Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 37 (1991)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: COMMENT RENDRE GÉODÉSIQUE UNE TRIANGULATION D'UNE

SURFACE?

Autor: de Verdière, Yves Colin

Rubrik

DOI: https://doi.org/10.5169/seals-58738

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 01.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

$$E_c(\varphi) = \frac{1}{2} \sum_{(i,j) \in A} c_{i,j} \int_0^1 ||\dot{\varphi}_{i,j}(s)||^2 ds,$$

où $\varphi_{i,j}$ est la restriction de φ à l'arête (i,j) et $\dot{\varphi}_{i,j}$ désigne la dérivée par rapport à s.

On souhaite montrer, que sous des hypothèses convenables, si φ minimise E_c dans la classe d'homotopie d'une triangulation topologique donnée φ_0 , alors φ est la restriction à Γ_0 d'une triangulation géodésique isotope à la triangulation initiale. On a également des résultats dans le cas des variétés à bord en supposant le bord de la triangulation fixé sur un polygone convexe.

Théorème 1. Dans la classe d'homotopie de φ_0 , il existe, pour chaque choix de c, une application φ minimisant E_c . De plus, si la courbure de g est négative ou nulle, φ est essentiellement unique, au sens que, si φ_1 et φ_2 sont 2 minimas homotopes, ils le sont par φ_t qui est une courbe de minimas telle que la région balayée par l'image de φ_t est plate et que $\partial \varphi_t/\partial t$ est un champ de vecteurs constant le long de chaque image $\varphi_t(\Gamma_0)$: en particulier les images de Γ_0 par les φ_t sont isométriques. Si la courbure est < 0, on a unicité.

Le résultat principal est alors le:

Théorème 2. Si (X,g) est à courbure de Gauss ≤ 0 , toute ϕ minimisant E_c est un plongement géodésique de Γ_0 qui admet un prolongement (unique à isotopie près) en une triangulation de X isotope à Φ_0 .

Nous énonçons maintenant une version à bord: X est un polygone géodésique strictement convexe d'une surface 1-connexe à courbure ≤ 0 . On se donne une triangulation Φ_0 de X, telle que le bord de X_0 soit un cycle (1,2,...,N), que Φ_0 envoie les sommets de ce cycle sur les sommets du polygone (dans le même ordre) et les arêtes (i,i+1) $(1 \leq i \leq N)$ sur les côtés de X (avec la convention habituelle N+1=1).

On a alors le:

Théorème 3. Pour tout choix de $c \in (\mathbf{R}^+ \setminus 0)^A$ (où A désigne maintenant les arêtes intérieures de X_0), il existe un φ unique minimisant E_c à bord fixé et ce φ est la restriction à Γ_0 d'une triangulation géodésique de X isotope à Φ_0 .