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398 R. F. COLEMAN

since n(s(v)) = v and nV(e) = Vy(n(e)). The lemma now follows from
(toVE w)(e) = Viw)(e—s(n(e)) =0. L

Suppose W is an % submodule of H. We let [W] denote the smallest
subconnection of H containing W.

2. THE GAUSS-MANIN CONNECTION

Here we will recall the definition and some basic properties of the Gauss-
Manin connection which we will need in this paper. For more details see [K-O].
If & is a complex, % (k) will denote the complex obtained from & by
setting “i(k) = &1+, For any scheme Y over K will let K[Y] denote
C(.2Y).

Suppose S is a smooth connected affine scheme over K. Suppose f: X — S
1s a smooth morphism, Z is a closed subscheme of X, smooth over S. Suppose
T is either Spec(K) or S. Then we define the subcomplex Q ., , of Q,, by
the exactness of the sequence.

0-Qy7,72Qy,7>Q,,,,—0.

When 7T = Spec(K) we drop it from the notation. It follows that
Qs , = QY,s for i > dimsZ. Note that Qf , = Q%5 ; is the sheaf of ideals
of Z on X. We define H;DR(X/S, Z) to be the i-th hypercohomology group of
the complex Qg ,. We set H. o (X/S) = Hyo(X/S, D). If X is affine, then
H' .(X/S, Z) is the i-th cohomology group of the complex of K[S] modules
[(Qy/s z). If X is affine, K has characteristic zero and U is a dense open
subscheme of X then the natural map from HiDR(X/S, Z) to HjDR (U/S,Un Z)
is an injection.

From the last short exact sequence with 7" =S, we obtain a long exact
sequence

(2.1) o > HSNZ/S) = Hpp(X/S, Z) = Hipp(X/S) = ...

The Gauss-Manin connection V:Hy.(X/S,Z) = Qs ® Hyn(X/S,Z) is
the boundary map in the long exact sequence obtained by taking hyper-
cohomology of the short exact sequence of complexes:

(2.2) 0= f*Qs® Qs (1) = Q5 7/ [*Q5Q Qy(=2) = Qyy5, = O

(which is exact because X and Z are smooth over §). It is an integrable
connection. If K has characteristic zero and f is surjective and has
geometrically connected fibers, then HODR (X/S) = K[S] and the Gauss-Manin
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connection is the trivial connection on this module. Moreover, it is easy to
show that the sequence (2.1) is horizontal with respect to the respective Gauss-
Manin connections.

Suppose now that S is an affine curve over K and Z = <. Then the short
exact sequence (2.2) becomes

0= f*Qs® Qyys(—1) = Qs = Qyys— 0.
Taking cohomology of this sequence yields the Leray long exact sequence

2.3) .o Hog(X/S) S QL @ Hipp(X/S) = Hige (X) = Hip (X/S) =

3. SECTIONS OF A FAMILY AND EXTENSIONS OF CONNECTIONS

Suppose now S is a smooth connected affine curve over a field K of
characteristic zero and f: X — Sis a smooth proper morphism of schemes over
K, with geometrically connected fibers. These assumptions will be in force
throughout the remainder of this paper. Suppose Z is a closed subscheme of
X finite over S. Suppose the normalization n:Z — Z of Z is smooth over S.
After repeated blowing ups at closed points we find a scheme m: X' - X,
which contains Z and is such that the restriction of m to Z is n. Let X
equal the complement in X’ of the singular locus of X'/S. This locus is a closed
subscheme of X’ disjoint from Z. The long exact sequence 2.1 becomes

(3.1) 0 K[S] = K[Z] = H-(Z/8, Z) = HL(X/S) = 0

Let H denote the pullback of H, ()~(/S, 2) by means of the horizontal mono-
morphism from H,(X/S) into H})R()N(/S). We claim that H is independent
of the choice of X. Indeed, there exists a non-empty affine open subscheme S’
of S such that the map from X XS to X' =:X XS is an isomorphism.
If Z'"=27ZxsS’, then Z' is smooth over S’ and it is easy to see that
H® K[S'] = Hpg(X'/S',Z"). Hence H is an extension of the connection
Hpp(X'/S',Z") on S’ to a connection on S. Since such an extension is unique
if it exists, it follows that H is independent of the choice of X and so we set
HlDR(X/S, Z) = H. We obtain from the previous exact sequence, a natural
exact sequence

0= K[S] = K[Z] = H,n(X/S, Z) — H' ,(X/S) = 0 .

For a section s of X/S, we will also use s to denote the induced reduced
closed subscheme s(S) of X when convenient. Now suppose s and ¢ are two
distinct sections of X/S. Let Z = s U ¢. Then Z, the normalization of Z, is
just two disjoint copies of S and so is étale over S. (The sections s and ¢
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