Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 24 (1978)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: INVARIANTS OF FINITE REFLECTION GROUPS

Autor: Flatto, Leopold

Kapitel: 2. Mean Value Properties

DOI: https://doi.org/10.5169/seals-49704

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 02.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

By lemma 3.4 $P^*(x) = \Pi(x) i(x)$, where i is a homogeneous invariant. If deg i > 0, then $P^* \in \mathscr{I} \Rightarrow P \in \mathscr{I}$. Otherwise $P^* = c \Pi$, c a constant. By assumption $P(\mathfrak{d}) \Pi = 0$, while $a(\mathfrak{d}) \Pi = 0$ for $a \in \mathscr{I}$. It follows that $P^*(\mathfrak{d}) \Pi = c(\Pi, \Pi) \Rightarrow c = 0$, so that $P \equiv 0 \pmod{\mathscr{I}}$.

2. MEAN VALUE PROPERTIES

We prove the equivalence of system (4.1) and a certain mean value property.

Theorem 4.3 (Steinberg [21]). Let $f(x) \in C$ in the n-dimensional region \mathcal{R} and let it satisfy the mean value property (m.v.p.)

$$(4.6) f(x) = \frac{1}{|G|} \sum_{\sigma \in G} f(x + \sigma y), x \in \mathcal{R} \text{ and } ||y|| < \varepsilon_x,$$

where $\inf_{x \in K} \varepsilon_x > 0$ for any compact subset K of \mathcal{R} and $||y||^2 = \sum_{i=1}^n y_i^2$. This m.v.p. is equivalent to having $f \in C^{\infty}$ and satisfying (4.1). It follows from Theorem 4.2 that the space S of continuous solutions to (4.6) = $D \Pi$.

REMARK. The harmonic functions on \mathcal{R} are characterized as the continuous functions on \mathcal{R} satisfying the m.v.p. $f(x) = \int f(x+y) d\sigma(y)$, $x \in \mathcal{R}$ and $||y|| < \varepsilon_{x'}$ where $d\sigma(y)$ is the normalized Haar measure on the orthogonal group O(n). (4.6) is just the G-analog of this m.v.p.

Proof of Theorem 4.3. Suppose first that f(x) is C^{∞} on \mathcal{R} and satisfies (4.6). Let a(x) be any homogeneous invariant of positive degree. Apply the operator $a(\partial_{\nu})$ to both sides of (4.6). In view of Lemma 4.1, we get

(4.7)
$$0 = a(\partial_{y}) f(x) = \frac{1}{|G|} \sum_{\sigma \in G} a(\partial_{y}) f(x + \sigma y)$$
$$= \frac{1}{|G|} \sum_{\sigma \in G} [a(\partial_{y}) f(x + y)] (\sigma y)$$

Use $a(\delta_y) f(x+y) = a(\delta_x) f(x+y)$ and set y = 0. We obtain $a(\delta_x) f(x) = 0$, $x \in \mathcal{R}$ and a any homogeneous invariant of positive degree. Hence $a(\delta_x) f(x) = 0$, $x \in \mathcal{R}$ and $a \in \mathcal{I}$. Since $\sum_{i=1}^{n} x_i^2 \in \mathcal{I}$, we conclude in particular that f(x) is harmonic on \mathcal{R} .

Suppose next that f(x) is C on \mathcal{R} and satisfies (4.6). Let $\{\delta_k\}$ be a sequence of C^{∞} functions on R^n such that $\int \delta_k(x) dx = 1$, support of $\delta_k = \left\{ x \mid \|x\| \leqslant \frac{1}{k} \right\}$, $\delta_k(x) \geqslant 0$ for all x and k. Let

$$f_k(x) = \int f(x-y) \, \delta_k(y) \, dy = \int f(y) \, \delta_k(x-y) \, dy.$$

It is readily checked that for any compact subset S of \mathcal{R} , $f_k(x) \in C^{\infty}$ on Int S (= interior of S) and satisfies (4.6) with \mathcal{R} replaced by Int S, provided k is sufficiently large, and $f_k \to f$ uniformly on S as $k \to \infty$. For k sufficiently large, f_k is harmonic on Int S. It follows from Harnack's Theorem ([15], p. 248) that f(x) is harmonic on \mathcal{R} . Hence f(x) is real analytic on \mathcal{R} ([15], p. 251) and so certainly C^{∞} on \mathcal{R} .

Conversely let $f \in C^{\infty}$ on \mathcal{R} and a (d) f = 0, $x \in \mathcal{R}$ and $a \in \mathcal{I}$. Then f is harmonic and so real analytic on \mathcal{R} . Hence there exists $\varepsilon_x > 0$ such that

$$f(x+y) = \sum_{m=0}^{\infty} \frac{1}{m!} (\partial_x, y)^m f(x), x \in \mathcal{R}$$

and $||y|| < \varepsilon_x$. It follows that

(4.8)
$$\frac{1}{|G|} \sum_{\sigma \in G} f(x + \sigma y) = \sum_{m=0}^{\infty} \frac{P_m(\partial_x, y)}{m!} f(x), x \in \mathcal{R}$$

and $||y|| < \varepsilon_x$ where

(4.9)
$$P_m(x,y) = \frac{1}{|G|} \sum_{\sigma \in G} (x,\sigma y)^m = \frac{1}{|G|} \sum_{\sigma \in G} (\sigma x,y)^m.$$

From (4.9), we see that for fixed y, each $P_m(x, y)$ is a homogeneous invariant polynomial in x of degree m. It follows that $P_m(\delta_x, y) f(x) = 0$, $x \in \mathcal{R}$ and $m \le 1$, and (4.8) reduces to (4.6).

The solution space to either (4.1) or (4.6) is the finite dimensional vector space $D \Pi$. The following result gives further information on $D \Pi$.

Theorem 4.4 (Chevalley [4]). Let $S_m = vector space of homogeneous$ polynomials of degree m in D Π , $0 \le m < \infty$, so that D $\Pi = \sum_{m=0}^{\infty} \oplus S_m$. Let $d_1, ..., d_n$ be the degrees of the basic homogeneous invariants for G. Then

(4.10)
$$\sum_{m=0}^{\infty} (\dim S_m) t^m = \prod_{i=1}^{n} \frac{1 - t^{d_i}}{1 - t}$$

and dim $D \Pi = |G|$.

We prove first the preliminary

LEMMA 4.2. Let $R = k [x_1, ..., x_n] = \text{ring of polynomials in } x_1, ..., x_n$ with coefficients from k, k being any field of characteristic 0. Let G be a finite reflection group acting on k^n and \mathcal{I} the ideal generated by homogeneous invariants of positive degree. For any polynomial P, let \overline{P} be its residue class in the residue class ring R/\mathcal{I} . Suppose that $P_1, ..., P_s$ are homogeneous polynomials such that $\overline{P}_1, ..., \overline{P}_s$ are linearly independent over R/\mathcal{I} (the latter is a vector space over k). Then $P_1, ..., P_s$ are linearly independent over k(I), the field obtained by adjoining the set I of all invariant polynomials to k.

Proof. Suppose $\sum_{i=1}^{s} V_i P_i = 0$ where $V_i \in k(I)$, $1 \le i \le s$. We may suppose that the V_i' s are homogeneous and $[\deg V_i + \deg P_i]$ is the same for all i. Let $I_1, ..., I_n$ be a basic set of homogeneous invariants of positive degree. Let S_j , $0 \le j < \infty$, be the different monomials in $I_1 ... I_n$ arranged by increasing x-degree, with $s_0 = 1$. Let $V_i = \sum_{j=0}^{\infty} k_{ij} S_j$, $1 \le i \le s$, the k_{ij}' s being elements of k, and define k_{i0} to be 0. We have

(4.11)
$$\sum_{i=1}^{s} V_{i} P_{i} = \sum_{j=0}^{\infty} \left[\sum_{i=1}^{s} k_{ij} P_{i} \right] S_{j} = 0$$

Assume, as induction hypothesis, that $k_{ij} = 0$ for j < l. Thus $\sum_{j=l}^{\infty} \left[\sum_{i=1}^{s} k_{ij} P_i\right] S_j = 0$. $S_i \notin$ ideal generated by the S_j' s, j > l, as $I_1, ..., I_n$ are algebraically independent. It follows from Lemma 2.1 that $\sum_{i=1}^{s} k_{il} P_i \in \mathscr{I} \Leftrightarrow \sum_{i=1}^{s} k_{il} \overline{P}_i = 0 \Leftrightarrow k_{il} = 0, 1 \leqslant i \leqslant s$. Hence all $k_{ij} = 0$ and $V_i = 0, 1 \leqslant i \leqslant s$. I.e. $P_1, ..., P_s$ are linearly independent over k(I).

We now return to the proof of Theorem 4.4. Let $A_1, ..., A_q$ be homogeneous polynomials such that $\overline{A}_1, ..., \overline{A}_q$ form a basis for R/\mathscr{I} . By induction on the degree, we see that every polynomial P may be expressed as

$$(4.12) P = \sum_{i=1}^{q} J_i A_i$$

where the J_i 's are invariant polynomials. Lemma 4.2 shows that this representation is unique. Let $R_m = \text{set}$ of homogeneous polynomials of degree m, $I_m = I \cap R_m$, $(R/\mathcal{I})_m = \text{vector}$ space spanned by those \overline{A}_i 's for which degree $A_i = m$. Let

$$\mathfrak{p}_{R}(t) = \sum_{m=0}^{\infty} (\dim R_{m}) t^{m}, \quad \mathfrak{p}_{I}(t) = \sum_{m=0}^{\infty} (\dim I_{m}) t^{m},$$

$$\mathfrak{p}_{R\mathscr{I}}(t) = \sum_{m=0}^{\infty} \dim (R/\mathscr{I})_{m} t^{m}.$$

In view of the uniqueness of the representation (4.12), we have

$$\mathfrak{p}_{R}(t) = \mathfrak{p}_{I}(t) \mathfrak{p}_{R/\mathscr{I}}(t)$$

Now

$$\mathfrak{p}_{I}(t) = \frac{1}{\prod_{i=1}^{n} (1 - t^{d_{i}})} \quad \text{(formula (2.5))}$$

while

$$\mathfrak{p}_R(t) = \frac{1}{(1-t)^n}$$

(as dim $R_m = \binom{m+n-1}{m}$). By Fischer's Theorem R/\mathscr{I} may be identified with $D\Pi$, so that $\mathfrak{p}_{R/\mathscr{I}}(t) = \sum_{m=0}^{\infty} (\dim S_m) t^m$. Thus (4.13) becomes (4.10).

Set t = 1 in (4.10). The left side becomes $\sum_{m=0}^{\infty} \dim S_m = \dim D \Pi$. Since

$$\frac{1-t^{a_i}}{1-t}=1+t+\ldots+t^{d_{i-1}}=d_i$$

at t = 1, the right side becomes $\prod_{i=1}^{n} d_i = |G|$ (by Theorem 2.2). Thus dim $D \Pi = |G|$.

We now describe the solution space to (4.6) when we restrict the direction of y. For simplicity, we restrict ourselves to irreducible groups (the reducible case is discussed in [12]).

THEOREM 4.5. Let $f(x) \in C$ in the n-dimensional region \mathcal{R} and satisfy the m.v.p.

$$(4.14) f(x) = \frac{1}{|G|} \sum_{\sigma \in G} f(x + t \sigma y), x \in \mathcal{R} \text{ and } 0 < t < \varepsilon_x,$$

inf $\varepsilon_x > 0$ for any compact subset K of \mathcal{R} and y denoting a fixed vector $\varphi = 0$. This m.v.p. is equivalent to having $f \in C^{\infty}$ on \mathcal{R} and $P_m(\mathfrak{d}_x, y)$ $f = 0, x \in \mathcal{R}$ and $1 \leqslant m < \infty$, P_m being defined by (4.9).

Proof. Suppose first that $f \in C^{\infty}$ on \mathcal{R} and satisfies (4.14). Using the finite Taylor expansion for $f(x+t\sigma y)$, we get for each integer $N \ge 0$

(4.15)
$$0 = \sum_{m=1}^{N} \left[\frac{P_m(\hat{\partial}_x, y) f}{m!} \right] t^m + O(t^{N+1}) \text{ as } t \to 0.$$

Dividing by successive powers of t and letting $t \to 0$, we conclude $P_m(\delta_x, y) f = 0$, $x \in \mathcal{R}$ and $1 \le m < \infty$. If $f \in C$, then we argue as in the proof of Theorem 4.3, introducing the functions f_k . For any compact subset S of \mathcal{R} and k sufficiently large, the f_k 's will be C^{∞} on Int S and satisfy there $P_m(\delta_x, y) f = 0$, $1 \le m < \infty$. $P_2(x, y)$ is a non-zero homogeneous invariant of degree 2. For irreducible G, there is up to a multiplicative constant, only one such invariant, namely $\sum_{i=1}^{n} x_i^2$. Thus

 $P_2(x, y) = c(y) \sum_{i=1}^{n} x_i^2$, where $c(y) \neq 0$ is a constant depending on y. Thus for k sufficiently large, $f_k(x)$ is harmonic on Int S. Since $f_k \to f$ uniformly on compact subsets of \mathcal{R} , f(x) is harmonic on \mathcal{R} and hence certainly

Conversely, let $P_m(\delta_x, y) f = 0$, $x \in \mathcal{R}$ and $1 \le m < \infty$. Since $P_2(\delta_x, y) f = 0$, f is harmonic and so real analytic on \mathcal{R} . It follows that there exists $\varepsilon_x > 0$ such that

$$(4.16) \qquad \frac{1}{\mid G \mid} \sum_{\sigma \in G} f(x + t \sigma y) = \sum_{m=0}^{\infty} \left[\frac{P_m(\partial_x, y) f}{m!} \right] t^m, \ x \in \mathcal{R}$$

and $0 < t < \varepsilon_x$.

 C^{∞} on \mathcal{R} .

Since $P_m(\delta_x, y) f = 0$, $x \in \mathcal{R}$ and $1 \le m < \infty$, (4.16) reduces to (4.14). We shall describe the solution space to $P_m(\delta_x, y) f = 0, 1 \le m < \infty$, y being a fixed vector $\neq 0$. We first prove some preliminary lemmas.

LEMMA 4.3. Let \mathscr{C} be a collection of homogeneous polynomials in $k [x_1 ..., x_n]$ of positive degree, k being a field of characteristic 0. Let G be a finite reflection group acting on k^n . The following conditions are equivalent.

i) \mathscr{C} is a basis for the invariants of G

- ii) $\mathscr C$ is a basis for the ideal $\mathscr I$ generated by the homogeneous invariants of positive degree.
- iii) Let $d_1, ..., d_n$ be the degrees of the basic homogeneous invariants of G.

For each d_i there exists a polynomial $P_i \in \mathcal{C}$ of degree d_i such that

$$\frac{\partial (P_1, \ldots, P_n)}{\partial (x_1, \ldots, x_n)} \neq 0.$$

Proof. Let $\mathscr{I}(\mathscr{C})=$ ideal generated by \mathscr{C} , so that $\mathscr{I}(\mathscr{C})\subset \mathscr{I}$. If i) holds, then $\mathscr{I}(\mathscr{C})$ contains every homogeneous invariant of positive degree, so that $\mathscr{I}\subset \mathscr{I}(\mathscr{C})\Rightarrow \mathscr{I}=\mathscr{I}(\mathscr{C})$. Thus i) \Rightarrow ii).

Suppose ii) holds. Choose in \mathscr{C} a minimal basis for \mathscr{I} . The proof of Chevalley's Theorem shows that this minimal basis consists of n homogeneous invariants $P_1, ..., P_n$ which are algebraically independent

$$\Leftrightarrow \frac{\partial (P_1, \ldots, P_n)}{\partial (x_1, \ldots, x_n)} \neq 0.$$

According to Theorem 3.1, these degrees must be $d_1, ..., d_n$. Thus ii) \Rightarrow iii). Finally, the implication iii) \Rightarrow i) is contained in Theorem 3.13.

LEMMA 4.4. Let G be a finite reflection group acting on k^n . Let $I_1, ..., I_n$ be a basic set of homogeneous invariants of respective positive degrees $d_1, ..., d_n$ which are assumed distinct; i.e. $d_1 < d_2 < ... < d_n$. Let $P_1, ..., P_n$ be another set of homogeneous invariants of respective degrees $d_1, ..., d_n$. Thus

(4.17)
$$P_{i}(x) = F_{i}(I_{1}(x), \dots, I_{i-1}(x)) + c_{i}I_{i}(x)$$
$$= F_{i}(x) + c_{i}I_{i}(x), 1 \leq i \leq n$$

where $F_i(x)$ is homogeneous of degree m_i , with $F_1 = 0$, and c_i a constant. Then

(4.18)
$$\frac{\partial (P_1, \dots, P_n)}{\partial (x_1, \dots, x_n)} = c_1 \dots c_n \frac{\partial (I_1, \dots, I_n)}{\partial (x_1, \dots, x_n)}$$

Proof. We have

$$\frac{\partial (P_1, \dots, P_n)}{\partial (x_1, \dots, x_n)} = \frac{\partial (F_1, \dots, F_n)}{\partial (I_1, \dots, I_n)} \frac{\partial (I_1, \dots, I_n)}{\partial (x_1, \dots, x_n)}$$

The matrix
$$\left[\frac{\partial F_i}{\partial I_j}\right]$$
 is triangular and $\frac{\partial F_i}{\partial I_i} = c_i$, $1 \le i \le n$, so that $\frac{\partial (F_1, \dots, F_n)}{\partial (x_1, \dots, x_n)} = c_1 \dots c_n$.

THEOREM 4.6 (Flatto and Wiener [10]). i) Let S_y be space of continuous functions on the n-dimensional region \mathcal{R} satisfying the mean value property (4.14). $S_y = D \Pi$ iff $G \neq D_{2n}$, $2 \leqslant n < \infty$, and

$$\frac{\partial (P_{d_1}, \ldots, P_{d_n})}{\partial (x_1, \ldots, x_n)} \neq 0.$$

ii) For $G \neq D_{2n}$, $2 \leqslant n < \infty$, we have

(4.19)
$$\frac{\partial \left(P_{d_1}, \dots, P_{d_n}\right)}{\partial \left(x_1, \dots, x_n\right)} = J_1(y) \dots J_n(y) \Pi(x)$$

the J's being a basic set of homogeneous invariants for G. Hence

$$S_v = D \Pi \text{ iff } J_1(y) \dots J_n(y) \neq 0.$$

Proof. According to Theorem 4.5, S is the solution space of

$$(4.20) f \in C^{\infty} \text{ and } p(\partial) f = 0, x \in \mathcal{R} \text{ and } p \in \mathcal{P}_{y}.$$

where $\mathscr{P}_y = (P_1(x, y), ..., P_m(x, y), ...)$. It follows from Theorems 4.1, 4.2 that $S_y = D \Pi$ iff $\mathscr{P}_y = \mathscr{I}$. By Lemma 4.3, $\mathscr{P}_y = \mathscr{I}$ iff the degrees $d_1, ..., d_n$ are distinct and

$$\frac{\partial (P_{d_1}, \dots, P_{d_n})}{\partial (x_1, \dots, x_n)} \neq 0$$

An inspection of the table in section 3.3 reveals that the d_i 's are distinct except when $G = D_{2n}$, $2 \le n < \infty$, in which case two d_i 's equal 2n.

ii) For each *n*-tuple $a = (a_1, ..., a_n)$ of non-negative integers, let $J_a(x)$

$$=\frac{1}{\mid G\mid}$$
 $\sum_{\sigma\in G}$ $(\sigma x)^a$. We have

$$P_{m}(x, y) = \frac{1}{|G|} \sum_{\sigma \in G} (\sigma x, y)^{m} = \frac{1}{|G|^{2}} \sum_{\sigma_{1} \in G} \sum_{\sigma_{2} \in G} (\sigma_{1} x, \sigma_{2} y)^{m} = \frac{1}{|G|^{2}} \sum_{|a|=m} \sum_{\sigma_{1} \in G} \sum_{\sigma_{2} \in G} \frac{m!}{a!} (\sigma_{1} x)^{a} (\sigma_{2} y)^{a} = \sum_{|a|=m} \frac{m!}{a!} J_{a}(x) J_{a}(y)$$

Let $I_1, ..., I_n$ be a basic set of homogeneous invariants of respective degrees $d_1, ..., d_n$. Let $|a| = d_i$, $1 \le i \le n$. Then

$$(4.22) J_a(x) = F_a(I_1(x), \dots, I_{i-1}(x)) + c_a I_i(x) = F_a(x) + c_a I_i(x)$$

where $F_a(x)$ is homogeneous of degree d_i with $F_a(x) = 0$ for i = 1, and c_a is a constant. (4.21), (4.22) give

$$(4.23) P_{d_i}(x, y) = \sum_{|a|=d_i} \frac{d_i!}{a!} J_a(y) F_a(x) + J_i(y) I_i(x), \ 1 \le i \le n$$

where

(4.24)
$$J_i(y) = \sum_{|a|=d_i} \frac{d_i!}{a!} c_a J_a(y), \ 1 \leq i \leq n$$

(4.19) follows from (4.23) and Lemma 4.4. J_i is homogeneous of degree d_i . We show that $J_1, ..., J_n$ are algebraically independent and thus conclude from Lemma 4.3 that $J_1, ..., J_n$ form a basis for the invariants of G. Now the J'_a s form a basis for the invariants of G (see Noether's proof of Theorem 1.1). Hence, by Lemma 4.3, there exists $n J'_a$ s of respective degrees $d_1, ..., d_n$ which are algebraically independent. By Lemma 4.4, for each of these J'_a s, $c_a \neq 0$. (4.22), (4.24) give

$$(4.25) \quad J_i(y) = \sum_{|a|=d_i} \frac{d_i!}{a!} c_a F_a(y) + \left(\sum_{|a|=m_i} \frac{d_i}{a!} c_a^2\right) I_i(y), \ 1 \leqslant i \leqslant n$$

For each $1 \le i \le n$, there exists an a such that $|a| = d_i$ and $c_a \ne 0$, so that the n constants $\sum_{|n|=d_i} \frac{d_i}{a!} c_a^2$ are all $\ne 0$. It follows from (4.25) and Lemma 4.4, that $J_1, ..., J_n$ are algebraically independent.

The following theorem yields an algebraic characterization of the J_i 's.

THEOREM 4.7 [12]. $J_1(x) = c \sum_{i=1}^n x_i^2, c \neq 0$. For $2 \leqslant i \leqslant n$, $J_i(x)$ is determined up to a constant as the homogeneous invariant of degree d_i which satisfies the differential equations $J_k(\delta) J_i(x) = 0, 1 \leqslant k < i$.

Proof. $J_1(x)$ is a non-zero homogeneous invariant of degree 2 and must therefore be a non-zero multiple of $\sum_{i=1}^{n} x_i^2$. Let $2 \le i \le n$ and $1 \le k < d_i$. Let Q(x) be an arbitrary homogeneous invariant polynomial of degree k. We have

$$(4.26) Q(\partial_y) P_m(x, y) = Q(\partial_y) \left[\frac{1}{|G|} \sum_{\sigma \in G} (y, \sigma x)^m \right]$$
$$= m(m-1) \dots (m-k+1) P_{m-k}(x, y) Q(x)$$

From (4.23), we obtain

$$(4.27) Q(\partial_{y}) P_{d_{i}}(x, y)$$

$$= \sum_{|a|=d_{i}} \frac{d_{i}!}{a!} [Q(\partial) J_{a}(y)] F_{a}(x) + [Q(\partial) J_{i}(y)] I_{i}(x),$$

$$1 \leq i \leq n$$

so that

$$d_i(d_i-1) - (d_i-k+1) P_{d_i-k}(x, y) Q(x)$$

$$(4.28) = \sum_{|a|=d_i} \frac{d_i!}{a!} \left[Q(\partial) J_a(y) \right] F_a(x) + \left[Q(\partial) J_i(y) \right] I_i(x),$$

$$1 \leq i \leq n$$

Suppose that $Q(\delta)$ $J_i(y) \neq 0$. Choose y_0 so that $Q(\delta)$ $J_i(y) \neq 0$ at y_0 . Let $y = y_0$ in (4.28). The polynomial $P_{d_i-k}(x,y_0)$ has degree $< d_i$ and thus is a polynomial in $I_1, (x), ..., I_{i-1}(x)$. Each F_a is also a polynomial in $I_1, ..., I_{i-1}$. We conclude from (4.28) that $I_1, ..., I_i$ are algebraically dependent, a contradiction. Hence $Q(\delta)$ $J_k(y) = 0$, so that $J_k(\delta)$ $J_i(x) = 0$, $1 \leq k < i$.

The conditions of Theorem 4.7 determine J_i up to a constant. For let V_i = space of homogeneous invariants of degree d_i , W_i = space of homogeneous invariants of degree d_i spanned by the monomials in $I_1, ..., I_{i-1}$. Then dim V_i = dim W + 1. For any $J \in V_i$, the conditions $J_k(\delta)J(x) = 0$, $1 \le k < i$, are equivalent to $J \in W_i^{\perp}$. Since dim W_i^{\perp} = dim V_i - dim W_i = 1, we conclude that J_i is determined up to a constant.

COROLLARY. The manifold $\mathcal{M} = \{y \mid J_1(y) - - J_n(y) = 0\}$ contains real points $y \neq 0$. I.e. there exists $y \in \mathbb{R}^n$ such that $S \neq D \Pi$.

Proof. For $2 \le i \le n$, $J_1(\delta)J_i(x) = 0$. Since $J_1(x) = c \sum_{i=1}^n x_i^2$, $c \ne 0$, this means that $J_i(x)$ is harmonic. By the mean value property for harmonic functions, the average value of $J_i(y)$ on a sphere of radius $r > 0 = J_i(0) = 0$. Thus $J_i(y)$ must change sign on this sphere and a connectedness argument yields the existence of a $y \ne 0$ for which $J_i(y) = 0$.

In view of Theorem 4.6, we call \mathcal{M} the "exceptional manifold" for G and the non-zero vectors y of \mathcal{M} , the "exceptional directions" for G. A geometric description of \mathcal{M} is given in [24] for the groups H_2^n and A_3 . There remains the problem of describing the solution space S_y to the m.v.p. (4.14) in case y is an exceptional direction, as D Π is then a proper subspace of S_y . This seems to be a difficult problem. In [11], it is solved for the groups H_2^n , A_3 .