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14 L. H. KAUFFMAN

where <K\L> denotes the product of vertex weights (all relative to the

given template). Independence of the template follows from the well-
definedness of the polynomial itself.

Remark. It would be very interesting to know the relationship between
this state model for the Kauffman polynomial and the extraordinary model
of Jaeger [34]. Jaeger gives a state expansion where the states are a collection
of oriented knots and links. Each state is itself evaluated via the regular
isotopy version of the Homfly polynomial.

V. Graph polynomials

The two skein polynomials (Homfly and Kauffman) each have three

variable extensions to rigid vertex isotopy invariants of 4-valent graphs
imbedded in three-space. This construction has been announced in [45].
(See also [56] and [74].) Our skein models involve 4-valent graphs implicitly,
and so give rise to a natural definition for these extended polynomials as state
models.

Let the new variables A and B be given, with z — A — B the usual z

for the skein polynomials. The extended polynomials are then defined by
the axioms :

Homfly Extension Axioms

1 • R ARs^ T- R yg 9

R yX BR + R
>

2. Rg usual regular isotopy
Homfly polynomial if K is
free of graphical vertices >5).

Kauffman Extension Axioms

1 • + BD^ ^ + I) y

2. Dg usual regular isotopy
Dubrovnik polynomial if K is
free of graphical vertices
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In each case, these axioms are taken as the definition of the polynomial

in the case of the presence of graph vertices. That is, one rewrites

B R »—* — zR •

as the (recursive) definition in terms of an expansion involving the standard

link polynomial (evaluated on a collection of links obtained by removing

graph vertices and replacing by splices or by crossings). It is easy to verify
that the resulting graph polynomial is well-defined on the basis of the theory

of the Homfly or Kauffman polynomial
By using the skein models we can give a direct formula for the evaluation

of the extended polynomial on a planar graph. (See below.) This gives another

point of view for these polynomials. In this view the axioms for the extended

polynomials give state expansions for them whose states are plane graphs.
Each plane graph state contributes a polynomial to the summation — weighted
by A9s and B9s that tell how it was made planar by projecting and splicing.

In this view, all the complexity of the skein models for these polynomials
has been absorbed into the extended polynomial evaluations for plane graphs.

Here are the explicit formulas for the Homfly case. I leave the case of
the Kauffman extension to the reader. (See also [56].)

Lemma 5.1. Let G be a plane oriented 4-valent graph. Let U(G)
be the set of graphs obtained from G by splicing (oriented splice) a subset

of vertices from G. Let T be a template for G (regard G as a
universe and use the notion of template in section 2).

For each H in U(G) give H the structure of a standard unlink
L L(H) relative to the template T. Let t(H), t+(H), t_(H\ denote the
number of splices, positive splices, negative splices of L(H). Let w(H)
denote the writhe of L(H). Then

rg Y
HeU(G)

where

6 (a — fl_1)/z (a — a'^fiA — B),

and I H | denotes the number of crossing circuits in H (i.e. the number
of link components in L(H)).

RX
RVf Rv* ~ BR v-* •

(Note that R^ ~ R)/* (A -
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Proof. We give a state expansion for the extended polynomial by using
the axiom. In abbreviated form this gives

R ^ - AR
X Ai ^

zRv^t + aR^r + a R

- A(R

R^= (-B)R

z A - B

x+ RX/
(-A)R^v^^-h aRv^-)- 9- •

Hence, the vertex weights for RG are — B) for a positive splice, (—A)
for a negative splice, and otherwise the same as in the model for the

Homfly. This completes the proof.
In the case of both DG and RG for plane graphs it would be good to

verify their properties and definedness directly and independently of the knot
theory. The knot theory of the (extended) Homfly and Kauffman polynomials
would then be seen to rest on this theory of plane graph polynomials.

An example.

(Si (Ä) 1

@

(template)

admissible states
(-ÜS

A(a — a~l) Aa_1 — Ba
Rg a

A - B -

(R>5~ aRy^l+ a~lR^*)-
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2.

T (template)GO GO'
G

.ö&.OO.GD
-Ba -Aa -A 5

«<3D — Ba — Aa + M2 +
(a-a l)

1

A - B

3.

Ua-a l) +(B2a-A2a1

)]

OD. OD.
kg

ARÇ^^j+
R

A
A a

1

— Ba
+

{a—a"l) + {B2a — A2a 1

.1 - BA-B
(a — a~l) + (B2 — AB)a

A-B
Here the rational function is not invariant under the (simultaneous) substitution

of a by a~l and interchange of A and B. This reflects the fact

that the graph embeddings G and G* are not rigid-vertex isotopic.

It is worth mentioning the planar graph polynomial in the Dubrovnik
case. The result is

0^= (-A)^(X) + (-B + W{X),
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where

àC ?*0 + + +

K(X) D)^+ D£~( + D^+
and

V(><) a[ + D^r + 5^+ ]
+ a"1[D^ + + D^+ D^]

A state in this expansion is obtained by first splitting (in any way) the vertices

of the given unoriented four-valent plane graph G. The vertex weights are then
determined by the template, as illustrated below.

« » (-A)2(-B)

If < G | S > denotes the product of vertex weights for a given state S,

then the polynomial has the form

Dgy <G|S> p^"1, n 1 + (a-a~l)l(
S

Proof of these formulas from the extension axioms follows just as in the

Homfly case.

VI. The Conway Polynomial

The skein models give a very elegant formulation of the Conway
polynomial ([16], [41]) (compare [33])

VK(z)Rk(z, 1).

Specializing the formula for the skein model we have

V*(z) K-i )'-<L)zt<L)
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