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386 B. DE SMIT

(2.5) PROPOSITION. If N and M are factor equivalent then for any A[G]~
linear embedding j: M ^ N the function H *—>> : j(MH)]A is factorizable.

Proof We have j (pi, where i is an embedding as in (2.4) and p is

a K[G] -linear automorphism of N <%)A K. Using [15, Ch. III, §1, Prop. 2] and

the notation of (2.3) we see that

[Nh :j(MH)]A dv(H)• [Nh :

This is a product of two factorizable functions by (2.3) and by our choice

of i.

The fact that "factor equivalence" is an equivalence relation is an easy

consequence of (2.5). If p is a prime of K not dividing #G then
condition (1) of (2.4) implies that the p-part of [Nh : i(M)H] is factorizable.
One can prove this with [16, §15.2] and [16, §14.4, Lemma 21].

(2.6) Remark. The definitions of factorizability given by Fröhlich

[8; 9] and Burns [2] for abelian groups G are in agreement with our
definitions. They also define the notion called Q-factorizability in the abelian

case, which is a stronger condition than factorizability. However, the function
that one wants to be factorizable in the definition of factor equivalence
automatically satisfies this stronger condition if it is factorizable. Thus, Q -factor

equivalence is the same as factor equivalence.

In [4, §3] a factorizable function / with values in I(Q) must also satisfy

an additional condition : there should be a map g from the group of complex
characters Rc(G) to 1(E), where E is some normal number field containing
all character values of G, such that g is Gal(£/Q)-equivariant, and such

that glg) is the E-ideal generated by f(H). It is not hard to see that this

condition is satisfied by all functions that are factorizable in our sense.

3. Rings of integers

Let A be a Dedekind domain with quotient field K of characteristic

zero and let E a Galois extension of K with Galois group G. The integral
closure B of A in L is again a Dedekind domain. Assume that for all primes
of L the residue class field extension is separable.
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(3.1) THEOREM. The A[G\-lattices B and A[G] are factor equivalent.

Proof Define a B[G] -module structure on B Cu B by letting B act on

the left factor and G on the right. We will show first that B Cu B and B[G]

are factor equivalent as B[G] -lattices. Define the canonical B[G] -linear map

Lp\ B B —> B[G] by

x (£) y mn xa(y) a~l
ctGG

Let 7/ be a subgroup of G. If 0T5...,cr„ are the TT-embeddings of LH

in L, and if there is an A-basis of BH, then the restriction

(B <S>a B)H —> B[G]h of (a is a B-linear map with matrix (cr^cj/))// on the

bases {l0cjy} and {£>/}, where bj is the formal sum of those a G G for which
a~l restricts to The square of the determinant of this matrix generates
the discriminant À(BH/A) as an A-ideal. By localization it follows that even

if B is not free over A, we have

[B[G]h : <p(BB)H]l AC B

By Hasse's conductor discriminant product formula [15, Ch. VI, §3] the ideal

À(BH/A) is a factorizable function of H, so B <g>A B and B[G] are factor
equivalent B[G] -lattices.

In order to descend to A[G]-lattices, note that there exists an A[G]-linear
injection i: A[G] —» B by the normal basis theorem, and consider the induced

B[G\ -linear map A : B[G] —> B B that sends ba to b 0 i(a) for b G B
and a G G. We have

[(5 Bf : i, (5[G])//]ß [Bh : /(A[G])Ä]a • B

and by (2.5) we know that the left hand side is a factorizable function of H.
But then the A-index [BH : i(A[G])H]A is also factorizable.

4. S-UNITS

Let L/K be a Galois extension of number fields with Galois group G, and
let Sbe a finite G-stable set of primes of L containing the infinite primes.
The ring of S-integersof L consists of all elements of L that are integral
outside S. Its class number is written as and its unit group, the group
of 5-units of L, is denoted by Us(L). The group of roots of unity in L is
denoted by jiL and its order is written as w(L).
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