(4.6.3)

Let 0<a<l < ß < oo. Then we have

W

L(i)
H X [0,ax)f

L{t)

- ».4W) ;

y(( L(0

+

^ I W

«"((

[0,ax)

L(x)

+ I IP.

L(x)

1) 3C(Px,oo)(0, *

1) Z[ax./»x](0, *

[ax,/fx] +1 y.(/fx, CO)

As in the proof of Theorem 5, we can show that

m
LU) - 1 X[0,axß)— + + ,co)(0

for x > l/a and / el?+. Since the left-hand side of this inequality is zero

for t ^ jc, we have, by definition of Wy,
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I ÎP,10,ax)

+ i)av^(^°^(o+r" z(i-)0)'

By (4.5.1) and hypothesis (3.10), it follows that

(4.6.4) lim sup I <Fl0,*x) a"M.

Likewise, for x > l/cc and te'R+, we have

m
L(x)

1

L(x)

Since t n L(t)-*0 (t->oo), it follows, by definition of that

Q"^ ^ + l\ ß-" x'* Wv (f, x).^(ßx.oo
\(ßx)-"L(ß

By (4.5.2) and hypothesis (3.9) we find that

(4.6.5) lim sup \F(ßx,a0)\ ^ Mß~*.
X -> 00

As for the second term of (4.6.3), we have
'

m
I ¥lax,ßx) I ^ SUp

ax-^t-^ßx F(%)
WT( l,x).

From the Representation Theorem for SV functions follows immediately
that

sup
ax^-t^ßx

m
L(x)

sup
L(Ax)

L(x)
0 (x-> go)

Hence

(4.6.6) lim I 1=0.

From (4.6.3), (4.6.4), (4.6.5) and (4.6.6) it follows that

lim sup
L(x) ' :(a"+ß-n)M,

and (4.6.1) is proved by choosing a arbitrarily small and ß arbitrarily large.
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(Necessity). The necessity of (3.12) is obvious. As for (3.8) and (3.9), in
view of the proof of Theorem 5, it will be sufficient to show that our hypothesis

(3.11) implies (4.5.7).
Let feJio be such that lim / (x) c. If L is any SV function in jM, let

X-+CO

l(x)(2II/||

The function / is clearly a SV function in M 0 and we have

W(fL,x)V(l,x) - 2|[/||

If we define the operator by

VL(f,x) ~V(Lj\x),L(x)

then WL is a regular operator and

VlV.x) yL T(fL,x)
L(x)

/ „ ,1 x Y(l,x) „ „ W(L,x)

By (3.11) we have W (/, x)// (x) -» 1 and W (L, x)/L (x) -> 1 (x-*oo) and so

¥/(/,*) ->• 2||/|| + c - 2\\f\\ c

Hence, by Theorem 3, the operator 'FL preserves convergence and
consequently

W*L(l,x) 0(1->go)

But

^t\Wv(l9x)
L L(x)

and the necessity of (4.5.7) is proved.
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