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GAUSS SUMS 43

corresponding to this isomorphism and let ^ be the prime in Qipm)

above p, so ^3P_1 p, if we identify the prime ideal p of Q(m) with its

extension to a fractional ideal of Qipm). Thus we have the following congruence

(2.1) %(x) mod ^3 for all x e F*

Let vy be the valuation on Qipm) corresponding to The number ^ - 1

is a uniformizing element of in the sense that 1) L Moreover

one has v^ip) p — 1. From the prime ^3 we get the other primes in

Q{pm) above p by Galois action: each prime in Q{pm) above p is equal

to S$\ the image of ^3 under the Galois action of x, for a unique

X e Gal (Q(m)/Q).

(2.2) In the same way we get from the prime p all the primes in Q(m)

above p. However, in the last section of this paper, it will be more convenient

to use a slightly different description of the primes in Q(m) above p.

There we will not fix x> as we do in the rest of the paper, but we will
let it run over the <\>(m) multiplicative characters on Fp of order m. For each

such x we let p p(x) be the prime in Q(m) above p associated to %

in the way described above. Then p p(x) runs over the cj>(m) primes

in Q(m) above p.

3. The prime factorization of the Gauss sum:

STATEMENT OF THE RESULT

Before we state the outcome of the prime factorization of G we introduce

some more notation. For each i e Z with 0 < i < m and (/, m) 1 we

define the integer kt to be the exponent of the prime ^T'~' in the prime
factorization of G in Qipm) (it turns out that an inverse has to appear
somewhere and this is a convenient place). Equivalently, kt is the exponent
of the prime ^ in the prime factorization of GTl, that is,

(3.1) kt v^).
Any given action of a group T on an algebraic number field F induces

an action of the group T on 7(F), the group of fractional ideals in F.
Now we proceed with it just as we did above with the action of T on
the multiplicative group F* : we denote the action of T on 7(F) by the
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exponential notation, we extend it by Z-linearity to an action of the group
ring Zr on 1(F) and we denote this action also by the exponential notation.
If moreover £ is a subfield of F then we can view 1(E) as a subgroup of
1(F) by extension of fractional ideals ; moreover if a g 1(E) with a br for
some b g 1(F) and some re N and if X e Qr with rX e Zr, then we make as

usual the convention that the formal expression ax means the fractional ideal
b(^ in F. We define the Stickelberger element 0 in the group ring
Q[Gal(Q(m)/Q)] by

(3.2) 0 Ei1xr1
1 m

where i runs over the positive integers < m which are relatively prime to m.

The formal expression pe denotes the ideal ^3(p~1)e, by the convention made

above for fractional exponents and by the relation p <ÇP~1 between p
and S$.

Now we are ready to formulate the following result of Stickelberger on
the Gauss sum G as defined in (1.1):

(3.3) Theorem. The prime factorization of the Gauss sum G is pe.

(3.3) The statement of the theorem is clearly equivalent to the following
one: only the primes in Q(pm) above p occur in the prime factorization
of G, and their exponents in this factorization are as follows: for each

positive integer i < m which is relatively prime to m, the exponent of the

T-i. p-i.prime 431' is kt i.
m

4. A USEFUL LEMMA

In the proof of theorem (3.3) we will use a simple general lemma to
determine the exponents in the prime factorization of the Gauss sum G.

The aim of this section is to state and to prove this lemma. Let £ be a

field, v a discrete valuation on F, F(v) the residue class field of v and n a

uniformizing element of v, that is, n e F* with v(n) 1. An element u e £*
with v(u) 0 will be called a u-unit. We define a homomorphism I from £* to
Z x F(v)* by sending each a g F* to the pair (k, r) consisting of the integer
k v(a) and the residue class r in F(v) of the t;-unit a/nk. We call 1(a)
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