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§ 1. THE BERGMAN-ROSEBLADE THEOREM

We introduce some notation. Let A denote a finitely generated free
abelian group. Let k be a field and have A designate an isomorphic copy
of A inside the multiplicative group of some field extension of k. We will
write k[A] for the k-algebra generated by .4 and k(4) for its field of
fractions. The reader is cautioned that k[A] is not the group algebra;
distinct elements of A need not be linearly independent over k. (It's even
possible for 4 to be contained in k*.)

We will reserve the notation k[A], without the underbar, for the group
algebra. There is an obvious relation between the free object k[A] and
k[A 7. Indeed, the given isomorphism 4 ~ A4 induces a k-algebra isomorphism
k[A]/P ~ k[A] where P is a prime ideal. The ideal P is “faithful with respect
to A.” .

Suppose that G is a group which acts on 4. Set

D = {aeA | a has a finite G-orbit} .

It is sometimes called the orbital subgroup or relative finite conjugate
subgroup.

We are primarily interested in a group G which acts as a group of
k-automorphisms of k[ A4 ]. (The slight awkwardness of language allows us to
include possibly nonfaithful actions.) We say that G acts multiplicatively on
k[A] if G stabilizes 4. Thus if k[A] = k[A]/P as described above, then P
1s a G-stable ideal under the corresponding action on k[A].

The fundamental theorem in multiplicative invariant theory is Roseblade’s
Theorem D ([10]). Roseblade based his arguments on profound insights of
G. Bergman ([3]).

BERGMAN-ROSEBLADE THEOREM. Assume that G acts multiplicatively on
k[A] = k[A]/P. Then P = (Pnk[DJ)k[A].

To understand the implications of this theorem, we take a closer look
at D. Obviously D is a finitely generated abelian group. Since each generator
has a finite G-orbit, D is centralized by a subgroup of finite index in G.
In other words, G acts like a finite group of automorphisms when restricted
to D.

It 1s easy to see that if a power of an element in A has a finite
orbit, then so does the original element. Hence there is a splitting 4 = D x B.
(Unfortunately, there may be no choice of B which is stabilized by G.) The
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conclusion of the Bergman-Roseblade Theorem can be rewritten—every
element in P has a unique representation X f(b)b where be B and f(b)
e P n k[D]. Thus k[A4] is the group ring (k[D]) [B] for a finitely generated
free abelian group B.

Roseblade proves that the fixed ring (k[4 )¢ lies in k[D ] ([10], Lemma 10).
This will also be a consequence of the first lemma in the next section. In
any event, it has a remarkable consequence.

THEOREM 1. Assume that G is an arbitrary group acting multiplicatively
on k[A]. Then k[A]® is finitely generated.

Proof. As we have remarked, (k[4])¢ = (k[D])¢. But G acts like a finite
group of automorphisms on the affine algebra k[D]. Noether’s Theorem
([11]), states that, in this case, the algebra of invariants is a finitely
generated algebra. | [

This is an unexpected surprise. In contrast to the situation for linear
actions, Hilbert’s 14th problem holds for multiplicative actions without any
restriction on the group! |

The theme of the paper has emerged. A theory of invariants for multi-
plicative actions is ultimately a theory for finite groups.

§ 2. GaLois THEORY

We begin this section by establishing an analogue to the “finiteness”
phenomenon of the previous section, for a multiplicative action of G on
k(A). Notation is taken from § 1.

LEMMA- 2. Suppose that G acts multiplicatively on k(A). Then k(ﬁ)G
< k(D).

Proof. The crucial fact is that k(D) [B] is a unique factorization domain.
If 9f = f for fek(4) then we can write f = o/f where o and P in
k(D) [B] have no common factors. The invariance of f/ becomes

() = (*B)a forall geG.

Hence o | %0 and % | o; we have (Yo)o.” ' a unit in k(D) [B]. A similar result
holds for B. . )
‘o = u(gle and ‘B = wig)B

for u(g), wig) € k(D)* - B.
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