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262 J.-P. ROSAY

of C belongs to the interior of the polynomial hull of W, then C is

entirely included in the interior of the polynomial hull of W.

By holomorphic curve we will mean a connected 1-dimensional

holomorphic manifold.

Proof. Let O be the interior of the polynomial hull of W. It has to be

shown that the set of points p e C which belong to O is closed in C. It is

obviously open. Things being so localized one has to face the following
situation: a "small" analytic disk given by a holomorphic parametrization
(p: À -> C (A the unit disk in C) so that <p(1) e O, U+ a side of M included
in W (at least one of the two sides is such) hence in O, in some neighborhood
of cp (A) ; and one has to show that (p (0) e O. Fix \j/ a holomorphic map
from C into Cn so that: \j/(e/e) — -N for 0 outside some small
neighborhood of 0 (mod 27t), where N is the unit outer normal to M (with respect

to U+), at say the point cp (0), and (0) is arbitrarily chosen.

For T| > 0, rj small enough (p(e/e) + r|\j/(e/e) e O for all 0, hence

cp (0) + r|\|/(0) e O. Taking into account some uniformity with respect to \|/(0),
this gives Lemma 2.

III. Lifting to C3

We are simply going to consider sets K in C3 rotationally invariant in the

first variable, that we describe as follows. For each t e [0, t0] we are given a

compact set Kt C C2. We consider the set K C C3 which is the closure of the

set {(w,Zi, z2)eC3; (z,, z2) e Klwh \ w\s£}. i.e.

K= U {w}xKlwl.
\w\^tQ

A ^
ATdenotes the polynomial hull of K in C3, while \jKt denotes the polynomial
hull in C2 of the closure of the set U Kt.

t ^ to

Lemma 3. Let (0, Çi, ^2) ^ C3, the following are equivalent:

i(i) (0, Ci ^2)zK
\(ii) fi.UeuKt.

Proof, (i) => (ii) is trivial. We are interested in (ii) => (i). Let P(w, Zi, Zi)
be a polynomial in 3 variables. To P we associate the polynomial P defined

by

1 f2*
P(W, Zu Zi) P(0, Zi, Zi) — P(elQw, z\, Zi)dQ
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Since K is invariant under rotation in the w variable:

sup I P I ^ sup I P I

K K

Set Q(zi, z2) P(0, zi, z2). Using (ii) one gets

|P(0, Ci.Whl Q(Ci, W I < sup I G| sup |P| < sup |P|.
uAf A A"

So (i) is established.

Remark. There is another approach to Lemma 3, which may better

"explain" the situation, and that we just sketch. If cp:A->C2 is a

holomorphic disk (cp continuous on A, holomorphic on A) and T is a

continuous map from R/27iZ into [0, t0] so that cp(e/e) e KTiQ)(Q e [0, 2n)),
A

then cp (0) e uKt. One sees that (0, (p (0)) ei^by considering holomorphic
disks (Q, cp): A C x C2, with Q(0) 0 and | Q(eiQ) \ — T(0). Carrying
this out in general may require the use of the fundamental theorem by
Poletsky [6], which says that, in an appropriate sense, polynomial hulls are
always explained by holomorphic disks.

IV. Trepeau's example

Here we describe a class of examples. Let % be a smooth real valued
function defined on [0,1], constant in no neighborhood of 0, and so
that %(0) 0, I x I < 1. In one of the versions of Trepreau's original
example %(t) t. Let ^ be the generic 4-dimensional manifold in C3,
given by:

^ {(w, z\,z2) e C3, I w I < l,zi si + /x(l w |2)52

Zi S2- i%(\ w l2)^; (s1; s2) 6 R2}

Notice that on Jé, z\ + z\isa real valued function, (on Jl, + ^ 0),
hence:

(*) Any function which depends only on {z) + z\) is a CR function
on Jé.

This already gives example of CR functions which cannot be holo-
morphically extended to any wedge. The existence of such functions is related
to the fact that -A/ is not "minimal" (in the sense of Tumanov), it
contains C x {0} x {0} as a (nongeneric) CR manifold of same CR dimension
(see [9], [2]).
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