Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	39 (1993)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	JACOBI FORMS AND SIEGEL MODULAR FORMS: RECENT
	RESULTS AND PROBLEMS
Autor:	RESULTS AND PROBLEMS Kohnen, Winfried
Autor: Kapitel:	
	Kohnen, Winfried

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 02.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SIEGEL MODULAR FORMS

§4. Estimates for Fourier coefficients of Siegel cusp forms

4.1. RESULTS

Very recently, it has turned out that Jacobi forms can be used in a rather simple way to prove growth estimates for Fourier coefficients of Siegel cusp forms of genus 2. The bounds one obtains in this way, in fact, are somewhat better than those obtained previously by different methods.

Let F be a Siegel cusp form of integral weight k on Γ_2 and let a(T) be its Fourier coefficients. The classical Hecke argument immediately gives

(7)
$$a(T) \ll_F (\det T)^{k/2}.$$

If one applies a classical theorem of Landau [25, 32] to the Rankin-Dirichlet series

$$\sum_{\{T > 0\}/GL_2(\mathbf{Z})} |a(T)|^2 (\det T)^{-s}$$

where the summation extends over a complete set of representatives for the usual left-action of $GL_2(\mathbb{Z})$ on the set of positive definite symmetric half-integral (2, 2)-matrices T, one can sharpen (7) and show that

$$a(T) \ll_{\varepsilon, F} (\det T)^{k/2 - 3/32 + \varepsilon} \quad (\varepsilon > 0) .$$

(Recall that Landau's theorem roughly speaking asserts that if a Dirichlet series has a meromorphic continuation to \mathbb{C} and satisfies an appropriate functional equation, then one can deduce a "good" upper bound for the growth of its coefficients.) For details we refer to [5] and also [11] where the argument is slightly different; note that the authors prove an estimate for arbitrary genus n.

Let us mention the following

THEOREM 1 (Kitaoka [16]). Suppose that k is even. Then

$$a(T) \ll_{\varepsilon, F} (\det T)^{k/2 - 1/4 + \varepsilon}$$
 ($\varepsilon > 0$).

The proof of Theorem 1 uses Poincaré series of exponential type on Γ_2 and estimates for generalized matrix-argument Kloosterman sums and can be viewed as a generalization to genus 2 of a well-known method how to obtain "good" bounds for the Fourier coefficients of elliptic cusp forms.

Let us explain now briefly how Jacobi forms can be brought into play (for full details cf. [20, 21]). Let $\phi \in J_{k,m}^{\text{cusp}}$ with Fourier coefficients c(n, r). Then for k > 2 one shows that

(8)
$$c(n, r) \ll_{\varepsilon, k} (m + |D|^{1/2 + \varepsilon})^{1/2} \frac{|D|^{k/2 - 3/4}}{m^{(k-1)/2}} ||\phi|| \quad (\varepsilon > 0)$$

where $D := r^2 - 4mn$ and the bound in \ll only depends on ε and k.

For the proof one carries over the method of Poincaré series and Kloosterman sums from the one-variable situation already mentioned above to the case of the Jacobi group. Note that Poincaré series on Γ_1^J were studied in [14, II, §2]. The Kloosterman sums that occur in their Fourier coefficients can be related to Salié sums and therefore can easily be estimated (a similar phenomenon happens in the case of modular forms of half-integral weight, cf. [15]). The proof of (8) for D a fundamental discriminant (i.e. the discriminant of a quadratic field) is given in [20, §1] and for arbitrary D is given in [21, §1].

On the other hand, if one applies Landau's theorem to the Dirichlet series $D_{F,F}(s)$ discussed in §3, one finds that

(9)
$$\|\phi_m\| \ll_{\varepsilon,F} m^{k/2-2/9+\varepsilon} \quad (\varepsilon > 0) .$$

The estimates (8) and (9) now imply the following

(10)
$$a(T) \ll_{\varepsilon,F} (\det T)^{k/2 - 13/36 + \varepsilon} \quad (\varepsilon > 0) .$$

In fact, both sides of (10) are invariant under $T \mapsto U'TU(U \in GL_2(\mathbb{Z}))$, hence if in (10) we write $T = \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix}$, then we may assume that $m = \min T$, where min T denotes the least positive integer represented by T. If we use (8) and (9) together with the fact that min $T \leq (\det T)^{1/2}$ which is well-known from reduction theory, we obtain (10).

4.2. PROBLEMS

i) In [15], Iwaniec using some sophisticated arguments for certain sums of Salié sums showed that the Fourier coefficients a(n) $(n \in \mathbb{N})$ of a cusp form f of weight k - 1/2 for k > 0 and n squarefree satisfy

$$a(n) \ll_K \sigma_0(n) (\log 2n)^2 n^{k/2 - 15/28} ||f||,$$

where $\sigma_0(n)$ is the number of positive divisors of n and || f || is the appropriately normalized Petersson norm of f. We wonder if it is possible to prove an analogous estimate for the Fourier coefficients c(n, r) $(D = r^2 - 4mn$ a fundamental discriminant) of a function $\phi \in J_{k,m}^{\text{cusp}}$ for k > 2 which also is