Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	20 (1974)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	NON-STANDARD ANALYSIS: AN EXPOSITION
Autor:	Levitz, Hilbert
Kapitel:	Conclusion
DOI:	https://doi.org/10.5169/seals-46892

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 02.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

What is also true is that R^* is even more closely related to R than we've suggested so far. Our version of the Main Theorem didn't permit as admissible statements those which had variables ranging over the functions on R, the relations on R or the subsets of R. A generalization of the theorem to include such statements is impossible. If it were possible, the Axiom of Completeness would be admissible and we'd have that R^* is complete, which contradicts a result seen previously. It turns out, however, that there exists a distinguished class of functions on R^* , a distinguished class of relations on R^* , and a distinguished class of subsets of R^* such that all statements with function, relation, and set variables can now be allowed in applications of the theorem provided that in R^* these variables are constrained to vary only over these distinguished classes. Robinson calls the functions, relations, and subsets of R^* in these classes internal functions, relations and subsets. Expressed differently what we are saying is that if you wore spectacles which were opaque to all functions, relations, and subsets of R^* other than the internal ones, you'd swear that R^* is complete, N^* is well ordered, etc. Your glasses wouldn't let you see the counterexamples! What is remarkable is that one pair of spectacles can be made to work for all the new statements. If only the Axiom of Completeness were at issue, we could simply choose a pair of spectacles which blocks out the bounded subsets of R^* which don't have least upper bounds. Using the improvement of the Main Theorem just mentioned the Theory of Integration, for example, becomes more susceptible to the methods of Non-Standard Analysis, and some of the argumentation elsewhere in this article could be simplified.

CONCLUSION

At the turn of the century Bertrand Russell wrote:

"... hence infinitesimals as explaining continuity must be regarded as unnecessary, erroneous, and self contradictory."

This remark gives some indication of the degree of disrepute into which the use of infinitesimals had fallen, and it serves to underscore the achievement in its eventual vindication by Robinson. Russell's work in logic, it should be mentioned, constituted one of the important steps along the way. Such is the unexpected path the development of ideas sometimes follows!