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§ 3. Type 2 case

In this section and the next section, we treat the case where a meridian

of Ln in Mn + 2 is null homotopic in M - L. The following lemma follows

from [Li, Lemma 1]. We shall give an alternative proof which is interesting

by itself (the argument is also given in [Ms, Theorem 4.2]).

Lemma 3.1. I{Sn x S2, Sn x {*}) Xn if n ^ 3.

Proof Let (Sn + 2,K) be an n-knot and consider (S"xS2, S"x{*})
# (Sn + 2, K). A subset Sn x {*} K u {x0} x S2 (x0eSn) is exactly the

wedge sum of Sn and S2. As easily observed the complement of an open
regular neighborhood of the subset is contractible and hence diffeomorphic
to Dn+2 as n + 2 ^ 5. This means that one can express

CSn x S2, Sn x {*}) # (^ + 2, K) (Sn x S2, Sn x {*}) # S

where S is a homotopy (n + 2)-sphere and the connected sum at the right
hand side is done away from the submanifold Sn x {*}.

On the other hand the ambient manifold must be diffeomorphic to
Sn x S2 because it is the connected sum of Sn x S2 with Sn + 2. These

mean that S belongs to the inertia group of Sn x S2. But the group is trivial
([Sc]), so £ must be the standard sphere. This proves the lemma. Q.E.D.

We shall denote by <m> the class in 7i1(M —L) represented by a

meridian of L in M.

Lemma 3.2. Suppose M is spin, L is diffeomorphic to Sn, and
n ^ 3. If <m> 1 for (AT, L), tlzerc (M, L) (S" x S2, 5" x {*}) It M'
with a closed oriented manifold M' of dimension n + 2.

Proo/ Since <m> 1 and dim M ^ 5, the meridian m bounds a
2-disk in M — L. Therefore L V S2 is embedded in M. The normal bundle
to L in M is trivial, because it is classified by the Euler class sitting
in H2(L ; Z) and H2(L ; Z) — 0 as L Sn and n ^ 3. The normal bundle
of the embedded S2 is also trivial, because it is classified by the second
Stiefel-Whitney class and it vanishes as M is spin. Hence the closed regular
neighborhood of L V S2 in M is diffeomorphic to that of Sn V S2 naturally
embedded in Sn x S2. In particular its boundary is diffeomorphic to Sn + 1.

This implies the lemma. Q.E.D.
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Remark 3.3. A similar argument works even if M is not spin. But this
time two cases arise according as the normal bundle of the embedded S2

is trivial or not. If it is trivial, then the same conclusion as above holds.

If it is not trivial, we have

(M, L) {SnxS2,Sn) KM'.

Here Sn x S2 denotes the total space of the sphere bundle associated with
the nontrivial (n + l)-dimensional vector bundle over S2 (note that it is

unique as 7r1(SO(n + l)) ~ Z2 for n ^ 2) and the submanifold Sn denotes a

fiber.

Combining Lemma 3.1 with 3.2, we obtain

Theorem 3.4. Suppose M is spin, L is diffeomorphic to Sn, and

n ^ 3. Then if <m> =1 for (M, L), then I(M, L) Xn.

Remark 3.5. If the inertia group I(Sn x S2) is trivial, then the same

argument as the proof of Lemma 3.1 proves that I(Sn x S2, Sn) and
hence one could drop the spin condition for M by Remark 3.3.

If L # Sn, then the above argument does not work. For a general L
we construct an s-cobordism between pairs (M, L) K (Sn + 2, K) and (M, L)
and apply lemma 1.6. We denote the set of all null-cobordant n-knots

by According to Kervaire [K] (cf. [KW, Chap. IV])
if n is even, but ^ if n is odd.

Proposition 3.6. Suppose <m> =1 for (Mn + 2,Ln) and n ^ 3.

Then 70(M, L) contains In particular, if n is even ^ 4, then

I0(M,L) I(M,L) Jfn.

Proof. Let (Sn + 2, K) bound a disk pair (Dn + 3, D), where D is a

(n-bl)-disk. The boundary connected sum (M, L) x I (D"+3, D) at the

1-level gives a cobordism between (M, L) and (M, L) K (S" + 2, K).
We shall check the conditions (1) and (2) in Lemma 1.6 for this

cobordism. First, since D is diffeomorphic to Dn + 1,Lx I \D is

diffeomorphic to L x /; so (1) is satisfied. Hence E(LxI i]D) gives a cobordism
relative boundary between E(L) and E(L KK). We note that

(3.7) E(L xl \ D) E(L x I) u £(£)

where E(LxI) and F(D) are pasted together along Dn+1 x S1 embedded in
their boundaries. The S1 factor corresponds to meridians of L x I and D.

Then the van Kampen's theorem says that
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n,(E(LxnDj)än^EiLxI))<*>tc^JS^))

~ 7ti(£(L x /)) * (uj^D))/< m>)

where the latter isomorphism is because <m> 1 in nx(E(Lx I)) by the

assumption. Since n1(E(D))/<m>^7r1(DB + 3) ~ {1}, we have

(3.8) ti^ECL x / ç D)) ~ 7t!(£(L x /)) ~ %(£(£))

Here the inclusion map i : E(L) E(L) x {0} -* E{L x induces the

isomorphism.
We shall observe that i is a simple homotopy equivalence. For that

purpose we consider the lifting of i to the universal covers. Since the map

Ki(E{D)) ni(E{L xi ÏD)) induced by the inclusion map is trivial as observed

above, it follows from (3.7) that

(3.9) £(Lx/(D) É(L x /) u E(D) x II

where II n^EiLxI i] D)) tc1(M—L) and E{LxI) and £(D) x II are

pasted together II-equivariantly along D" + 1 x S1 x II embedded in their
boundaries. This means that : Hq(Ë(L) ; Z) - Hq(É(L x I 1] D) ; Z) is an

isomorphism as Z[II]-modules. Hence i^: nq(E(L)) -> nq(E(Lx I lj D)) is an

isomorphism by Namioka's theorem (see [Wll, § 4]) and hence i is a

homotopy equivalence.
The assumption <m> =1 together with (3.9) tells us that the Whitehead

torsion x(i) g Wh(H) of the map i comes from an element of Wh(l) through
the map : Wh(l) Wh(Tl) induced from the inclusion 1 -> n. However
Wh( 1) 0 and hence x(z) 0. This shows that E(L x I Ij D) is an s-cobordism
relative boundary. The proposition then follows from Lemma 1.6. Q.E.D.

Proposition 3.6 gives a complete answer to the case where n is even

^ 4. It would be interesting to ask if the same conclusion still holds in
the case n 2.

In the next section we will improve Proposition 3.6 when n is odd ^ 5.

§4. An improvement

Throughout this section we assume n is odd ^ 5. Let Vn + 1 be a Seifert
surface of an rc-knot K in Sn + 2. The normal bundle to F in Sn+2 is
trivial. We give the stable normal bundle of Sn + 2 a canonical framing so
that V can be viewed as a framed manifold.
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