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Moishezon or Salvetti surface. (In the latter case the branch locus must be

given by real equations.)
Therefore we have:

Corollary 2. Let X be an algebraic surface as in Theorem 1. Then

Ork(L) • {o*,id} C \j/(Diff+ (20)

2. Invariance of the canonical class

S.K. Donaldson [D] has defined a series of invariants for certain smooth

4-manifolds. They are in particular defined for simply connected algebraic

surfaces X with pg(X) > 0. We assume from now on that X is such a surface.

There are two types of invariants according to the gauge group being SU(2)

or SO(3).
Let us first recall the SU(2)-case. Principal SD(2)-bundles over 2T are

classified by their second Chern class c2(P). For each / > /0, using such a

bundle with c2(P) I, Donaldson defines a polynomial

0/(2Q: Symd(L) Z

of degree d d(l) 41 - 3(pg(X) + 1), which depends only on the

underlying C°°-structure of X and is invariant up to sign under \j/(Diff+ (2Q).

Donaldson shows that these invariants are nontrivial for all sufficiently
large / [D].

We will need the slightly more complicated SO(3)-invariants. The simple
Lie group SO(3) is isomorphic to PU(2), so that one has an exact sequence

1 S1 - (7(2) SO(3) -> 1

Let P be a principal SO(3)-bundle over X. Such a bundle has two characteristic
classes which determine it up to isomorphism: the second Stiefel-Whitney class

w2{P) e H2(X, Z/2) and the first Pontryagin class P\(P) e H4(X, Z).
Suppose that w2(P) is nonzero and choose an integral lifting c of w2(P),

i.e. c e H2(X, Z), c w2(P) (here c means the reduction of c modulo 2).
Such a lifting exists since X is simply connected, and determines a (7(2)-lifting
P of P, i.e. a (7(2)-bundle P with P/Sl P and with c c^P) [HH]. The

A
Chern classes of P are related to the characteristic classes of P by w2(P)

cfP) and P\(P) c\(P) - 4c2(P). In addition to this choose an element

a e Q. Donaldson shows that these choices give rise to a polynomial

Oc,a,p(70:Sym%L)-Z
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of degree d - P\(P) - 3{pg{X) + 1) 4c2(P) - c2 - 3(pg(X) + 1) with
the following properties ([D], see also [OV]):

(a) 0Cj_a>P(X) - 0Cja;p(JT) where - a is the subspace corresponding to
a with the opposite orientation.

(b) <&c + 2a,a,p(X) E(a)<S>CtatP(X) where

(c) If / : X' X is an orientation preserving diffeomorphism then

®f*{c),f(o.)J*{P)(X') /*0c,a,p(X)

Donaldson's nontriviality result for the St/(2)-invariants has been extended

to the <SO(3)-case by Zuo [Z] :

Theorem 3 (Zuo). Let X be a simply connected algebraic surface with

pg(X) >0. If c e Hl*l(Xt Z), c 0, and P is a principal SO(3)-bundleAAAcorresponding to a U(2)-bundle P with cfP) c and c2(P)
sufficiently large, then the polynomial &c o P(X) is nontrivial.

Now suppose that X has a big monodromy group in the sense of Friedman
and Morgan [FMM]. Then the <STr(2)-invariants 0/(2f) of X are complex
polynomials in the canonical class kx and the quadratic form qx [FMM]. In
the SO(3)-case one finds the following result:

Theorem 4. Let X be a simply connected algebraic surface with

pg{X) > 0, w2(X) ^ 0, and with a big monodromy group. Then, for a

principal SO(3)-bundle P,

®kx,aAX)eC[kx,qx] •

Corollary 5. Let X be a simply connected algebraic surface with

pg(X) > 0 and with a big monodromy group. Then { ± kx) is invariant
under vj/(Diff+(2f)), if kx divides a nontrivial polynomial invariant.

The corollary follows from the fact that if kx divides a nontrivial
polynomial invariant, then it is its only linear factor up to multiples (cf. [FMM]).

When are the assumptions of Corollary 5 satisfied? It follows from
Theorem 1 that the surfaces listed in this theorem have big monodromy.

m {i if a2 0

if a2 ^ 0
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Let Xbe any simply connected algebraic surface with a big monodromy group.

If pg{X) 0 (mod 2) then the degree of 0/(20 is °dd. If pg(X) 1 (mod 2)

and k2x 1 (mod 2) then the degree of 0^a,p(I) is odd. So kx divides

0/(2f) or Ok^,p(X) in these cases.

Remark. Theorem 4 and its corollary remain true for polynomials

OCja,p(20 if c 6 H2(XZ) is a class with c 0 such that /*(c) c for all

/ e \j/(Diff+(20). The question which elements of H2(X, Z) or H2{X, Z/2)
have this invariance property will be treated in §4.

3. Non-realizable isometries

We shall show that for a simply connected algebraic surface with odd

geometric genus, - 1 is not induced by an orientation preserving diffeo-
morphism. For K3 surfaces this was shown by Donaldson in the proof of
[D, Proposition 6.2]. There he proves the nontriviality of a certain polynomial
®c,a,p(X) for a K3 surface X. With Zuo's nontriviality result (Theorem 3) we

are able to generalize this as follows.

Theorem 6. If X is a simply connected algebraic surface with
pg(X) 1 (mod 2) then - 1 $ \|/(Diff+(2Q).

Proof. Suppose that there is an orientation preserving diffeomorphism

f\X-*X such that /* - - 1. Let c e Hl>l(Xß Z) be a class with c 0, and
choose a principal SO(3)-bundle P with w2(P) c such that Oc a)P(2f) is

nontrivial. This is possible according to Theorem 3. Then

/*Oc,a)P(20 (-1m,a,P(2Q

since 0C)a>P(2f) is a polynomial of degree d on L.
On the other hand, by §2(c)

/*Oc,a,p(20 0>f*c,f*a,f*p(X)

We have /*c - cand/*a - a because /* - 1 and the dimension of
a is odd. Since / is orientation preserving and /* - 1 we find
f*Pi(P)=Pi(P) and f*w2(P) w2(P), so that the bundle f*P is
isomorphic to P. Therefore
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