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312 N. M. KATZ AND S. LANG

Theorem 5. Let S be a normal, connected noetherian scheme, whose

function field K is absolutely finitely generated. Let f: X -> S be a smooth

surjective morphism offinite type whose geometric generic fibre is connected, and
e

which admits a cross-section X -> S. Then there are onlyfinitely many connected

finite etale X-schemes Y/X which are galois over X with abelian galois

group of order prime to char (K) and which are completely decomposed over the

marked section. If in addition we suppose X/S proper, we can drop the proviso

"of order prime to char (K)".

Proof. This is just the concatenation of Theorems 1 and 2 with the physical
interpretation (1.3) of the group Ker (X/S) in the presence of a section. QED

V. Application to /-adic representations

Let / be a prime number, Qt an algebraic closure of Q,. By an /-adic

representation p of a topological group n, we mean a finite-dimensional
continuous representation

p: k -> GL (n, Qt)

whose image lies in GL (n, Ex) for some finite extension Ex of Qz.

Theorem 6. (cf. Grothendieck, via [2], 1.3). Let K be an absolutely

finitely generated field, X/K a smooth, geometrically connected K-scheme of

finite type, x a geometric point of X ® K, x the image geometric point of x
in X. Let I be a prime number, and p an l-adic representation of n1 (X, x);

p:nl(X, x) -> GL(n, Qi).

Let G be the Zariski closure of the image1 p (7^ (X ® K,x)) of the geometric

fundamental group n1 (X (g) K, x) in GL(n, Q,) and G° its identity

component. Suppose that either I is different from the characteristic p of K,
or that X/K is proper. Then:

(1) the radical of G° is unipotent, or equivalently :

(2) if the restriction of p to the geometric fundamental group n1 (X 0 K, x) is

completely reducible, then the algebraic group G° is semi-simple.



FINITENESS IN GEOMETRIC CLASSFIELD THEORY 313

Proof. By Theorem 1, for I ^ p, or by Theorem 2 if I p and X/K is

proper, we know that the /-part of Ker (X/K) is finite i.e. (cf. Lemma 1) the image

of 7i! (X ® X, 5c) in 7i! (X)ab is the product of a finite group and a group of order

prime to /. Given this fact, the proof proceeds exactly as in (Deligne [2], 1.3).

QED

Remarks. (1) This theorem is the group-theoretic version of
Grothendieck's local monodromy theorem (cf. Serre-Tate ([15], Appendix) for a

precise statement, as well as the proof) with X/K "replacing" the spectrum of the

fraction field £ of a henselian discrete valuation ring with residue field X, and

with 7Ü! (X ® X) "replacing" the inertia subgroup I of Gal (E/E). The "extra"

feature of the "local" case is that the quotient of I by a normal pro-p subgroup is

abelian. Therefore any /-adic representation p of /, with / # p, becomes abelian

when restricted to a suitable open subgroup of /, and hence the associated

algebraic group G° is automatically abelian. In particular, the radical of G° is G°

itself.

(2) If X/K is itself an abelian variety A/K, then n1 (A ® X, 5c) is abelian.

Therefore if / is any prime, and p any /-adic representation of (A ® X, x), the

associated algebraic groups G and G° will be abelian ; hence if p is the restriction

to 7i! (A® X, 5c) of an /-adic representation of n1 (À, x), then G° is unipotent, i.e.

the restriction of p to an open subgroup of 7UX (A ® X, x) is unipotent (compare
Oort [11], 2).

(3) Can one give an example of X/K proper smooth and geometrically
connected over an absolutely finitely generated field X of characteristic p > 0

whose fundamental group nl (X, x) admits an rc-dimensional p-adic
representation with n ^ 2 (resp. n ^ 3) for which the associated algebraic group
G° is SL (n) (resp. SO (n)) Can we find an abelian scheme A over such an X, all of
whose fibres have the same p-rank n ^ 2, for which the associated p-adic
representation of Tii (X, x)hasG° SL (n)l (cf. Oort [11] for the case of p-rank
zero).
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