Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	37 (1991)
Heft:	3-4: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	ON THE DIFFEOMORPHISM GROUPS OF CERTAIN ALGEBRAIC SURFACES
Autor:	Ebeling, Wolfgang / Okonek, Christian
Kapitel:	2. Invariance of the canonical class
DOI:	https://doi.org/10.5169/seals-58742

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 01.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Moishezon or Salvetti surface. (In the latter case the branch locus must be given by real equations.)

Therefore we have:

COROLLARY 2. Let X be an algebraic surface as in Theorem 1. Then

$$O'_k(L) \cdot \{\sigma_*, \mathrm{id}\} \subset \psi(\mathrm{Diff}_+(X))$$
.

2. INVARIANCE OF THE CANONICAL CLASS

S. K. Donaldson [D] has defined a series of invariants for certain smooth 4-manifolds. They are in particular defined for simply connected algebraic surfaces X with $p_g(X) > 0$. We assume from now on that X is such a surface. There are two types of invariants according to the gauge group being SU(2) or SO(3).

Let us first recall the SU(2)-case. Principal SU(2)-bundles over X are classified by their second Chern class $c_2(P)$. For each $l > l_0$, using such a bundle with $c_2(P) = l$, Donaldson defines a polynomial

$$\Phi_l(X)$$
: Sym^{*d*}(*L*) \rightarrow **Z**

of degree $d = d(l) = 4l - 3(p_g(X) + 1)$, which depends only on the underlying C^{∞} -structure of X and is invariant up to sign under $\psi(\text{Diff}_+(X))$. Donaldson shows that these invariants are nontrivial for all sufficiently large l [D].

We will need the slightly more complicated SO(3)-invariants. The simple Lie group SO(3) is isomorphic to PU(2), so that one has an exact sequence

$$1 \rightarrow S^1 \rightarrow U(2) \rightarrow SO(3) \rightarrow 1$$
.

Let P be a principal SO(3)-bundle over X. Such a bundle has two characteristic classes which determine it up to isomorphism: the second Stiefel-Whitney class $w_2(P) \in H^2(X, \mathbb{Z}/2)$ and the first Pontryagin class $p_1(P) \in H^4(X, \mathbb{Z})$.

Suppose that $w_2(P)$ is nonzero and choose an integral lifting c of $w_2(P)$, i.e. $c \in H^2(X, \mathbb{Z})$, $\bar{c} = w_2(P)$ (here \bar{c} means the reduction of c modulo 2). Such a lifting exists since X is simply connected, and determines a U(2)-lifting \hat{P} of P, i.e. a U(2)-bundle \hat{P} with $\hat{P}/S^1 = P$ and with $c = c_1(\hat{P})$ [HH]. The Chern classes of \hat{P} are related to the characteristic classes of P by $w_2(P)$ $= \bar{c}_1(\hat{P})$ and $p_1(P) = c_1^2(\hat{P}) - 4c_2(\hat{P})$. In addition to this choose an element $\alpha \in \Omega$. Donaldson shows that these choices give rise to a polynomial

$$\Phi_{c,\alpha,P}(X)$$
: Sym^d(L) \rightarrow **Z**

of degree $d = -p_1(P) - 3(p_g(X) + 1) = 4c_2(\hat{P}) - c^2 - 3(p_g(X) + 1)$ with the following properties ([D], see also [OV]):

(a) $\Phi_{c,-\alpha,P}(X) = -\Phi_{c,\alpha,P}(X)$ where $-\alpha$ is the subspace corresponding to α with the opposite orientation.

(b)
$$\Phi_{c+2a,\alpha,P}(X) = \varepsilon(a)\Phi_{c,\alpha,P}(X)$$
 where

$$\varepsilon(a) = \begin{cases} 1 & \text{if } \bar{a}^2 = 0, \\ -1 & \text{if } \bar{a}^2 \neq 0. \end{cases}$$

(c) If $f: X' \to X$ is an orientation preserving diffeomorphism then

$$\Phi_{f^{*}(c),f^{*}(\alpha),f^{*}(P)}(X') = f^{*}\Phi_{c,\alpha,P}(X) .$$

Donaldson's nontriviality result for the SU(2)-invariants has been extended to the SO(3)-case by Zuo [Z]:

THEOREM 3 (Zuo). Let X be a simply connected algebraic surface with $p_g(X) > 0$. If $c \in H^{1,1}(X, \mathbb{Z})$, $\bar{c} \neq 0$, and P is a principal SO(3)-bundle corresponding to a U(2)-bundle \hat{P} with $c_1(\hat{P}) = c$ and $c_2(\hat{P})$ sufficiently large, then the polynomial $\Phi_{c,\alpha,P}(X)$ is nontrivial.

Now suppose that X has a big monodromy group in the sense of Friedman and Morgan [FMM]. Then the SU(2)-invariants $\Phi_l(X)$ of X are complex polynomials in the canonical class k_X and the quadratic form q_X [FMM]. In the SO(3)-case one finds the following result:

THEOREM 4. Let X be a simply connected algebraic surface with $p_g(X) > 0, w_2(X) \neq 0$, and with a big monodromy group. Then, for a principal SO(3)-bundle P,

$$\Phi_{k_X,\alpha,P}(X) \in \mathbf{C}[k_X,q_X] \; .$$

COROLLARY 5. Let X be a simply connected algebraic surface with $p_g(X) > 0$ and with a big monodromy group. Then $\{\pm k_X\}$ is invariant under $\psi(\text{Diff}_+(X))$, if k_X divides a nontrivial polynomial invariant.

The corollary follows from the fact that if k_X divides a nontrivial polynomial invariant, then it is its only linear factor up to multiples (cf. [FMM]).

When are the assumptions of Corollary 5 satisfied? It follows from Theorem 1 that the surfaces listed in this theorem have big monodromy. Let X be any simply connected algebraic surface with a big monodromy group. If $p_g(X) \equiv 0 \pmod{2}$ then the degree of $\Phi_l(X)$ is odd. If $p_g(X) \equiv 1 \pmod{2}$ and $k_X^2 \equiv 1 \pmod{2}$ then the degree of $\Phi_{k_X,\alpha,P}(X)$ is odd. So k_X divides $\Phi_l(X)$ or $\Phi_{k_X,\alpha,P}(X)$ in these cases.

Remark. Theorem 4 and its corollary remain true for polynomials $\Phi_{c,\alpha,P}(X)$ if $c \in H^2(X, \mathbb{Z})$ is a class with $\overline{c} \neq 0$ such that $\overline{f^*(c)} = \overline{c}$ for all $f \in \psi(\text{Diff}_+(X))$. The question which elements of $H^2(X, \mathbb{Z})$ or $H^2(X, \mathbb{Z}/2)$ have this invariance property will be treated in §4.

3. Non-realizable isometries

We shall show that for a simply connected algebraic surface with odd geometric genus, -1 is not induced by an orientation preserving diffeomorphism. For K3 surfaces this was shown by Donaldson in the proof of [D, Proposition 6.2]. There he proves the nontriviality of a certain polynomial $\Phi_{c,\alpha,P}(X)$ for a K3 surface X. With Zuo's nontriviality result (Theorem 3) we are able to generalize this as follows.

THEOREM 6. If X is a simply connected algebraic surface with $p_g(X) \equiv 1 \pmod{2}$ then $-1 \notin \psi(\text{Diff}_+(X))$.

Proof. Suppose that there is an orientation preserving diffeomorphism $f: X \to X$ such that $f^* = -1$. Let $c \in H^{1,1}(X, \mathbb{Z})$ be a class with $\overline{c} \neq 0$, and choose a principal SO(3)-bundle P with $w_2(P) = \overline{c}$ such that $\Phi_{c,\alpha,P}(X)$ is nontrivial. This is possible according to Theorem 3. Then

$$f^*\Phi_{c,\alpha,P}(X) = (-1)^d \Phi_{c,\alpha,P}(X) ,$$

since $\Phi_{c,\alpha,P}(X)$ is a polynomial of degree d on L.

On the other hand, by 2(c)

$$f^*\Phi_{c,\alpha,P}(X) = \Phi_{f^*c,f^*\alpha,f^*P}(X) .$$

We have $f^*c = -c$ and $f^*\alpha = -\alpha$ because $f^* = -1$ and the dimension of α is odd. Since f is orientation preserving and $f^* = -1$ we find $f^*p_1(P) = p_1(P)$ and $f^*w_2(P) = w_2(P)$, so that the bundle f^*P is isomorphic to P. Therefore