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252 J. MYCIELSKI AND S. WAGON

fw(SO„+1) is not contained in a proper algebraic subset (in this case, A)
of SOn + 1. This completes the proof of Theorem 1 (a) for Sn.

Next, consider Theorem 1 (c) for Sn. First observe that this can be

proved for S03 by the technique above, if A is taken to consist simply of
the identity. This is because the action of S03 on S2 is locally commutative,
so all that is needed is a perfect set of free generators, which in turn
requires only that each Rw be nowhere dense. Theorem 1 of [5] again
applies, because A is an algebraic set: membership in A is equivalent to the
simultaneous vanishing of (n+1)2 polynomials which, by using a sum of
squares, is equivalent to the vanishing of a single polynomial. For higher
dimensions, we appeal to the technique used by Borel to get locally
commutative free subgroups of SOn + 1. In [5, p. 162] he showed that, if n ^ 2,

S03 may be represented as a subgroup H of SOn+l where f/'s action on
Sn is locally commutative. Hence the perfect free generating set in SO 3

yields a perfect subset of H which is the desired free generating set in
SOn +1.

§ 5. Euclidean Spaces

For the Euclidean case of Theorem 1, it suffices to consider R3, since

any isometry of R3 can be extended to one in higher dimensions by
simply fixing the additional coordinates ; this introduces no new fixed points.
Now, R3 can be handled in a way entirely similar to Sn. Any orientation-
preserving isometry of R3 is a screw-motion, i.e. a rotation p e S03 followed

by a translation x. Such isometries may be represented as elements of
SL4(R) as follows: if a xp where p corresponds to (aij)eS03 and x

is a translation by (v1, v2, v3), then identify a with the matrix

Since composition of isometries corresponds to matrix multiplication, this

shows that G(R3) may be viewed as a connected (6-dimensional) analytic
submanifold of R12. Now, the proof can proceed exactly as for spheres,

once it is shown that the existence of a fixed point is equivalent to the
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vanishing of a polynomial. But a screw-motion a has a fixed point if
and only if the translation vector is perpendicular to the axis of

the rotation. Since the axis of a rotation (a^ e S03 is parallel to

(^32-^23, ß13-ö31> fl21-ß12), haS a fixed P°int if aild °nl^ if
1^1(^32 —«23) + ^2(^13-^31) + v3(a21-a12) 0. This completes the proof of

Theorem 1 (a) for R".

§ 6. Hyperbolic Spaces

Here we meet a case where the existence of a free, fixed-point free

group of isometries having rank 2 does not imply the existence of such

a group having uncountable rank. The hyperbolic plane is such a space.

If if2 is identified with the upper half-plane of C, then G(H2) corresponds

az + b
to linear fractional transformations z 1— where a, b, c, a are real

cz -(- d

and ad — be / 0. Since it may be assumed that ad — be 1, this group is

isomorphic to PSL2(R). A nonidentity element of PSL2(R) is called elliptic,
parabolic, or hyperbolic according as the absolute value of its trace is less

than, equal to, or greater than two; the nonidentity elements of G{H2) with
a fixed point in H2 correspond to the elliptic elements of PSL2(R). See [18] for
more details about this interpretation of PSL2(R). The following theorem
clarifies the situation regarding fixed-point free subgroups of G(H2).

Theorem 3. (Siegel) If F is a free subgroup of PSL2(R) then F
is discrete if and only if F has no elliptic elements.

Theorem 3 is a rephrasing of the result of [34] (see also [15]). An
elementary proof appears in [41]. The forward direction is an immediate

consequence of the fact that the nondiscrete cyclic subgroups of PSL2(R)
are precisely the ones generated by an elliptic element of infinite order.
This fact also yields the reverse direction in the case when F is cyclic.
Siegel gave an algebraic proof of the reverse direction for noncyclic free

groups. This can also be obtained by first using techniques of Lie algebras
to show that a nondiscrete, nonsolvable subgroup of PSL2(R) is dense in
PSL2(R), and observing that the elliptics form an open set; this approach
is due, independently, to A. Borel and D. Sullivan.

The forward (easy) direction of Theorem 3 yields a proof of the positive
part of Theorem 1 (b) for H2 (and hence for Hn, n ^ 2), since it implies
that a discrete free group of rank two has no elliptic elements. Therefore
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