Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 27 (1981)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ON THE GENUS OF GENERALIZED FLAG MANIFOLDS

Autor: Glover, Henry H. / Mislin, Guido

Kapitel: Introduction

DOI: https://doi.org/10.5169/seals-51749

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 01.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ON THE GENUS OF GENERALIZED FLAG MANIFOLDS

by Henry H. GLOVER and Guido MISLIN

Introduction

Let X be a nilpotent space of finite type. We denote by G(X) the genus of X, i.e. the set of all homotopy types Y (nilpotent, of finite type) with p-localizations $Y_p \simeq X_p$ for all primes p, (cf. [HMR]). The set G(X) has been studied extensively in case of X an H-space. In particular it is known that for the special unitary group SU(n) one has

$$|G(SU(n))| \geqslant \prod_{1 \leq m \leq n} (\phi(m!)/2)$$

where ϕ is the Euler function [Z, p. 152]. We are interested in this note in finding non-trivial examples X with $G(X) = \{[X]\}$ and we call such spaces generically rigid. A large family of such generically rigid spaces is provided by certain generalized flag manifolds. Let

$$G = U (n_1 + n_2 + ... + n_k)$$

and

$$H = U(n_1) \times U(n_2) \times ... \times U(n_k),$$

embedded in G in the obvious way. Then

$$M = M(n_1, n_2, ..., n_k) = G/H$$

is a generalized flag manifold (generalizing the standard complex flag manifold $U(n)/T^n$ which corresponds to M(1, 1, ..., 1)). We will show essentially that whenever the homotopy rigidity result for linear actions holds for M (cf. [L1], [L2], [EL]), then M is also generically rigid. These two seemingly unrelated rigidity results are tied up by certain results on E(X) and $E(X_0)$, the groups of homotopy classes of self equivalences of X and X_0, X_0 the rationalization of X.

To make our result more precise, we need some further notation. For

$$M = M(n_1, ..., n_k) = G/H$$

as above, we write N(H) for the normalizer of H in G. The finite group N(H)/H acts on M in an obvious way and it is well known that through that action, N(H)/H is faithfully represented in $H^*(M; \mathbb{Q})$. We can therefore consider N(H)/H as a subgroup of E(M) or $E(M_0)$. By Theorem 1.1 of [GH2] the canonical map

$$E(M_0) \rightarrow \operatorname{Aut}_{ala} H^*(M; \mathbf{Q})$$

is a group isomorphism. In particular, the grading automorphisms

$$g(q): H^*(M; \mathbf{Q}) \to H^*(M; \mathbf{Q})$$

defined by $g(q) x = q^i x$ for $x \in H^{2i}(M; \mathbf{Q})$ and $q \in \mathbf{Q}^*$, lift to unique self equivalences of M_0 (which we denote also by g(q)), and thus

$$Gr(M_0) = \{g(q) \mid q \in \mathbf{Q}^*\} \subset E(M_0)$$

is a central subgroup isomorphic to Q^* .

In all cases of generalized flag manifolds for which $E(M_0)$ has been computed, the subgroup generated by $Gr(M_0)$ and N(H)/H,

$$\langle Gr(M_0), N(H)/H \rangle \subset E(M_0)$$

is all of $E(M_0)$. The following conjecture is thus plausible.

Conjecture C. Let $M=M\left(n_{1},\,n_{2},\,...,\,n_{k}\right)$ be a generalized flag manifold. Then

$$E(M_0) = \langle Gr(M_0), N(H)/H \rangle$$
.

A similar conjecture appears in [L1, Conjecture C] but the relationship between the two conjectures is not entirely clear.

The Conjecture C has been verified in the following cases:

- 1) $n_1 = n_2 = ... = n_k = 1$ (compare the proof of Thm. 1 in [EL])
- 2) $n_1 = n_2 = ... = n_{k-1} = 1$, $n_k \ge k 1$ (compare the proof of Theorem 9 in [L1])
- 3) $n_1 = 2$ and k = 2 (follows from [O])
- 4) $n_2 > n_1$ and k = 2 ([GH1], [Br])
- 5) $n_1 = 1$, $n_2 > 1$, $n_3 \ge 2n_2^2 1$ and k = 3 ([GH2])

The Conjecture C holds therefore for instance for all complex Grassmann manifolds $G_p(\mathbb{C}^{p+q}) = M(p,q)$ with $p \neq q$ (since $M(p,q) \simeq M(q,p)$), and for the classical flag manifolds $U(n)/T^n$.

Our main theorem may be stated as follows.

THEOREM. Let $M=M\left(n_{1},...,n_{k}\right)$ be a generalized flag manifold for which the Conjecture C holds. Then

$$G(M) = \{[M]\}.$$

In particular the Grassmann manifolds $G_p(\mathbb{C}^{p+q})$ for $p \neq q$ and the flag manifolds $U(n)/T^n$ are all generically rigid.

§1. GENUS AND SELF MAPS

Let P denote a fixed set of primes. Two P-sequences

$$S_1,\,S_2\colon P\to E\left(X_0\right)$$

are called equivalent, if there exist maps $h(0) \in E(X_0)$ and

$$h(p) \in \operatorname{im} \left(E(X_p) \stackrel{\operatorname{can}}{\to} E(X_0) \right)$$

such that for all $p \in P$ one has

$$h(0) S_1(p) = S_2(p) h(p)$$
.

Definition 1.1. We denote by P-Seq $(E(X_0))$ the set of equivalence classes of P-sequences in $E(X_0)$.

If P is a finite set of primes and X a nilpotent space of finite type, then there is a canonical map

$$\theta: G(X) \to P\text{-Seq}(E(X_0))$$
.

It is defined as follows. Let $Y \in G(X)$ and $P = \{p_1, ..., p_n\}$. Then the localization Y_P is a pull-back of maps $X_{p_i} \stackrel{\lambda_i}{\to} X_0$, i.e. $Y_P \simeq \text{hoinvlim}\{X_{p_i} \stackrel{\lambda_i}{\to} X_0\}$. The maps λ_i induce equivalences $\overline{\lambda}_i \in E(X_0)$ and we put

$$\theta(Y) = \{ [\overline{\lambda}_1, \overline{\lambda}_2, ..., \overline{\lambda}_n] \}.$$

If Y_P may also be represented by hoinvlim $\{X_{p_i} \stackrel{\mu_i}{\to} X_0\}$, then there exist maps $h(0) \in E(X_0)$ and $\tilde{h}(p_i) \in E(X_{p_i})$, $i \in \{1, ..., n\}$ rendering the diagrams