Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	37 (1991)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	PERIODIC KNOTS, SMITH THEORY, AND MURASUGI'S CONGRUENCE
Autor:	Davis, James F. / Livingston, Charles
Kapitel:	§1. Murasugi's Congruence
DOI:	https://doi.org/10.5169/seals-58725

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 01.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

(See [Mi] or §1 for definitions). We will be most interested in the case $F = \mathbf{F}_p$, the finite field with p elements.

THEOREM B. Let G be a p-group. Suppose $C_{\infty} \times G$ act on a finitedimensional CW complex X with $\operatorname{rk} H_*(X; \mathbf{F}_p) < \infty$, so that G acts semifreely and cellularly. Then

$$\chi_m(X;\mathbf{F}_p)\chi_m(X^G;\mathbf{F}_p)^{|G|-1} = \chi_m(X/G;\mathbf{F}_p)^{|G|}.$$

Applying this to the case where X is the infinite cyclic cover of $\Sigma - K$ will immediately yield Murasugi's congruence. One advantage of our approach is that it generalizes to the case of high-dimensional periodic knots.

In §1 we prove Theorem B and derive Theorem A. In §2 we discuss the high-dimensional case and in §3 give the following application of Murasugi's congruence to links.

PROPOSITION C. Let L be a two-component link in a homology 3-sphere. If the $\mathbb{Z}/2 \times \mathbb{Z}/2$ – cover branched over the link is also a homology 3-sphere, then the linking number of the two components is congruent to ± 1 modulo 8.

§1. MURASUGI'S CONGRUENCE

We will derive Theorem A from Theorem B and then prove Theorem B, but we first give some homological preliminaries. If R is a commutative Noetherian UFD with quotient field K and M is a finitely generated torsion R-module then we define the *order* of M to be $[M] = E^0(M) \in R/R^*$. Here we take an exact sequence

$$R^{k} \xrightarrow{A} R^{m} \to M \to 0 ,$$

and we let $E^0(M)$ be a greatest common divisor of the determinants of the $m \times m$ -submatrices of A. If M is a torsion f.g. R-module then $[M] \neq 0$, and we consider the order [M] as an element of K^*/R^* . If

$$0 \to M' \to M \to M'' \to 0$$

is an exact sequence of torsion f.g. *R*-modules, then J. Levine [L, lemma 5] shows [M] = [M'] [M'']. It follows for formal reasons that if $C_* = \{C_n \rightarrow ... \rightarrow C_0\}$ is a chain complex of torsion f.g. *R*-modules then

$$\chi_m(C_*) := \prod [C_i]^{(-1)^i}$$

equals $\chi_m(H_*(C_*))$. In particular if C_* is exact, then $\chi_m(C_*) = 1$.

Next we turn to Alexander polynomials. By Alexander duality $H_1(\Sigma - K) \cong \mathbb{Z}$. Let $\pi: X \to \Sigma - K$ be the infinite cyclic cover of the knot complement. The infinite cyclic group $C_{\infty} = \langle t \rangle$ acts on X and $H_1(X; \mathbb{Z})$ is a f.g. torsion module over the group ring $\mathbb{Z}[C_{\infty}] = \mathbb{Z}[t, t^{-1}]$. The Alexander polynomial $\Delta_K(t)$ is its associated order. (Note that $\mathbb{Z}[t, t^{-1}]^*$ consists of $\pm t^i$ and the quotient field of $\mathbb{Z}[t, t^{-1}]$ is the field of rational functions $\mathbb{Q}(t)$.) As usual we normalize so that $\Delta_K(t)$ is a polynomial with integer coefficients and non-zero constant term.

If K has period p^r , let $\bar{\pi}: \bar{X} \to \bar{\Sigma} - \bar{K}$ be the infinite cyclic cover of the quotient knot. The $G = \mathbb{Z}/p^r$ -action on $\Sigma - K$ lifts to a G-action on X with quotient \bar{X} and fixed set $\tilde{B} = \pi^{-1}(B)$. Indeed, let g be a generator of G. Then $g \circ \pi: X \to \Sigma - K$ induces the trivial map on H_1 and so lifts to $\tilde{g}: X \to X$. Since g has a non-empty, path-connected fixed-point set there is a unique lift \tilde{g} with fixed points and the fixed point set is \tilde{B} . Since \tilde{g}^{pr} is a lift of the identity which has fixed points, it itself is the identity and hence \tilde{g} is a map of period p^r . This gives an action of $C_{\infty} \times G$ on X. It further follows that $X/G \to \bar{\Sigma} - \bar{K}$ is an abelian cover inducing the trivial map on H_1 , so that we can identify this cover with $\bar{\pi}$ and X/G with \bar{X} .

The cover π is classified by a map $c: \Sigma - K \to S^1 = K(\mathbb{Z}, 1)$ inducing an isomorphism on H_1 . The inclusion map $B \to \Sigma - K$ induces multiplication by the linking number λ on H_1 . Thus by considering $c|_B$ which classifies $\pi: \tilde{B} \to B$, we see \tilde{B} is homeomorphic to λ disjoint copies of **R**, cyclically permuted by the action of C_{∞} .

Now $H_i(X)$ and $H_i(\bar{X})$ are zero for i > 1 and $H_0(X)$ and $H_0(\bar{X})$ are isomorphic to $\mathbf{F}_p \cong \mathbf{F}_p[t, t^{-1}]/(t-1)\mathbf{F}_p[t, t^{-1}]$, so $\chi_m(X) = (t-1)/\Delta_K(t)$ and $\chi_m(\bar{X}) = (t-1)/\Delta_{\bar{K}}(t)$. Since $X^G = \tilde{B}$ consists of λ arcs cyclically permuted by $C_{\infty} = \langle t \rangle, \chi(X^G) = t^{\lambda} - 1$. Putting this together with Theorem B we see

$$[(t-1)/\Delta_K(t)] [t^{\lambda}-1]^{p^r-1} = [(t-1)/\Delta_{\bar{K}}(t)]^{p^r}$$

or $\Delta_K(t) = \Delta_{\bar{K}}(t)^{p^r}(1 + t + ... + t^{\lambda - 1})^{p^r - 1}$ with the equality taking place in $\mathbf{F}_p(t)/\mathbf{F}_p[t, t^{-1}]^*$. This gives Murasugi's congruence.

Proof of Theorem B. We prove the theorem by induction on the order of G. Let G be a group of prime order p with generator g. Let

$$\sigma = 1 + g + g^2 + \dots + g^{p-1}$$
$$\delta = 1 - g$$

be elements of the group ring $\mathbf{F}_p[G]$. Note that $\delta \sigma = 0 = \sigma \delta$ and $\delta^{p-1} = \sigma$. We consider the following chain complexes of $\mathbf{F}_p[t, t^{-1}]$ -modules (all homology is with \mathbf{F}_p -coefficients).

$$\begin{array}{rcl} & 0 \ \rightarrow \ C_*(X^G) \ \rightarrow \ C_*(\bar{X}) \ \stackrel{\text{tr}}{\rightarrow} \ \sigma C_*(X) \ \rightarrow \ 0 \\ & 0 \ \rightarrow \ \delta C_*(X) \ \oplus \ C_*(X^G) \ \rightarrow \ C_*(X) \ \stackrel{\sigma}{\rightarrow} \ \sigma C_*(X) \ \rightarrow \ 0 \\ & 0 \ \rightarrow \ \sigma C_*(X) \ \rightarrow \ \delta C_*(X) \ \stackrel{\delta}{\rightarrow} \ \delta^2 C_*(X) \ \rightarrow \ 0 \\ & & \vdots \\ & 0 \ \rightarrow \ \sigma C_*(X) \ \rightarrow \ \delta^{p-2} C_*(X) \ \stackrel{\delta}{\rightarrow} \ \delta^{p-1} C_*(X) \ \rightarrow \ 0 \end{array}$$

These induce long exact sequences in homology. All homology is finitely generated and torsion over the PID $\mathbf{F}_p[t, t^{-1}]$. We use shorthand notation - if $\rho \in \mathbf{F}_p[G]$, we write $\chi^{\rho}(X)$ instead of $\chi(H_*(\rho C_*(X)))$. The above homological considerations show

$$\chi(X) = \chi(X^G)\chi^{\sigma}(X)$$

$$\chi(X) = \chi^{\delta}(X)\chi(X^G)\chi^{\sigma}(X)$$

$$\chi^{\delta}(X) = \chi^{\sigma}(X)\chi^{\delta^2}(X)$$

$$\vdots$$

$$\chi^{\delta^{p-2}}(X) = \chi^{\sigma}(X)\chi^{\sigma}(X) .$$

Multiplying all equations but the first together and cancelling terms we see

$$\chi(X) = \chi(X^G) \cdot \chi^{\sigma}(X)^p .$$

Using the first equation to substitute for $\chi^{\sigma}(X)$ one finds

$$\chi(X) = \chi(X)^p / \chi(X^G)^{p-1} .$$

Finally suppose G has order p^r . Let G_1 be a normal subgroup of index p. By the exact sequences above $\operatorname{rk} H_*(X/G_1; \mathbf{F}_p) < \infty$. By applying inductively the result for the G_1 -action on X and the G/G_1 action on X/G_1 , Theorem B follows.

§2. HIGH-DIMENSIONAL PERIODIC KNOTS

One advantage of our approach to Murasugi's congruence is that it applies equally well to a more general situation. Higher-dimensional periodic knots