| Zeitschrift: | L'Enseignement Mathématique                              |
|--------------|----------------------------------------------------------|
| Herausgeber: | Commission Internationale de l'Enseignement Mathématique |
| Band:        | 36 (1990)                                                |
| Heft:        | 1-2: L'ENSEIGNEMENT MATHÉMATIQUE                         |
|              |                                                          |
| Artikel:     | ON THE INVERSIVE DIFFERENTIAL GEOMETRY OF PLANE CURVES   |
| Autor:       | Cairns, G. / Sharpe, R. W.                               |
| Kapitel:     | §9. LOXODROMES                                           |
| DOI:         | https://doi.org/10.5169/seals-57907                      |

### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

**Download PDF:** 09.03.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

*inversive arc-length* as the parameter, so that the "curvature" S becomes an *intrinsic* invariant of the curve in inversive geometry. And in this case it turns out that S has constant imaginary part. To see this we describe S in terms of the more familiar Euclidean curvature and its derivatives with respect to Euclidean arc-length.

The Euclidean and inversive arc-lengths are related by the equation:

$$dv = |\kappa'|^{1/2} ds, \text{ where } ' = \frac{d}{ds}. \text{ Thus:}$$

$$\dot{z} = z' |\kappa'|^{-1/2} = e^{i\theta} |\kappa'|^{-1/2},$$

$$\ddot{z} = \operatorname{sgn}(\kappa') e^{i\theta} \left\{ -\frac{1}{2} \frac{\kappa''}{\kappa'^2} + i \frac{\kappa}{\kappa'} \right\},$$

$$\dot{\ddot{z}} = \operatorname{sgn}(\kappa') e^{i\theta} |\kappa'|^{-1/2} \left\{ -\frac{1}{2} \frac{\kappa'''}{\kappa'^2} + \frac{\kappa''^2}{\kappa'^3} - \frac{\kappa^2}{\kappa'} + i \left( 1 - \frac{3}{2} \frac{\kappa\kappa''}{\kappa'^2} \right) \right\}$$

Using these expressions we can calculate the Schwartzian as:

$$\frac{3}{4}\left(\frac{\ddot{z}}{\dot{z}}\right)^2 - \frac{1}{2}\frac{\ddot{z}}{\dot{z}} = \operatorname{sgn}(\kappa')\left\{\frac{4(\kappa''' - \kappa^2\kappa')\kappa' - 5{\kappa''}^2}{16{\kappa'}^3} - \frac{i}{2}\right\} = \frac{1}{2}\operatorname{sgn}(\kappa')(Q-i)$$

Regarding the vectors  $f_1$  and  $f_2$  as column vectors, we obtain a 2 by 2 matrix  $h = (f_2, f_1) \in G$ , and according to the calculation above we have:

$$(\dot{f}_2, \dot{f}_1) = (f_2, f_1) \begin{pmatrix} 0 & 1 \\ S & 0 \end{pmatrix}$$

Thus h(v) and g(v) (cf. §7) are equal up to left multiplication by a constant element of G. This interprets Cartan's canonical frame  $(f_1, f_2)$  as the unique frame (up to a constant element of G) forming the columns of a matrix in G which moves the standard curve  $y = x^3/6$  to the given curve with contact up to 4th order at the given point.

## §9. LOXODROMES

To calculate the curves with Q constant we solve the equation:

$$\frac{dg}{dv} = g \begin{pmatrix} 0 & 1\\ \frac{1}{2} \varepsilon(Q-i) & 0 \end{pmatrix}, \text{ where } \varepsilon = \operatorname{sgn}(\kappa')$$

Now

$$\begin{pmatrix} 0 & 1 \\ \frac{1}{2} \varepsilon(Q-i) & 0 \end{pmatrix} = A \begin{pmatrix} \xi & 0 \\ 0 & -\xi \end{pmatrix} A^{-1},$$

where

$$\xi = \pm \frac{1}{\sqrt{2}} (1 + Q^2)^{1/4} \sqrt{\varepsilon} e^{-\frac{1}{2}i \tan^{-1} \left(\frac{1}{Q}\right)}$$

and

$$A = \frac{1}{\sqrt{-2\xi}} \begin{pmatrix} 1 & 1 \\ \xi & -\xi \end{pmatrix} .$$

Thus  $\frac{dgA}{dv} = gA\begin{pmatrix} \xi & 0\\ 0 & -\xi \end{pmatrix}$  and hence  $gA = C\begin{pmatrix} e^{\xi v} & 0\\ 0 & e^{-\xi v} \end{pmatrix}$ , where C is an

invertible constant 2 by 2 matrix. Since  $A \cdot - 1 = 0$  we have

$$g \cdot 0 = -\mathbf{C} \cdot (e^{2\xi v})$$

which is a linear fractional image of an equiangular spiral.

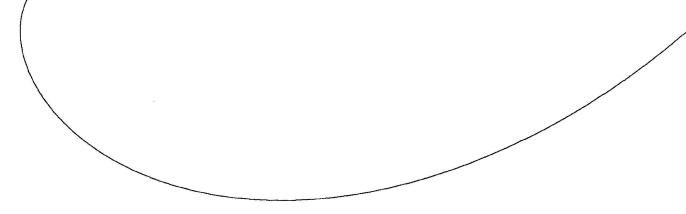
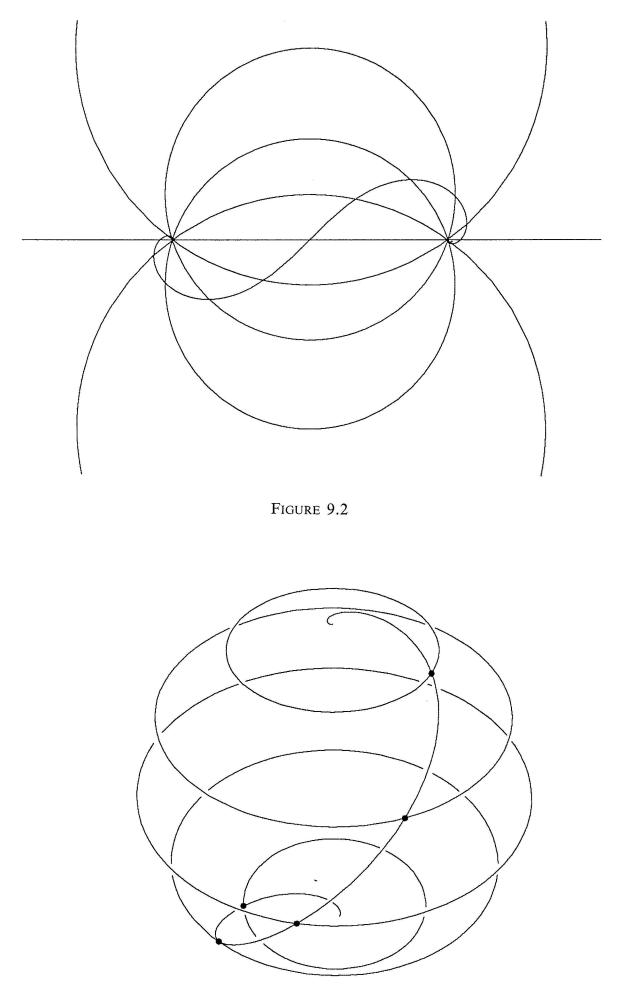


FIGURE 9.1

In particular, curves for which Q = 0, which we may call inversive geodesics, have

$$2\xi = \pm \sqrt{2\varepsilon} e^{-\frac{1}{2}\frac{\pi}{2}i} = \pm 1 \pm i$$





and are linear fractional images of the equiangular spiral with angle  $\pm \pi/4$  given by

$$\sigma(\mathbf{v}) = e^{(1\pm i)\mathbf{v}} = e^{\mathbf{v}}e^{\pm i\mathbf{v}}.$$

We note in particular that the inverse length of "one loop" of the inversive geodesic is  $2\pi$ . Figure 9.1 is a picture of one such loop.

Equiangular spirals have two accumulation points, the poles, one at the origin and the other at infinity. These poles determine the family of circles through them (straight lines in this case) as well as a second family of circles orthogonal to the first. The equiangular spiral meets each family in fixed angles. The same is true for linear fractional images of this configuration, and with the same angles.

The connection between Q and the angle  $\varphi \in (0, \pi/2)$  between the loxodrome and its first family of circles is given by

$$\tan \varphi = Q + \sqrt{Q^2 + 1} \; .$$

In figure 9.2, we show the inversive geodesic with poles at  $\pm 1$  together with its first family of circles.

In figure 9.3 we see the loxodrome again, in a perspective view this time, thrown up onto the two-sphere by the inverse of stereographic projection, along with its second family of circles.

We remark that it seems to be impossible to show the inverse geodesic in such a way as to allow more than one or two loops to appear to the eye, while at the same time allowing no distortion of the figure. This may account for a number of distorted diagrams of this loxodrome which have appeared in the literature. Of course one can picture many loops of some equiangular spirals, say with  $Q \ge 0$ . At the other extreme with  $Q \le 0$  we have a circumstance for which, in any scale, the corresponding equiangular spiral appears to the eye to be a straight line issuing from the origin. However as one "zooms" in or out this "straight line" appears to rotate about the origin.

# §10. The complex of geometric forms on a curve in $\mathbf{R}^2$

Among the various forms on a curve in  $\mathbb{R}^2$ , some, such as  $\omega$  and Q, can be thought of as arising from the local way in which the curve is embedded in  $\mathbb{R}^2$ ; that is they arise from the local geometric nature of the embedding and are invariant under Möbius transformations. These are the "smooth local