
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 36 (1990)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: YANGIANS AND R-MATRICES

Autor: Chari, Vyjayanthi / Pressley, Andrew

Kapitel: 5. R-MATRICES AND INTERTWINING OPERATORS

DOI: https://doi.org/10.5169/seals-57909

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 09.03.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-57909
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


294 V. CHARI AND A. PRESSLEY

5. ^-MATRICES AND INTERTWINING OPERATORS

In this section we shall prove that, after a trivial twisting, the intertwining
operators between certain representations of Yangians provide rational
solutions of the quantum Yang-Baxter equation. Recall that, if V is any
representation of Y Y($I2), then, for any a e C, we denote by V(a) its

pull-back by the automorphism xa of Y defined in Proposition 2.5.

Proposition 5.1. Let V, W be irreducible finite-dimensional representations

of Y with highest weight vectors QV,QW and let a, be C. Then:

(a) the tensor products V(a) (x) W(b) and W(b) ® Via) are irreducible
and isomorphic except for a finite set of values S(V, W) of a - b;

(b) the unique intertwining operator

I(V> a; W, b): W(b) ® V(a) -> V(a) ® W(b)

which maps Qw® Qv to Qv(g) is a rational function of a - b

with values in Horn W ® V, V® IF).

Proof Part (a) follows immediately from Proposition 4.2 and

Corollary 4.7. For part (b), we need the following lemma.

Lemma 5.2. Let V3 W be representations of Y and let ae C.

(a) If V is irreducible, so is V(a).

(b) If I: VW is an isomorphism of representations of Y, so is

I: V(a) -+ W(a).

Proof of lemma. Part (a) follows from the definition of V(a). For

part (b), we must show that I commutes with the action of x and J{x) on V(a)

and W(a), for all x e 3l2. But this is clear, since the action of x is the same

as that on V and IF, and that of J(x) is the same as that of J(x) + ax on V

and W.

Returning to the proof of Proposition 5.1, it follows from the lemma that

/(F, a ; W, b) is a function of a - b, so it suffices to consider the case b 0.

For any a e C which does not belong to the finite set ^(F, IF), there is a unique

isomorphism

I(K a; W, 0) ee 1(a): W® V(a) V(a) ® W

of representations of Y such that

(5.3) 1(a) (Qfv® ® •
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Choose bases of V ® W and W ® V and let {4} be a basis of Sl2; write 1(a)

also for the matrix of 1(a) with respect to these bases. Let Ax,Bx be the

matrices of Ix and J(Ix) acting on W0 V(a)\ and let A[ and B'x refer

similarly to V(a) (x) W. Then, 1(a) commutes with the action of Y if and only

if 1(a) satisfies the following system of homogeneous linear equations:

AJ(a) 1(a)AI, BxI(a) I(d)B{ for all X

We know that, if a$S(V, W), these equations have a unique solution

satisfying equation (5.3). By elementary linear algebra, the solution is a

rational function of the entries of the matrices Ax, A[, Bx, B'x. Since Ax, Ax
are independent of a and Bx,B[ are linear in a, the result follows.

Definition 5.4. Let F be a finite-dimensional irreducible representation of
Y. Then, the R-matrix associated to V is the function R(a-b) with values in

End(V0 V) given by

R(a-b) I(V, a; V, b)o

where oeEnd(F(x) V) is the switch of the two factors.

Theorem 5.5. Let V be a finite-dimensional irreducible representation
of Y. Then the R-matrix associated to V is a rational solution of the

quantum Yang-Baxter equation:

(5.6) R12(a- b)R13 (a - c)R23 (b - c) R23(b~c)Rlfa-c)Rn(a-b)

Proof. We note first some simple commutation relations between the
intertwining operator I(a-b) I(V, a; L, b) and the switch map o. For
example, we have

g12/13(^-c)o12 723 (a - c)

by an easy computation. Similarly,

O 12o B/23 (b -c)o 13 o 12 I12(b-c)

Hence,

Rl2(a-b)Rli(a-c)R23(b-c) P2(a-b)cl2In(a-c)o"I23(b-c)o23
P2 (a-3 12 o13 - 23

712 (a - ô)/23 (a - c)/12 (6 - c)o12 a13 a23

Similarly,

R22(b-c)Rn{a-c)Rn{a-b)/23(ô-c)/12(fl-c)/23(a-ô)o23o13a12
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Hence, in view of the relation

O 12
O

13 O 23 G 23 O 13
O 12

in the symmetric group on three letters, the equation to be proved is

(5.7) 112(a- b)I23(a- c)In{b - c) I23(b -c)Il2(a- c)I23(a- b)

Note that both sides of equation (5.7) define intertwining operators

V(c) ® V{b) 0 V(a) -> V(a) 0 V(b) 0 V(c)

which fix the tensor product of the highest weight vectors in V. Hence,

regarded as functions on C3 with values in End(H(x) V® V), they agree on
the complement of the set S of {a, b, c) eC3 where V(c) 0 V(b) 0 V(a) or
V{a) ® V{b) ® V(c) is reducible. It follows from part (a) of Proposition 5.1

that S intersects each complex line parallel to one of the axes in C3 in at most

finitely many points. It is easy to see that the complement of such a set is

Zariski dense in C3. Since the two sides of equation (5.7) are rational
functions which agree on a Zariski dense set, they are equal.

Remark. We have used the following simple fact about intertwining
operators. Let U, V and W be representations of a Yangian Y(3l2) and let

/: U (x) V L(x)t/bean intertwining operator. Then

I12 : U® V 0 W-+ V® U® W

and

I23\W®U®V~+W®V®U
are intertwining operators. While this is obvious enough, it should be noted

that

Il3:U®W®V~^V®W®U
is not an intertwining operator in general.

We conclude this general discussion by showing that, up to a sign change

in the parameter, the R-matrix R{u) we have associated to a representation of
Y is the same as that constructed using the "universal i?-matrix" (see

Theorem 3 of [4]). Set

R(u) R(-u)

Then, by Theorem 4 of [4], it suffices to prove that

(5.8) P+(a, b)R(b-a) R(b-a)P[(a, b)
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where

P * (a, b) (p (x) p) ((A4) + a4) ® 1 + 1 ® (A4) + &4) + - [4 ® 4 ^0 »

p: End(F) is the action of 7 on F and {4} is an orthonormal basis of

§I2. In terms of intertwining operators, equation (5.8) asserts that

PI (ia, b)I(a-b) I{a-b)oP{{a, b)o

But it is easy to see that

gPï (,a, b)a (4 A •

Hence, we must prove that

Px+(a, b)I(a-b) I(a — b)P£ (b, a)

But this is simply the statement that

Ha-b) \ V(b) (x) V(a) -* V(a) ® V{b)

commutes with the action of A4).
We shall now apply these results to compute the P-matrices associated to

every finite-dimensional irreducible representation of Y. By Theorem 4.11,

every such representation is of the form

F «=» Vmx{ax) (g) • • • (x) Vmk(ak).

The intertwining operator

I(a-b): V(b) ® V(a) V(a) (x) V(b)

can be computed as the product of k2 intertwining operators of the form
I(Vm, a; Vn, £), each of which effects an interchange of nearest neighbours.
Since such an operator commutes, in particular, with the action of §t2, it can
be written in the form

min{/?7, n}

(5.9) I(Vm,a-, V„,b)I CjPm + „_2j,
j 0

where

Pm + n-y• ^ ® Fw -> F/77 (x) F„

is the projection onto the irreducible component of

1/ M F — ]/^ j o y m + n-y
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of type Vm + n_2j. We have c0 1 since I(Vm, a; Vn,b) preserves the tensor
products of the highest weight vectors.

To compute I(Vm, a; Vn, b), let Qy,y 0, 1, minjm, n), be a highest
weight vector in Vn (x) Vm of weight m + n - 2j; then, the vector Q;'
obtained by switching the order of the factors in Qy is a highest weight vector
in Vm (x) Vn of the same weight, and we have

I(Vm, a; Vni b) (Qj) Qy'

Further, it is easy to see that, for j > 0,(x+ (x) l).Qy is an ^-highest weight
vector of weight m + n - 2/ -f 2; it is non-zero, since otherwise Qj would be

annihilated by x+ (x) 1 and by 1 (x) x+ contracting the assumption j > 0.

Hence, we may assume that

(X+ ® 1) Qj Qy_j

for j > 0. Switching the order of the factors, we have

(x+ ® i).qj - q;_j
By Proposition 4.2 (and its proof), Qy is a Y-highest weight vector in
Vn{b)® Vm(a) if

1

b - a j\m + n) - j + 1

It follows from the formula for the co-multiplication in Definition 1.1 that, in
the representation Vn(b) (x) Vm(a),

J(x + ).Qj Ib - a - - (m + n) + j - 1 j (x + (x) 1).Qy

and that in the representation Vm(a) (x) Vn(b),

J(x + Qj I a - b - ^ (m + n) + j - 1 j (x + (x) 1). Qj

The equation

I(Vm,ai Vn9b) (J(x + ).Qj) J(x + ).(I(Vm,a; Fn,Z>)Qy)

now gives
^

a - b + - (m + n) - j + 1

0
C; — \

1

a - b (m + n) - j + 1

2
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It follows that

a - b + - (m + n) - i
min{m, n} j 1 2

(5.10) I(Vm,a;Vn,b) £ II PJ '

j~° l'° a-b—(m + n) + /
2

We summarize our results in the following theorem.

Theorem 5.11. The R-matrix associated to the representation

V= Vmfax)® ® Vmk(ak)

of Y is given by
k

R{a-b) [I Hym., a + af; b + ay))o
ij i

where the intertwining operators are given by equation (5.10) and o is the

switch map. The order of the factors in the product is such that the {i, j)-term
appears to the left of the (/' J')-term iff

i > V or i V and j < j'

6. Concluding remarks

Since we have discussed only the Yangian associated to 3l2 in this paper,
it may be worth-while to indicate the extent to which the results above can be

generalized to the Yangian Y(a) associated to an arbitrary finite-dimensional
complex simple Lie algebra a

The definition of 7(a) is precisely as in (1.1), except of course that {/?J
should be an orthonormal basis of a with respect to some invariant inner
product. The formulae

Ta(x) X Ta(J(x)) J{X) + aX

for x e a, again define a one-parameter group of Hopf algebra automorphisms

of Y(a), and the relation, discussed in section 5, between solutions of
the quantum Yang-Baxter equation and intertwining operators between tensor
products of representations of Y(a), which follows from the existence of the
Ta, is also valid in the general case.
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