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SQUARE-FREE TOWER OF HANOI SEQUENCES

by Andreas M. Hinz

Abstract. The sequence of moves in the optimal solution of the Tower of Hanoi
with an arbitrary number of discs has recently been shown to lead to an example of
an infinite square-free string over a six-letter alphabet by recourse to the theory of
iterated morphisms. We present a direct approach to this result, using only properties
of the Tower of Hanoi itself, which also reveals an implicit infinite square-free string
with just five letters.

0. Square-free strings and the Olive sequence

Suppose you dispose of a reservoir of letters (or symbols), i.e. an at most
countably infinite set A, called an alphabet, and you are asked to construct
a word (or string) of infinite length, i.e. a sequence a e AN, which does
not contain any non-trivial immediate repetition, or square, i.e. there are no
m G No and l G N such that

\fk G {m + 1,... m + /} : ak+i ak

(For a concise survey on square-free words and their use in mathematics
see [4].)

Assume A N and try an apparently economic approach, namely choose
ak as the smallest positive integer such that (au...,ak) does not contain any
square. Then you come up with the following sequence :

(1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,...)

A connoisseur of the mathematical theory of the Tower of Hanoi (TH) puzzle
(see [13] for a comprehensive survey) will immediately recognize the pattern
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of the disc numbers in the moves of the optimal solution to transfer a perfect
tower of 5 discs from one peg to another. The, in fact unique, optimal solution
of finite length 2n — 1 for the TH with an arbitrary number n G No of discs

has been excessively discussed in particular in the computer science literature

— so excessively that an editor asked for "no more articles on this for a

while".

On the other hand, apart from its playful appeal (cf. [11]), an object
attracts the attention of mathematicians as soon as infinity is involved. A
model of the TH with infinitly many discs was fundamental, for instance, in
the discovery of the value of the average distance on the Sierpinski gasket

(see [15] and [18]). So how do we define an infinite "optimal" sequence
of moves for a TH with an inexhaustible provision of ever increasing discs,

numbered 1,2,... (A rather bold assumption given that in the original
description of the puzzle (see [7]) the discs were made of pure gold It
can be done by recourse to one of the oldest observations about the finite

optimal solution for n discs (see [8]), namely that the smallest disc 1 moves
in every odd numbered move, always cyclically from peg 0 through peg 1

to peg 2, say, and that the even moves are then completely determined by
the divine rule never to place a larger disc on a smaller one. This will take

a tower of n discs from peg 0 to peg 1, if n is odd, and from peg 0 to

peg 2, if n is even (cf. [13, Proposition 3]). We may therefore adopt this

as a definition of the TH sequence or Olive sequence o (after its discoverer :

Raoul Maurice Olive (1865-?) was a nephew of the inventor of the TH,
Édouard Lucas (cf. [14, Section 2], [12]), and at that time a student at the

Lycée Charlemagne in Paris), as I prefer to call it to make a distinction
from other sequences derived from the TH which we will encounter in the

course of this note. The only ambiguity of this convention lies in fixing
the direction the smallest disc moves in, and which will become apparent
in some asymmetry of the results we will obtain. The Olive sequence is

characterized, in fact overdetermined, by the triples (d^i^J(jl g N being
the move number, with d^ G N the disc moving from G {0,1,2} to

{0,1,2}.

Now the following is easy to prove, for instance by observing that the

even moves form an Olive sequence too (cf. also [13, Proposition 1 (o)]) : if
jji 2r(2k+ 1), with r,k e No, then dß r + 1, and (dis just the

sequence with which we started our discussion. We will now show that it is

square-free :
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THEOREM 0. The sequence g := (^)^en of the discs moving in o

represents a square-free string over the infinite alphabet N.

Proof Assume a square (of length 21) starts at position m + 1, i.e.

then / is necessarily even, since diL 1 if and only if p is odd. So we may

apply the general rule that cfap, — d^ 4-1 to those of the v s which are in even

positions and arrive at

with m' either m or m - 1, depending on the parity of m.

This yields a square of half the length of the original one, such that we

will finally end up with a square for which / 1, a case we have already

ruled out previously.

Remarks.

1. This proof is a nice example of the method of infinite descent\ frequently

employed by Fermât (cf. [5, p. 387]) and representing an early instance

of the principle of mathematical induction.

2. The letter g denoting the sequence in Theorem 0 stands for either Louis
Gros (1814- who used it to solve the (truly) ancient Chinese ring puzzle
(see [1, p. 51 ff]) or Frank Gray, who in 1953 introduced binary codes

in which adjacent strings differ in a single bit only. Cummings [9] has

interpreted g as a coordinate sequence of a Gray code. From Theorem 1 in
that article it follows that g is even strongly square-free, i.e. a := g does

not contain a non-empty abelian square, which means, in our notation,
there are no m G No and l G N such that

a being a permutation on {m + 1,... m + /}. In fact, this follows easily
from our proof of Theorem 0 as well : since a permutation can only
affect even positions, we just have to remark that I must again be

even, because otherwise (dm+1,... ,dmM) and (dm+/+1, • • • ,dm+2i) would
contain different numbers of Is.

V v G {m -Fl,..« s m + /} : du+i — dv ;

V k G {m + 1,... P m + /} : ak+i aa{k)
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1. A FINITE ALPHABET

Although g is, compared with the trivially square-free sequence (k)^,
economic in the sense that it uses smaller numbers for any finite part, it is

unsatisfactory to depend on an infinite alphabet. Instead of considering df in
the Olive sequence, we now focus on (/M,yM), i.e. disregarding which disc is

involved, we concentrate on the ways the discs are moving. Of these there

are only six, namely

<**=(0,1), ß (1,2), 7 := (2,0), c*:=(l,0), 3 := (2,1), 7:= (0,2),

which will form the alphabet A := {a, /?,7,a, A 7}. J.-P. Allouche et al.

[2, Theorem 9] have shown that the sequence c := (zm,jm)men (named for
N. Claus de Siam, who described the recursive solution in [7]) is square-free

by recourse to the language of iterated morphisms. (For another interesting

property of this sequence see Allouche and F. Dress [3].) We give a direct

proof now, using only the following property of the TH itself :

Lemma. If ß 2r(2k + 1), r, k G No, then

in {(1 T r mod 2)kfi mod 3,

jfi — {(1 + r mod 2) (k + 1)} mod 3

Proof a) Let n G N be such that ß < 2n and put i t=s 0, j m 2 — n mod 2

in [13, Proposition 1]. Then, using r+ 1, we get

in {^(2 — n mod 2) (fin — r — 1) mod 2 + l)} mod 3

- {(1 + r mod 2) kfi mod 3

and similarly for j^.
b) As an alternative, we can prove this lemma directly by induction. Assume

it is true for I < ß < 2n, n G No, when n discs move from peg 0 to

peg 2 — n mod 2. Then fi — 2n is the move of disc n + 1 from 0 to
1 -b ft mod 2. For 2n < \i < 2n+1, discs 1 to ft are transferred from
2 — ft mod 2 to 1 + ft mod 2 ; hence move /i is the same as move ß — 2n

with 0,1,2 changed to 1,2,0, respectively, if n is odd, and to 2,0,1, if
ft is even. But then, since ß — 2n is divisible by the same power of 2 as

ß itself, we have ß — 2n 2r (2(k — 2n~r~l) + l), and the formulas follow
from ((1 + r mod 2)2n-r~1) mod 3 2 — n mod 2.

There are a couple of immediate consequences which we will need later :
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Corollary.
0) £ { a,ß, 7} r mod 2 0;
1) cM £ ({0,1,2} \[(2p)mod 3})h
ii) c„ a, ß, 7, ä, ß,7^ c2ß7, ß, ä, 7, ß, <*, respectively.

Proof, (o) is trivial; (i) and (ii) follow from

2ß (1 + r mod 2) (£ + 2),

1 -f (r + 1) mod 2 2(1 + r mod 2),

both taken modulo 3, respectively.

Remark. Another direct consequence of the Lemma is (cf. [3, p. 10]) :

a,/3,7,a,/?,7 «=>

Bs,leN0:-f=61+ 1,6/+3,6/+ 5,12/+10,12/+ 6,12/+ 2,
' u 45

7

respectively.

Our asymmetric choice of the first move being from 0 to 1 is here reflected

in having, in some sense, twice as many unbarred as barred symbols in c, as

remarked in [3, p. 13].

Now we can prove the result of Allouche et al. :

THEOREM 1. c is square-free.

Proof. Assume

3raeNo3/eN W E {m + 1.... m + /} : cv

If / is odd, then v and v + I have different parity. So every
v {m + 1,... m + 21} has an even number of factors 2 by Corollary (o).
Since of four consecutive numbers one has exactly one factor 2,1 can only
be 1. This, however, contradicts Corollary (i). Hence I must be even. But then,

by virtue of Corollary (ii), the same argument as in the proof of Theorem 0

applies.
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2. Smaller alphabets

The six-letter alphabet A can still be reduced by building blocks of three

moves. From Corollary (i) we learn that they must be of the form (a, 7,/?)
with Ç G {£,£}• Only five of these actually do occur:

THEOREM 2. Triples of elements of c form a square-free sequence h over
the five-letter alphabet {A.B.T, À, E} with

A:=(afr,ß), B:=(artfrf
r:=(â,7,/î), A := (art fr), E :=(artfr).

Proof From Corollary (o) we know : if 7 occurs in c with a bar, its

neighbors must be in odd positions and consequently unbarred. All the other

triples turn up, the sequence starting

h (A.B. A, r, A.B. A,E, A.B. A, T, A, E, A,T, A, B, A, T, A, B, A,E,...

Clearly, h is square-free, since any square would lead to a square in c as

well, contradicting Theorem 1.

REMARK, h (and consequently c) is not strongly square-free; can you spot

an abelian square (The existence of a strongly square-free string over a five-
letter alphabet has been established by RA.B. Pleasants [17, Theorem 2].)

Let me finally mention another instance of the TH to emerge as a

microcosmos : it is known that the number of states, i.e. distributions of the

discs among the three pegs, of the TH which can be reached from the initial
state with all discs on peg 0, say, in and in no less than p G No moves, is a

power of 2, namely where ß(p) is the number of non-zero bits of p (see

[13, Proposition 5]). (2^(m) also happens to be the number of odd entries in the

/ith row of Pascal's arithmetical triangle, as was realized by J. W. L. Glaisher

[10, second § 14]; cf. [14, formula (4)].) Denoting ß(fr) mod 2 by mM, we
obtain the Thue-Morse sequence

m:=(0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,...),

which by the subsequent substitution of a for (0,1,1),/? for (0,1), and 7
for (0) leads to the square-free sequence

t :« (a,ß,7, a, 7, ß, a, 7, ß, a,...
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over the three-letter alphabet {a, /?, 7}. This is, of course, the smallest possible

alphabet with an infinite square-free string (clearly, a square-free word over

a two-letter alphabet will come to an end after three entries) with which the

whole theory started in the work of Axel Thue [19, Satz 3], [20, Sätze 6, 7, 20].

Obviously, t (as in fact any word with more than 7 elements over a

three-letter alphabet) is not strongly square-free. Maybe TH sequences hold

a clue for a more direct approach to the question (cf. [6]), if there is an

infinite strongly square-free string over a four-letter alphabet, which has been

answered positively by V. Keränen [16] employing a computer-aided proof.

(An abelian square of length 2-6 in h starts after position 6.)
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