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2 J. F. DAVIS AND C. LIVINGSTON

•(See [Mi] or § 1 for definitions). We will be most interested in the case

F ¥p, the finite field with p elements.

] Theorem B. Let G be a p-group. Suppose Cœ x G act on a finite-
dimensional CW complex X with rk/f*(A; Fp) <00, so that G acts
semifreely and cellularly. Then

I %m(X;Tp)Xm(XG;VpyG\-i %m(X/G; ¥pfG\

j Applying this to the case where X is the infinite cyclic cover of E - K will
^immediately yield Murasugi's congruence. One advantage of our approach is

that it generalizes to the case of high-dimensional periodic knots.
In § 1 we prove Theorem B and derive Theorem A. In § 2 we discuss the

; high-dimensional case and in §3 give the following application of Murasugi's
congruence to links.

Proposition C. Let L be a two-component link in a homology
f-sphere. If the Z/2 x Z/2 - cover branched over the link is also a

homology 3-sphere, then the linking number of the two components is

congruent to ± 1 modulo 8.

§1. Murasugi's Congruence

We will derive Theorem A from Theorem B and then prove Theorem B,

but we first give some homological preliminaries. If R is a commutative
Noetherian UFD with quotient field K and M is a finitely generated torsion
i?-module then we define the order of M to be [M] E°(M) e R/R*. Here

we take an exact sequence

Rk ^ Rm ^0

and we let E°(M) be a greatest common divisor of the determinants of the

m x ra-submatrices of A. If Mis a torsion f.g. i?-module then [M] =£ 0, and

we consider the order [M] as an element of K*/R*. If
0 -> M' M M" 0

is an exact sequence of torsion f.g. ^-modules, then J. Levine [L, lemma 5]

shows [M] [Mr] \M"]. It follows for formal reasons that if
C* {Cn -... C0} is a chain complex of torsion f.g. i?-modules then
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%m(Ç*) : n[C/](_ 1}/

equals %m(Tf*(G*)). In particular if G* is exact, then Xm(C*) 1.

Next we turn to Alexander polynomials. By Alexander duality

HiÇl-K) Z. Let 7i : X £ - K be the infinite cyclic cover of the knot

complement. The infinite cyclic group Cœ < t > acts on X and Hx(X\T) is

a f.g. torsion module over the group ring Z[Cœ] Z[t3t~1]. The Alexander

polynomial AK(t) is its associated order. (Note that Zconsists of
± V and the quotient field of Z[ts t~l] is the field of rational functions Q(O-)
As usual we normalize so that AK(t) is a polynomial with integer coefficients
and non-zero constant term.

If K has period pr, let n: X Ë - K be the infinite cyclic cover of the

quotient knot. The G Z/p'-action on Z - K lifts to a G-action on X with
quotient X and fixed set B Indeed, let g be a generator of G.

Then g~n:X-+Y,-K induces the trivial map on Hx and so lifts to

g: X -> A. Since g has a non-empty, path-connected fixed-point set there is a

unique lift g with fixed points and the fixed point set is B. Since gpr is a

lift of the identity which has fixed points, it itself is the identity and hence

g is a map of period pr. This gives an action of G x G on X. It further
follows that X/G Ë - K is an abelian cover inducing the trivial map on
Hx, so that we can identify this cover with 7Ï and X/G with X.

The cover n is classified by a map c: E - K S1 K(Z, 1) inducing
an isomorphism on Hx. The inclusion map B -> I - K induces multiplication
by the linking number X on Hx. Thus by considering c\B which classifies
k:B B, we see B is homeomorphic to X disjoint copies of R, cyclically
permuted by the action of Cœ.

Now Hj(X) and Ht{X) are zero for i > 1 and H0(X) and H0(X) are
isomorphic to ¥p Fp[t, l)¥p[t3 t~l], so xm(X) (t-l)/AK(t) and
%m(X) (t - 1)/Ap(t). Since XG B consists of X arcs cyclically permuted
by Gœ =i <t>,%(XG) tK - 1. Putting this together with Theorem B
we see

[Of- i)/A*(01 IT - IK"1 i)/a*(0K

or A K(t)AÂ:(?)/?r(l + t + + tl~l)pr~1 with the equality taking place in
Fp(t)/Fp[t, t ~']*. This gives Murasugi's congruence.

Proof of Theorem B. We prove the theorem by induction on the order
of G. Let G be a group of prime order p with generator g. Let
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G 1 + g + g2 + + gP~l

5=1 -g
be elements of the group ring FP[G]. Note that So 0 oS and ô^-1 g.
We consider the following chain complexes of Fp[t, t~ ^-modules (all
homology is with Fp-coefficients).

0 C*(XG) C+(X) $ oC*(X) -* 0

0 SC*(X) © C*(XG) C*(X) ^ oC*(X) - 0

0 -» OC*(X) -» SC,(AT) $ -» o

0 -» aC*(X)^ - 0.

These induce long exact sequences in homology. All homology is finitely
generated and torsion over the PID Fp[t,t~1]. We use shorthand notation

- if peF^G], we write %P(X) instead of %(H*(pC*(X)). The above

homological considerations show

%(X) %(XG)x°(X)

X(X) x\X)X{XG)x°(X)
%\X) x°(X)

x*>-2(X) x°wrw •

Multiplying all equations but the first together and cancelling terms we see

xm 1(X°) x'W •

Using the first equation to substitute for x°(X) one finds

x(fl xmwri.
Finally suppose G has order pr. Let Gx be a normal subgroup of index p.

By the exact sequences above rkH*(X/G\\Fp) < oo. By applying inductively
the result for the Gx-action on X and the G/Gi action on X/Gu Theorem B

follows.

§2. High-dimensional periodic knots

One advantage of our approach to Murasugi's congruence is that it applies

equally well to a more general situation. Higher-dimensional periodic knots
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