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BIBLIOTHEK
AN ALGORITHM FOR CELLULAR MAPS OF CLOSED SURFACES

by Warren Dicks and H. H. Glover

Abstract. The purpose of this article is to use diagrammatic methods to give
proofs, accessible to algebraists, of some important topological results of H. Kneser,
A.L. Edmonds, and R. Skora; we then describe some consequences for homomorphisms
between surface groups. Cellular maps between two-dimensional CW-complexes can
be represented by diagrams which, in turn, can be interpreted algebraically in terms
of fundamental groupoids. For diagrams representing cellular maps between closed
surfaces, we show how to apply certain homotopy equivalences algorithmically to
obtain a normal-form map, which is a branched covering, or a pinching followed by a

covering, or a map which collapses a graph of punctured spheres to a graph immersed
in the one-skeleton of the target surface. We then indicate how the algorithm can
be expressed entirely in terms of formal manipulations with presentations of surface
groupoids, yielding algebraic proofs of results about homomorphisms between surface

groups.

1. Introduction

We begin by recalling some basic concepts.

1.1. Definitions. Let ß be a map between closed surfaces (without
boundary).

Then ß is a branched covering if deleting finitely many points from the
source and from the target yields a covering.

We say that ß is a (possibly trivial) pinching if it is obtained by collapsing,
to a point, a compact subsurface with a single boundary component.

The (geometric) degree of ß, denoted Giß), is the least non-negative integer
d such that there is a map ß' homotopic to ß, such that the inverse image
under ß' of some 2-disk consists of d 2-discs, each mapped homeomorphically
by ß' to the chosen disk.
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Results of H. Kneser [11, p. 354], A. L. Edmonds [3], and R. Skora [16]
show that if Q(ß) is nonzero, then ß is homotopic either to a branched

covering or to the composite of a pinching followed by a covering. In the

case where Giß) is zero, ß is homotopic to a map which is not surjective.
Thus one of the following holds :

(a) ß is homotopic to a map which is not surjective;

(b) ß is homotopic to the composite of a pinching followed by a covering;

(c) ß is homotopic to a branched covering.
In case (a), Giß) — 0, and in case (b) (resp. (c)), Giß) is given by the

degree of the covering (resp. branched covering).
This allows one to compute the degree via homological means, which is

the essence of a classical result of Kneser [10], [11]. Edmonds and Skora

further discuss cases where the surfaces are not necessarily closed, but we
wish to restrict our attention to the closed case.

The main purpose of this article is to prove these Kneser-Edmonds-Skora
results using diagrammatic techniques developed by van Kampen, Lyndon, and

Ol'shanskii. We shall give an algorithm which applies homotopy equivalences
to a cellular map between closed surfaces, and yields a map in normal form,
that, in the non-zero degree case, is a branched covering, or, after pinching,
is a covering, while, in the degree zero case, the source surface is expressed

as a union of spheres with various punctures based at the poles, and these

punctured spheres are collapsed to arcs, to give a graph immersed in the

one-skeleton of the target surface. Recall that a graph map immersion is a

locally injective graph map, so that the induced map of fundamental groups
is injective. In particular, the algorithm yields the degree of the map.

In the non-zero degree case, we then have the Kneser-Edmonds-Skora

result, and, in the zero degree case, we recover preliminary steps towards results

previously obtained by several authors, notably Zieschang [17], Edmonds,

Skora, Ol'shanskii [15], and Grigorchuk and Kurchanov [7]. The present
article is very much in the spirit of Ol'shanskii's article.

The proofs by Edmonds and Skora are brief, simple, direct, and essentially

algorithmic, but are not readily expressible in algebraic terms. Our proof,
although substantially longer, has the feature that it deals throughout with closed

surfaces, without cutting them up, and uses elementary homotopy operations
which readily lend themselves to algebraic intrepretation. So we claim that we
have fulfilled our main objective of giving algebraic proofs of the substantial

group-theoretic consequences of these topological theorems. There is a natural

motivation to have algebraic proofs of algebraic results, especially when they
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are obtained topologically, and our work fits into this scheme in a useful way;

for example, it can be used in the (algebraic) proof of Theorem 4.9 of [2].

To give an idea of the sort of algebraic consequences of the algorithm, it

is convenient to introduce some terminology.

1.2. Definitions. Recall that a group G is called a surface group if G

is the fundamental group of a closed surface, or, equivalently, G has a surface

group presentation, by which we mean a one-relator presentation (S \ r) such

that r is cyclically reduced, and each element of S occurs exactly twice in

r, with exponent 1 or —1, and the face-adjacency relation on S U S
1 has

only one equivalence class. Here face-adjacency is the equivalence relation

determined by identifying s\l and se22 whenever 62 occurs in the cyclic

expression of r.
It follows that G is a surface group if and only if G has a presentation

{h 34 5 • • • 7 yn 7 z\ •) • • • Zm I Ch
7 .yi ' ' ' (•*'/?

7 yf) z\ zm ^
$.

for some non-negative integers m, n, and here one can arrange that either m

or n is zero. Recall that (x,y) denotes xyxy, where overlines denote inverses.

There is an associated orientation map e: G —> {±1} which, for the latter

presentation, sends the x/ and the y, to 1, and the zj to — 1. The kernel of
e is denoted G+. We say G is orientable (resp. unorientable) if (G : G+)
is 1 (resp. 2). Thus a surface group is orientable if it is the fundamental

group of an orientable closed surface. By the orientation module we mean the

ZG-module £2 which consists of the abelian group Z, on which each g G G

acts as e{g) G {±1} Aut(Z).
The finite surface groups have order 1 or 2, and are the fundamental groups

of the two-sphere and the projective plane, respectively. The infinite surface

groups correspond to the surface group presentations in which the relator has

length at least 4, and these are the fundamental groups of the aspherical closed

surfaces, that is, closed surfaces whose universal covers are contractible.

A homotopy class of continuous maps between path-connected topological
spaces determines an equivalence class of homomorphisms between their
fundamental groups, where equivalence corresponds to composition with an
inner automorphism of the target group. For aspherical closed surfaces, this
correspondence between equivalence classes of morphisms is bijective, so, in
quite a strong sense, the study of homotopy classes of continuous maps between
aspherical closed surfaces is much the same as the study of homomorphisms
between infinite surface groups.
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1.3. Definitions. Let a: G\ —» G2 be a homomorphism of surface

groups.
If a together with the orientation maps of G\ and G2 form a commuting

triangle, we say that a is orientation-true, and otherwise a is orientation-false.
Thus a is orientation-true if and only if d_1(GJ) G^.

For any surface group presentations G\ (S\ | n), G2 — (S2 | *2)% there

exists a homomorphism of free groups A: (S1 [ —» (S2 | which induces

a, and then there exist a non-negative integer d, elements W\...., wj of
(S2 I and elements e j..... e,/ in {1, —1}, such that, in (S2 |

d

(1.1) ,-t (/Y) ' PI uif
1

<=i

The degree of a, denoted Q(a), is the least value of d which occurs as

we range over all the possible choices at our disposal. If Gj or G2 is finite,
this concept is rather degenerate and we shall not be discussing this case. If
Gi and G2 are infinite, the algorithm given in this article provides a lifting
A7 : (5*! I —^ I of öl and an expression of A'(r\) as a product of G (ex)

conjugates of rfl.
Notice that if G (a) 0, then a factors through the natural surjection

(S2 ] —> (S2 I r2) ; conversely, if a factors through any map from a free

group F to (S2 r2), we can use the freeness of F to factor this map through
the natural surjection. Thus G(a) 0 if and only if a factors through a free

group F. By replacing F with the image of a in F, we see that G (a) 0

if and only if a factors through a surjective map to a free group.

Kneser's homological calculation of the degree, in the formulation of Skora

[16], yields the following.

1.4. THEOREM (Kneser [10], [11]). Let a: G] G2 be a homomorphism

of infinite surface groups, and consider an equation (1.1) arising from some

lifting of a.
d

(i) If a is orientation-true, then G(o) — \^F 6; e(Wi)\, where the map
i= 1

{S2 I —* {ü} is induced from the orientation map of G2>

(ii) If a is orientation-false, and either d is even, or the index (G2 • Im d)
is infinite, then G(cfi 0.

(iii) If a is orientation-false, and d is odd, and (G2 ' Im a) is finite, then

Q(a) — (G2 • Im a).
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1.5. Remark. Under pullback along a, the orientation module £^2 f°r
Go becomes a G\ -module, again denoted 0*2 > a induces a change

of groups map in cohomology //2(o,Q2)- H2{G2^2) — #2(Gi,Q2). By

Poincaré duality, //2(G2,£U) — Qi ^zg2 £^2 — Z with trivial G2 -action, and

r Z if a is orientation-true,
H (Gi ,Qî) ~ Oi ®zg, O2 - I Z^,2Z ,f -s orientation.faise,

with trivial Gi -action. Using a lifting A and an equation (1.1), and techniques

such as those used in the proof of Theorem V.4.9 of [1], one can calculate
d

that, up to sign, H2(a.Q?) acts as multiplication by ^e,-e(?u/).
/=i

cl

Hence, if a is orientation-true, the non-negative integer \Y G e(w*)| which
/=i

occurs in Theorem 1.4 (a) is independent of the lifting chosen to get (1.1),

and the theorem says that, in this case, there exists a lifting such that all the

i(wj) are equal.

Even if a is orientation-false, the parity of d (which is the parity of
d

Y i ((ici)) is independent of the lifting chosen to get (1.1), and will be
/=i
called the parity of a, which is either even or odd.

In particular, if a is any homomorphism of infinite orientable surface

groups, and G\ (S\ \ n), G2 (S2 [ r2), are surface group presentations,

then there exists a homomorphism of free groups A : (Si | —» (S2 | which

induces a, such that A{r\) is a product of Q(a) conjugates of r2 (or of r^1),
with no conjugate of r9

'

(resp. r2) needed in this expression.

The Kneser-Edmonds-Skora results give even more information about

homomorphisms between infinite surface groups, but we shall postpone making
the precise statements until Section 4.

In outline, the paper is structured as follows. In Section 2, we present some

of the terminology we will use, describe some preliminary constructions, and

recall how to associate, with a homomorphism between surface groups, a

cellular map between surfaces which realizes the homomorphism. A cellular

map between surfaces can be visualized as a labelled diagram, and, in Section
3, we give the algorithm for homotoping a diagram until a normal form is

reached. In Section 4, we describe consequences for group homomorphisms,
such as Kneser's Theorem determining degrees, and Nielsen's Theorem
[14, Section 26] that every automorphism of a surface group lifts to an

automorphism of the covering free group which sends the surface relator to a



212 W. DICKS AND H. H. GLOVER

conjugate of itself or its inverse. In Section 5 we indicate how the algorithm
can be described in terms of formal manipulations of presentations of surface

groupoids, by describing a trivial example which illustrates the algorithm.

2. Diagrams of cellular surface maps

In this section we introduce the setting in which we shall work, and

describe the connection with group theory.

2.1. DEFINITIONS. By a two-dimensional CW-complex X we shall mean
a combinatorial CW-complex of dimension at most two, in which each cell
has a preferred orientation. Formally we have the following situation.

As a set, X is the disjoint union of three sets V, E, F, whose elements

are called the vertices, edges, and faces, of X. respectively.
There are given maps r, from E to V, and, for each edge e, the

vertices te, re are called the initial and terminal vertices of e, respectively.

If le — re, we say that e is a loop. For each vertex v we understand that

IV V TV

We write E±l for the Cartesian product E x {1,-1}, and for any
(e. e) G E±l we write ee for (e,e). We identify e e1. We use the same

conventions for the faces. For a vertex v, we understand that vl — v — v~l.
For e G E, we define /.(T-1) re, and r(<?-1)

Each face f oï X has an associated boundary cycle which is a finite
alternating sequence

(2.1) df~ V0,e\\v\f,..,vn-i,een",vn

where n > 0, the Vj are vertices, vn — vo, the et are edges, each e(- is ±1,
and ifef) u/_i, r(ef) L/. We define

<9/-1 v„, e,7£", vn-i,..., vi, ep1,

It is thus implicit that we are assigning to each closed two-cell a polygonal
structure, and a distinguished vertex where the boundary cycle begins and ends.

Notice that we are allowing vertices of valence one, so a boundary cycle need

not be reduced.

A one-dimensional CW-complex, that is, a two-dimensional CW-complex
with no faces, will be called a graph.
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2.2. Definitions.
Let X be a two-dimensional CW-complex.

The edges and vertices of X form a graph, denoted X(1) and called the

one-skeleton of X. We say that X is connected if X(1) is a connected graph.

The free groupoid on X(1) will be denoted irX(1).

Let e be an edge of X. A vertex v is said to be incident to e if œ c

or re v, and in the former (resp. latter) case we call p_1 (resp. e1 an

edge with a distinguished incidence to v.
Let / be a face of X, and suppose that df is as in (2.1). The distinguished

vertex vq A will be denoted vert(/), There is associated an element of
7tX(1\ denoted u>(f), which is vert(/) if n 0, and is the product eej • • • erf

if 72 > 1. A vertex v is said to be incident to / if some 17 equals v, and we

then call the pair (f. i) a face with a distinguished incidence to v. An edge

e is said to be incident to / if some ex equals e, and we then call the pair

(f. i) a face with a distinguished incidence to e. For 1 < i < n, we say that

erf\ and e~m are adjacent in /, where the subscripts are interpreted modulo

72, that is, 0 is interpreted as 72.

By the groupoid of X, denoted 7rX, we mean the groupoid obtained from
7rX(1) by imposing the relation ujrf) vert(/) for each face / of X. For

any vertex v of X the fundamental group of X at v, denoted tt(X. ij, is

the subgroup(oid) of ttX consisting of all elements with initial and terminal

vertex v. If X is connected then changing the choice of v gives an isomorphic

group, and there is specified an isomorphism which is unique up to conjugacy.

We say that X is a (closed) CW-surface if it is a finite, connected,
two-dimensional CW-complex such that for each edge e there are exactly two
faces with a distinguished incidence to e, and for each vertex v the edges
with a distinguished incidence to v foim a single (non-empty) equivalence
class under the equivalence relation generated by the relation of being adjacent
in some face.

The former condition, on edges, implies that the edges with a distinguished
incidence to v form cycles under the relation of being adjacent in some face,
and the latter condition, on oriented edges, then requires that there be exactly
one cycle at v, called the edge cycle around v.

2.3. Examples.
(i) A simplicial complex structure on a surface yields a CW-surface.

(ii) Any surface group presentation (5 | r) has an associated CW-suiface
X with one vertex, denoted v, with edge set 5, and with one two-cell, denoted
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/, and the boundary cycle of / is the sequence in S±l determined by r.
Here 7rX(1) 7T 7rX ir(X,v), and there are natural identifications
7rX(1) (5 I and ttX (S | r).

2.4. Definitions.
Let X (V,F,F) be a CW-surface.

The dual surface X* — (F*,F*, V*) of X is defined to be any CW-surface

constructed as follows. Let V*, E*, F* be copies of V, E, F respectively,
with bijective correspondence denoted by *. Then X* has F*, F* and V*

as vertex set, edge set, and face set, respectively. For any e G E, there are

two different faces with a distinguished incidence to e. If we denote these

by if, Ot if'J')> with /, /' in F, then in X*, the edge is incident to
the vertices /*, /'*. For any v G V, the elements of X with a distinguished
incidence to i; are cyclically ordered, and this cyclically ordered set is called
the face-and-edge cycle around v ; by considering alternate terms we get
the edge cycle around v and the face cycle around v. Applying * to the

face-and-edge cycle around v gives a cyclic sequence which is taken to be

the boundary cycle of v*, once a distinguished vertex is chosen.

We say that X is oriented if each edge e occurs with opposite signs in
the two faces with a distinguished incidence to e, and, in this event, we can

use the signs to orient the dual surface X* consistently.

We say that X is orientable if we can obtain an oriented CW-surface by
replacing some faces with their inverses; otherwise X is unorientable.

In the remainder of this section and the next, all paragraphs which are

devoted to the unorientable case are marked with a Maltese cross (©), and,

by skipping these, the reader interested primarily in orientable surfaces can

follow the discussion for that case.

Consider a loop e in X, let v be the vertex incident to e, -and consider a

face / incident to e. Here two vertices in the boundary cycle of / are equal,

which results in / getting attached to itself at a point.

If this attachment is performed without twisting, we say that e is an

orientable or two-sided loop. If X is orientable than clearly all loops are

orientable.

® If this attachment is performed with a twist, we say that e is an

unorientable, or one-sided loop in X. This can be expressed in a more
combinatorial manner by saying that e is unorientable if the boundary cycle of

f±l, viewed cyclically, contains a subsequence F, v1 e, v, e", and the sequence

e', e~l, e, e"~l of four distinct edges with a distinguished incidence to v is
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not in the correct order, with respect to the cyclic ordering by face-adjacency.

Here the CW-complex resulting from collapsing e to a vertex is a CW-surface.

A useful way to codify a groupoid presentation of nX is to write

(E I Lü(df) if £ F)), so ttX (E I R), where R is the set of words in E±l

determined by the boundary cycles, one word for each face. There is no need

to specify the vertices, since they correspond to equivalence classes in E±1

under the equivalence relation generated by face-adjacency.

We can form a new CW-surface Y from X by successively erasing edges

incident to two distinct faces (so melding two faces into one) until only one

face / is left. The set E' of erased edges then corresponds to a maximal

subtree in the one-skeleton of the dual complex of X. Here X and Y both

have the same vertex set, and F(1) can be viewed as the complement of E' in

X(1), and TT Y is a subgroupoid of nX. One can even choose a retraction of ttX
onto ttY by choosing a suitable image in ttT(1) of each erased edge. Notice

that u(df) is an element of the free group tt(7(1).u), where v vert(f), and

there is an isomorphism tt(X.v) — n(Y,v). Hence we have a homomorphism
from a free group tt(7(1).u) onto n(Y.v) ~ tt(X. r), and the kernel is the

normal subgroup generated by co(df).

Frequently we will want to alter the choice of E' by exchanging an

edge b for some edge y of Y, such that b divides the face / into two
faces f\, fi, each of which has a single occurrence of y in the boundary
cycle. Either of these subfaces can be used to choose an element of the free

groupoid tiT(1) which gets equated to b in the groupoid itX. We now have

a new Y' with T/(1) 7(1) U {v} - {/?}, and a map 7/(1) —1> irT(1) which
induces an isomorphism of free groupoids ixY zz ixY'. The single face f of
Y' is obtained by glueing together fx and f2 along the two copies of b.
It is straightforward to check that the isomorphism ttY cz ixY' carries u(f)
to a conjugate of uo(f') or its inverse. The situation is amply illustrated in
Figure 2.1, which depicts a labelled CW-subcomplex formed from two faces
which are adjacent in two ways, so there are two ways to choose edges
to be erased. In general, the symbol denoting an oriented path in A(1) is

placed on the right of the path, and similarly for edges. Here, if we erase
b, we get a face with clockwise boundary cycle zyxqpxyzrs, where overlines
denote inverses. But if we erase y, we get a face with clockwise boundary
cycle cbapqabcsr. Algebraically, erasing b corresponds to using one of the
small faces as a relation to eliminate b by identifying b äqxyzsc, and
then cbapqabcsr c(cszyxqa)äpqa(äqxyzsc)csr s(zyxqpxyzrs)s. Choosing
whether to erase b or y affects the choice of free group mapping onto the
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surface group, but, as we have just seen, the free groups are related via an

isomorphism which respects the given relators, up to conjugacy and inverse.

g V y g

a X a X a

b y b y b

c z c z c
s r r s

Figure 2.1

Changing edges to be erased

It usually happens that we are given a basis S of the free group 7r(y(1\u),
and an expression of uj(df) as a word r in S±], so we get a presentation

7t(X,v) (S I r). One standard method of choosing a basis S of tt(Y{X\v)
is to choose a maximal subtree Yq of y(1), and associate a free generator to

each edge of Y{1) — Yo in the natural way. This choice of S ensures that the

above presentation is a surface group presentation. An alternative construction
is to collapse the edges Eq of Y® to get a new CW-surface Z with one vertex
and one face, such that ttZ is isomorphic to 7r(X, v). Algebraically, in passing
from the groupoid presentation ttX (E \ R) to the groupoid presentation
7TY — (E — E' I cu(<9/)), we successively use the erased edges to meld pairs
of relators, and then annihilate the elements of E0 to get a surface group
presentation of ttZ.

We will be interested in the situation where we are given a presentation
to start with.

2.5. Remarks. Let G be a surface group, and let (S | r) be a surface

group presentation of G.

In this article we will be applying homotopy equivalences to a CW-sur-

face X with fundamental group G, and we wish to ensure that the given

presentation is always recoverable. Some of the difficulties arise from the

choices involved. The choice of base point v affects the data only up to

conjugacy. The choice of set of edges E' determining a maximal tree in the

one-skeleton of the dual surface affects the data up to isomorphism of the

covering free group tt(X{1) — E'.v), and we have seen that the isomorphism

respects the relators up to conjugacy and inverse. Thus if S is associated

to a basis of one of the free groups in such a way that r corresponds to
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a conjugate of the relator or its inverse, then S is associated to a basis of

each of the free groups in such a way that r corresponds to a conjugate of

the relator or its inverse. We want to ensure that each homotopy equivalence

specifies an isomorphism of covering free groups so as to respect relators in

this way.

We start with the CW-surface associated to the presentation (S | r), and

apply homotopy equivalences using four operations called subdivision, erasing,

collapsing and expanding.

Subdivision of edges and faces changes the covering free group by a simple

isomorphism which preserves relators.

Erasing a set of edges E" which determine a subtree of the one-skeleton of
the dual complex changes, by a simple isomorphism which preserves relators,

the covering free group corresponding to a choice of E' containing E".

Collapsing, in the cases of interest to us, concerns the three elementary

operations of collapsing to a vertex an edge which is not a loop, collapsing to

an edge a two-edged face which is not a sphere, and collapsing a one-edged
face to a vertex. If we want to collapse an edge which is not a loop, we
first adjust the choice of E' to ensure that it does not contain the edge to
be collapsed. It is then straightforward to check that, for each of the three

elementary collapsing operations, the covering free group changes by a simple
isomorphism which preserves relators.

Expanding is the reverse of collapsing, and changes the covering free group
by a simple isomorphism which preserves relators.

At any stage we can lose the base vertex, and prior to its disappearance
we have to change the covering free group by conjugating by a chosen path
to a new base vertex.

2.6. Definitions. Let X\ and X2 be two-dimensional CW-complexes.
A map of sets ß : X\ —> X2 is said to be cellular if the following are satisfied :

If v is a vertex of X\, then ß(v) is a vertex of X2.

If e is an edge of X\, then ß{e) is a vertex or an edge of X2, and
Lß(e) =z ßi(e), rß(e) ßr(e).

If / is a face of X\, exactly one of the following holds :

ß(f) is a vertex v, and all the terms of ß(df) are v ;

ß(f) is an edge e, one of the terms of ß(df) is e, one is e~l, and the
rest are vertices;
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ß(f) is a face, every edge incident to / is mapped to an edge, and

dß(f) ßißf) ; here, with df as in (2.1), we understand that

(2.2) ß(df) ß(v0), ß(ei)l, ß(vi),..., ß{vn-i), ß(enf% ß(vn).

This definition of cellular map is more restrictive than the usual definition,
but it does include simplicial maps, with suitably chosen orientations of
simplices, so we do not lose any homotopy classes of maps.

2.7. Construction. Let ß: X\ —# X2 be a cellular map of two-dimensional

CW-complexes.
Then ß induces a cellular map on the one-skeletons ß: x\l) —*

and this determines a groupoid homomorphism w(ß^): nX^ nX^).
The latter then induces a groupoid homomorphism 7t(/3): tiX\ 71X2. If
we specify a vertex v of X\, then we obtain a group homomorphism
7r(/3, v) : tt(Xi v) ir(X2l ß(v)).

The diagram associated to ß consists of the CW-complex X\ together
with a labelling of its cells, which labels each cell with its image cell in X2.
For any cells c\ of X\, c2 of X2, if c2 ß(c\) we say that c\ is a c2-cell.
With our definition of cellular map, there are three types of labelling that a

face of X\ can have, namely, we can have a u-face, an g-face, or an /-face,
and these can be depicted as in Figure 2.2.

We remark that the labelled regions in Figure 2.2 are precisely the types of
regions used by Ol'shanskii [15]. These diagrams, which represent elementary

concepts in topology, can be viewed as Lyndon-van Kampen diagrams in
which trivial relators play a larger part than usual. Here we have a groupoid
setting which allows various vertices, rather than just the one vertex allowed

when considering groups.

Figure 2.2

The three types of labelled cell
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In terms of diagrams, ß is a covering if for each vertex v of X\ the

cycle of labels (in X2 of faces (in X\ with a distinguished incidence to v

is precisely the cycle of faces (in X2) with a distinguished incidence to the

label ß(v) of v. Also ß is a branched covering if for each edge e of X\

the labels (in X2) of the two faces (in X\) with a distinguished incidence to

e are precisely the two faces (in X2) with a distinguished incidence to the

label ß{e) of e ; here deleting all vertices leaves a covering. We will abuse

notation and say that ß is a pinching if X\ is obtained from X2 by slicing

open non-loop edges and inserting punctured projective planes and punctured
tori with cell structures and labels as depicted in Figure 3.1. Here ß acts by
collapsing these subsurfaces to edges, so is homotopic to a pinching, and our
abuse of notation is reasonable.

Our main activity will be to apply operations to these diagrams. Let us

note one which will be used frequently.

2.8. Construction (type : subdivision). Suppose we are given
two-dimensional CW-complexes X\, X2, a face / of X\, and a cellular map
ß'- X\ - {/} —» X%7 such that ir(ß{l))(uj(f)) is trivial in irX?l), that is,

/?(vert(f)).
We wish to subdivide / to obtain a refinement of X\, and an extension

0':X[ -> V2 of ß.
Let df be as in (2.1), and let ß(df) denote the sequence in (2.2). Since

tt(/3(I))(u;(/)) is trivial in rrX^, either every term of (2.2) is a vertex
or some subsequence of (2.2) has the form In the former
case we can extend ßtoX! by labelling as In the latter case, we can
subdivide / into two faces by adding an edge with label the vertex i(e)
slicing off a piece of / with label e, as in Figure 2.3; here we use 0 to
indicate a region with boundary label which determines a trivial element of
the free groupoid.

Figure 2.3

Subdividing
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We can continue in this way, and by induction on the length of <9/, we
obtain a subdivision of / which allows an extension of 3.

It is convenient to mention a more complicated operation at this stage.

2.9. Construction (type: subdivision). Suppose we are given
two-dimensional CW-complexes X\, X2, and a cellular map :3(l) : X[l) X2} of
the one-skeletons, such that, for each face / of X\, 7\(3{l})(uj(f)) is trivial in
tîW2, that is, there exists d > 0, and elements 1/7 of nX2\ and faces f) of
Xi such that, in the free groupoid ttX2}

cl

(2.3) tt(3( l>)(u>(f)) P[ K-T
'

Cf'C

i= 1

Essentially as in the previous construction, we wish to subdivide each face

of Xi to obtain a refinement X[ of X\, and an extension 3' : X\ X2 of 0l).
Let / be a face of X\, and suppose (2.3) holds. We first subdivide /

into d + 1 two-cells by drawing in d balloons-on-sticks, as in Figure 2.4,

which are subdivided and labelled in such a way that, if the boundary cycle
is read clockwise, the labelling of the /th stick, starting at the basepoint,

gives the word wt, and the labelling of the boundary of the i th balloon,

starting at the attaching point and reading counter-clockwise, is dff1. We

label the /th balloon fl, and orient it in the manner dictated by the label on
the boundary.

Figure 2.4

Subdividing for a relation
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In the subdivided / there remains a single two-cell f which is not labelled.

Here, (2.3) implies that

d

7t(/3(I))(W(/")) 7r(,0(1))(w(f)) PH'F w> 'ö<1) (vert(/'))
/= 1

in ttXV }. By Construction 2.8, we can subdivide f, and extend /3(1). Thus

we find we can subdivide each face of X\ to obtain a refinement X[ of X\,
and an extension ß' : —* X2 of /3(1).

We conclude this section by recalling how one constructs a cellular map

of CW-surfaces from a homomorphism of surface groups.

2.10. Construction (type: subdivision). Let a: Gi — G2 be a

homomorphism of surface groups.

Let (S1 I 7*1), (S2 I r2) be surface group presentations of G\, G2,

respectively, and choose a lifting A : (Si | —> (S2 | of a. Thus A is a

homomorphism of free groups such that A(/qJ lies in the normal subgroup

generated by r2, and the resulting homomorphism (S\ | T\) —* (S2 | r2) is a.
Let X\ ~ (w,S\.g) and X2 (v.S2J) denote the CW-surfaces associated

to the presentations (S\ | r\) and (S2 \ r2), respectively.

We want to subdivide X\ to obtain a CW-surface X[, and a cellular map
6f :X\-^X2.

We begin by subdividing the one-skeleton X[l), to get a graph T, as follows.
For each s G S\, A(C) is a word in S2, possibly empty, and hence A(s) is either
1, or is a non-empty reduced word e\] • • • eß in S2, that is, n > 1, each el lies
in S2, and each e,- is 1 or —1. If A(^) 1 we label s with the vertex v ; in the

second case, we add n - 1 new vertices to subdivide s into n edges, denoted
s j1.... s^", and label each Sj with e{ having the same orientation. Doing this for
each element of gives us a labelled graph T, with the labels coming from
X(2l). Notice that the two-cell of the subdivided X\ has as boundary cycle the
subdivided r\, and the labelling gives a word in tt(X^\v) which coiTesponds
to A(n). Since this word equals u in 7r(X2.v), we can use Construction
2.9 to further subdivide X\ and obtain a CW-surface X\ and a cellular map
if: X\ —> X2. Moreover 7r(ß/(lK w) : ty(X[(1\w) tt^^.u) can naturally be

identified with A: (S\ j -> (S2 | and w(ß/,w): 7t(X[.w) tt(X2.v) can
naturally be identified with u: (S1 | r{) (S2 \ r2). Thus we have a cellular
map of CW-surfaces which realizes a.
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Notice that the cellular map is constructed from an equation of the form
(1.1). We can apply the algorithm of the next section to this map, to get a new
cellular map, from which we can extract a new equation of the form (1.1),
without altering the given presentations, since at each step we can choose

isomorphisms of the covering free groups which respect the relator up to

conjugacy and inverse. Each element of S\ will be transformed into a path
in a labelled one-skeleton without changing the homotopy class in the surface

underlying X\ ; this amounts to choosing a new labelling for each element of
Si, which, in turn, amounts to choosing a new lifting at the free group level.

This whole process will then give non-trivial group-theoretical information,
although not so much as in the topological situation.

3. The algorithm

Throughout this section let ß\ X\ X2 be a cellular map of CW-surfaces.

Let V, E, and F denote the sets of vertices, edges, and faces, respectively,
of X2. We then have a diagram with E-faces, F-faces, and F-faces, as depicted
in Figure 2.2.

The aim of this section is to alter ß by composing it with various cellular

homotopy equivalences of X\ and X2 (based on the operations of contracting,
expanding, erasing, and subdividing), until we arrive at the minimum possible
number of F-faces. These alterations of ß can be viewed as homotopies,
since one is free to imagine that there is a surface X underlying X\ that
has lines inscribed on it, and that these lines can be deformed continuously.

Abusing notation then, we will say that the altered forms of ß are homotopic
to ß.

3.1. Construction (type : subdivision). If X2 has a loop e, we subdivide

e by adding a new vertex v, and, in X\, subdivide each e-edge, and each

£-face, by adding a new v-vertex, and a new u-edge, respectively.

By our definition of CW-surface, X2 has an edge. Thus we have the

following.

3.2. CONDITION. There is at least one edge in X2, but there are no loops.

Hence, in X\, no E-edge is a loop, or equivalently, all loops are V-loops.



AN ALGORITHM FOR CELLULAR MAPS OF CLOSED SURFACES 223

We will not make any further adjustments to X2, except in the case of a

branched covering where we may have to apply Construction 3.30.

We now want to describe the basic configurations.

3.3. Definitions.
Suppose that w\, W2 are two distinct vertices of X\, and d\, J2* ^3 are

three distinct one-cells of X\, such that d\ is a loop at w\, and J2> ^3 j°in wi
to W2- Let g be a face of X\ with boundary label vs\, d\,w\,d%s uu.dj"•
In this event we say that (the closure of) g is a loop triangle. We say that g

is an annular triangle if d\ is an orientable loop.
© We say that g is a Möbius triangle if d\ is an unorientable loop.

Suppose further that ß sends w\ and d\ to a vertex v of A3, sends A,
ß?3 and g to a one-cell e G of X2, and sends w% to the other vertex u

of e ; in this event we say that g is a loop e-triangle. If d\ is an orientable

loop, we say that g is an annular e-triangle.
® If di is an unorientable loop, we say that g is a Möbius e-triangle.
Two loop E-triangles are said to be E-adjacent if they have an E-edge

in common.

By an orientation-true prepunching, we mean four consecutive ^-adjacent
triangles such that two pairs have orientable V-loops in common, and the

L-loops have a common vertex, which determine a labelled CW-subcomplex
as depicted in Figure 3.1(b). There are specified two edges which are incident
to only one face; these edges are said to be the boundary edges of the

prepinching. (We allow the possibility that the two boundary edges become
identified in X\, and in this case the prepinching is the whole diagram, a

torus.) The remaining V- and E- edges are called the interior edges of the

prepinching.

Figure 3.1

The two elementary types of prepinching
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® By an orientation-false prepinching we mean two F-adjacent triangles

having an unorientable V-loop in common, which determine a labelled

CW-subcomplex as depicted in Figure 3.1(a). There are specified two edges

which are incident to only one face; these edges are said to be the boundary
edges of the prepinching. (We allow the possibility that the two boundary
edges become identified in X\, and in this case the prepinching is the whole

diagram, a projective plane.) The remaining V- and F- edges are called the

interior edges of the prepinching.

3.4. DEFINITION. The measuring quadruple of the diagram consists of
the following non-negative integers:

(1) the number of F-faces,

(2) the number of F-faces which have boundary length at least four,

(3) the number of V-faces,

(4) the number of edges which are not interior edges in prepinchings.
The quadruples are ordered lexicographically reading from (1) to (4); this

is a well-ordering.

All subsequent operations will reduce the measuring quadruple, and since

the quadruples are well-ordered, the procedure must eventually stop.

3.5. Constructions (type: subdivision).

(a) If, for some v G V, the diagram contains a u-face, then we choose an

e G E which is incident to v in X2, and subdivide the v -face into e -triangles

by adding a vertex and e-edges, as depicted in Figure 3.2 (a).

Figure 3.2

Subdividing into triangles

(b) If, for some e G F, with vertices u — t(e), v r(e), the diagram
contains an e-face which has boundary length at least four, we subdivide the

c-face into e-triangles as depicted in Figure 3.2 (b).
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These operations reduce the measuring quadruple, since they reduce the

second or third coordinate without affecting the preceding coordinates.

These are the first of several situations where we use subdivision, usually
preceded by erasing, to express a homotopy between two maps which collapse
a disc to a tree. Notice that it is important not to disturb the boundary of the

disc, since we are not allowed to damage F-faces by collapsing Zs-edges.

We may now assume that we have the following.

3.6. CONDITION. There are no V-faces.

All E-faces have boundary length at most three.

Since an Zs-face has to have boundary length at least two, we then have

only £-triangles and Zs-bigons, and no other Zs-faces.

Our next strategy is to eliminate some edges and faces.

3.7. Construction (type: collapsing). If the diagram contains a V-edge
joining two distinct vertices of X\, then we collapse the V-edge, and identify
the two vertices.

This operation reduces the measuring quadruple, since it reduces the fourth
coordinate, and does not increase any of the other coordinates.

We may therefore assume we have the following.

3.8. Condition. All V-edges are loops.

3.9. TERMINATING Case. If our diagram contains an E-face of boundary
length two, and the two edges are identified in X\, then X\ is a sphere, and
ß is a degree zero map which collapses it to an edge which is not a loop,
and we have the Normal Form 3.31(a).

We may therefore assume we have the following.

3.10. CONDITION. If an E-face has boundary length two, then the two
edges are not identified in X\.
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3.1 L Constructions (type: collapsing).

(a) If, for some e G E, the diagram contains an e -face of boundary length
two, whose edges are not identified in X\, then the closure of the face is an

e-disc, and we collapse it to an e-edge, as in Figure 3.3 (a).

(b) If the diagram contains an £-face of boundary length three, and two
of the edges are identified in X\, then, by Conditions 3.6 and 3.8, for some

v G V, the third edge is a u-loop, the <?-face is a u-disc, and we then collapse
this u-disc to a v-vertex, as in Figure 3.3 (b).

These operations reduce the measuring quadruple, since they reduce the

fourth coordinate without affecting the preceding coordinates.

Figure 3.3

Two types of collapsing

Thus we may assume we have the following.

3.12. CONDITION. Each E-face is a loop E-triangle.

To summarize, in terms of closures in X\, all E-edges are non-loops, all
£-faces are loop triangles, there are no V-faces, and all V-edges are loops,
and are incident to two loop E-triangles.

® We now turn our attention to unorientable V-loops.

®3.13. Construction (Skora [16]; type: expand, erase, subdivide,

collapse). If an unorientable V-loop is incident to two non E-adjacent
E-faces, then we create an orientation-false prepinching by applying the steps

depicted in Figure 3.4.

® This operation reduces the measuring quadruple, since it reduces the

fourth coordinate without affecting the others.

® Thus we may assume the following.
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©3.14. CONDITION. Each unorientable V-loop is the interior edge of

an orientation-false pre-prinching.

©This condition will enable us to ignore the unorientable F-loops, and

treat them as if they were hidden within edges.

Figure 3.4

Normalizing a prepinching

We now want to examine how the orientable F-loops which meet at a

vertex fit together.

3.15. Definitions. Let w be a vertex in the diagram, and denote its

label by re V.

By a labelled cycle around w we mean a finite sequence

gi.di.Qi-- - - - dm. gm+i gi •

where each d\ is an edge with a distinguished incidence to w, but is not

a u-loop, each gl is a face with a distinguished incidence to dt, and <7/,

I become adjacent in g\ after omitting v-loops. That is, we are listing
face-adjacent edges, except where F-triangles have loops at w in which case

we treat the u-loop as a vertex, and pass from one F-edge to the other. Thus

we are looking at the face-and-edge cycles around iu which arise when we

collapse to w all the v -loops at iu.
There are various types of labelled cycles. For any e in F, an e-triangle

can be F-adjacent to another e-triangle or to an F-face. By finiteness of
the diagram, every e-triangle lies in a labelled cycle of e-triangles, as in

Figure 3.5 (a), or in a sequence joining together two F-faces, as in Figure 3.5

(b). In the case of Figure 3.5 (a), we say that the e-faces form a punctured
e-sphere.
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Figure 3.5

Adjacent e-triangles

© Notice that, by Condition 3.14, any unorientable loops are identified in

neighbouring pairs.

The whole subsurface is collapsed to e by ß. Thus we see that one

possibility for a labelled cycle around w consists of e-triangles and e-edges.

Consider now the case of Figure 3.5 (b). Here we get a sequence, starting
at an /-face, for some / G F with a distinguished incidence (/'. i) to e,
and ending in an f-face, for some f G F with a distinguished incidence

if'.if) to e. We say that the /-face and the f -face are e-joined. There are

two possibilities. Either (/',/) ^ if',i]'), so they are the two faces with a

distinguished incidence to e (in X2), or (f,i) (f. if). In the former case,

we say the /-face and the f-face are well joined, and in the latter case we

say they are badly joined. Notice that if they are badly joined, then the two
F-faces are both /-faces, and they must be distinct /-faces, since if they are

equal, then their distinguished e-edges must be equal, and these e-edges are

then incident to zero or two e-faces and one /-face, which contradicts the

surface property.
From Figure 3.5 (b), we see that the second possibility for a labelled cycle

around w consists of F-faces joined together cyclically by F-triangles.

If the F -faces in a labelled cycle around w are well-joined, then it is easy
to see that the corresponding cycle of labels in F is given by repeating the

face cycle around v in X2 an integral number of times; if, moreover, there

is only one labelled cycle around w, then the number of times the face cycle
around v is repeated will be called the branching degree at w.

If all the faces are F - faces, and all F-joined F-faces are well joined, then

the corresponding map is a branched covering, since it becomes a covering if
all the vertices are deleted.

Here the number of F-faces is a multiple of the size of F, and the quotient
is the degree d of the map, and the map is then a d-fold branched covering.
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If cl 1 then the map is a homeomorphism. If the branching degree at

each vertex is 1, then the map is a covering.

u

©~o
v u

Figure 3.6

Collapsing

3.16. Constructions. Suppose that two annular £-triangles have a

common F-edge, and a common £-label, but do not lie in a prepinching.

Thus, for some e e E, with vertices u. v G V, two annular e-triangles
have an orientable u-loop in common, and the u-loop is not an interior edge

of a prepinching. We consider various possibilities for the intersection of (the

closures of) the two annular c-triangles. Since the two c-triangles have an

orientable loop in common, they get separated into different face cycles after

collapsing the loop to a vertex, so they cannot have an e-edge in common.
However, they may have a common u-vertex.

(a) (type: erasing, subdividing, collapsing). If the intersection of the two
annular e-triangles is precisely the u-loop, then we erase the u-loop, and

draw in a m-edge which is not a loop, and we can now collapse the resulting
triangles, as depicted in Figure 3.6. Thus we take an annulus, which is a

compact subsurface with two boundary components, and homotope it to a

loop formed by two edges, in such a way that the boundaries are respected.

(b) (type: expanding, erasing, subdividing, collapsing). If the two annular
-triangles with a common u-loop also have a common u-vertex, then we

create an orientation-true prepinching, as depicted in Figure 3.7. Thus we
take a punctured torus, which is a compact subsurface with a single boundary
component, and fit it into a sliced-open edge, in such a way that the boundary
is respected.

Each of these two operations reduces the measuring quadruple, since it
reduces the fourth coordinate without affecting the preceding coordinates.

u

We may therefore assume that we have the following.
6-
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3.17. CONDITION. Each V-loop is either interior to a prepinching, or is

an orientable V-loop incident to two E-faces with different E-labels.

Moreover, all E-faces are loop triangles and there are no V -faces.

u

Figure 3.7

Normalizing a prepinching

3.18. Construction (type: expanding-collapsing). Suppose that, at

some vertex of the diagram, there are two distinct labelled cycles having
an Zs-label in common.

Thus there exist two e-edges incident to a vertex, and these two e -edges

are separated into different labelled cycles by some orientable u-loop at the

vertex, as in the left diagram in Figure 3.8.

Figure 3.8

Readjusting
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We expand the two e-edges into £-triangles, and then collapse the resulting

c- and d-triangles to c- and d-edges, as in Figure 3.8, without disturbing the

two boundary components at any stage. Possibly the interior £-edge equals one

of the d-edges, and possibly, the exterior <?-edge equals one of the c-edges;

in this event, the corresponding identifications must be maintained throughout
the operation.

Thus we have applied a homotopy which does not affect the measuring

quadruple, and we can now apply the Constructions 3.16 (a) and (b), which

will reduce the measuring quadruple.

Hence we may assume the following.

3.19. CONDITION. At each vertex, distinct labelling cycles have disjoint
label sets.

3.20. Construction (type: expanding, erasing, subdividing, collapsing).
Suppose there is a vertex w, such that there is only one labelling cycle around

w, and there is a F-loop incident to w which is not interior to a prepinching.
Since collapsing the V-loop at w separates the face cycle around w into

two disjoint cycles, and, by hypothesis, collapsing all the V-loops at w leaves

a single face cycle, there must be some V-loop which connects up the two
face cycles, giving us the situation depicted in the left diagram in Figure 3.9.

It is now straightforward to homotope this configuration into an orientation-
true prepinching, as depicted in Figure 3.9, without affecting the single
boundary component.

u

Figure 3.9

Normalizing a prepinching
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This reduces the measuring quadruple in the fourth coordinate, without
affecting the other coordinates.

Hence we may assume the following.

3.21. CONDITION. At each vertex with a single labelling cycle, all
V-loops are interior to prepinchings.

3.22. TERMINATING Case. If there is no F-face then we have the

following situation.

All the faces are E-triangles, and the diagram-is formed by amalgamating
punctured E-spheres along the V-loops, and the E-spheres which meet at a

vertex have distinct E-labels.

The algorithm now terminates, as we have the Normal Form 3.31(a).

Hence we may assume the following.

3.23. CONDITION. The diagram has at least one F -face.

3.24. Construction (type: erasing and subdividing). Suppose that two
F-faces are badly F-joined, as in the left diagram of Figure 3.10.

Starting over

Here we abandon all the progress we have made. We erase all the F-edges
involved, to join up distinct faces, and so obtain a disc with a boundary label

which determines a trivial element of }, as in the second diagram of
Figure 3.10. Now we apply Construction 2.7 to fill in the disc with V- and

F-faces, and so get a new diagram representing a map homotopic to ß.
This procedure reduces the first coordinate of the measuring quadruple by

two.
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The foregoing construction disturbs the conditions we have obtained so

far, and we return to Construction 3.5.

Repeating the procedure up to this stage a finite number of times, we

eventually eliminate all pairs of F-faces which are badly joined. Thus we

may assume the following.

3.25. CONDITION. Each E-joined pair of F-faces is well-joined. Hence

the only faces are E-triangles forming prepinchings, and F-faces. Moreover,

the branching degree is defined at each vertex.

Proof. By Condition 3.23, there is at least one F-face.

Let us consider a vertex w incident to an F-face, and look at the labelled

cycle around w containing the F-face. Since F-faces are well joined, we see,

as in Definition 3.15, that as we run through the labelled cycle, the labels

run through the face-and-edge cycle around v, where v G V is the label of
w. Thus every edge incident to v occurs as a label in the labelled cycle
around w. It follows, from Condition 3.19, that there is only one labelled

cycle around w. Now, by Condition 3.21, all the V-loops at w are interior
to prepinchings. Hence all the faces incident to w are F-triangles forming
prepinchings and F-faces. It follows that the compact subsurface formed by
the F-faces and the F-triangles occurring in prepinchings is closed under

edge adjacency, so is the whole surface.

Hence the branching degree is defined at each vertex.

3.26. TERMINATING Case. If the branching degree is 1 at each vertex
then after the pinching, consisting of collapsing to edges the prepinching
regions which are as depicted in Figure 3.1, we have a diagram in which all
faces are F-faces, and all E-joined F-faces are well joined, and the branching
degree at each vertex is 1, so it is a diagram representing a covering.

The algorithm terminates since we have the Normal Form 3.31(b).

Hence we may assume the following.

3.27. CONDITION. The branching degree is at least two at some vertex w.

Let v e V denote the label of w. Since w has branching degree at least 2,
the face labels around w run at least twice through the faces round v. Thus
we can choose an / G F with a distinguished incidence to v, and choose the
first two terms of the labelled face sequence around w with this label. Clearly
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these two faces with distinguished vertex are distinct. Choose an e G E in
the boundary cycle of / next to the distinguished occurrence of v. Thus we
have the situation occurring in the left diagram in Figure 3.11, and the two
e -edges are distinct.

Figure 3.11

Starting over

© 3.28. Construction (Skora [16] ; type : erase-subdivide). Suppose the

diagram has at least one unorientable F-loop.
© We claim that unorientable V -loops are highly mobile, in the sense that

two Möbius £-triangles, attached along an unorientable V-loop (and possibly
an £-edge) forming a Möbius band (that is, a punctured projective plane),

can slide around; this sliding has the same effect as cutting open a pair of
incident edges (resp. an edge) to form a loop, which is then identified with
the boundary of the Möbius band, while the reverse of such an operation is

performed somewhere else. This can be shown using Construction 3.13, and

its reverse, and similar arguments, and we will not go into details since they

are straightforward. These operations do not affect the first coordinate of the

measuring quadruple, which is the coordinate the operation will eventually
reduce. Thus we can move one of the unorientable V-loops into the two
e-edges, as depicted in the middle diagram of Figure 3.11.

©Now we have two /-faces, and two e-faces, which give four distinct
faces, and we erase the three edges along which they are joined, to get

an open disc, as in Figure 3.11, and the boundary label is o

which determines a trivial element in the free groupoid irX^ - Notice that

the boundary cycle has a repeated vertex which causes the closure of the

disc to be attached to itself with a twist, and there may be other boundary
identifications. We now apply Construction 2.7 to subdivide the disc into V-
and E-faces.



AN ALGORITHM FOR CELLULAR MAPS OF CLOSED SURFACES 235

© The first coordinate of the measuring quadruple drops by two.

© As happened after Construction 3.24, we have to return to Construction

3.5 and repeat all the steps. Since the measuring quadruple is reduced in the

first coordinate, eventually it reaches a stage where it cannot drop any more.

Now we have the following.

© 3.29. CONDITION. The diagram has no unorientable V-loop.

Once the algorithm arrives here, it stops, and we do not consider the

measuring quadruple any more. We now perform a tidying operation, which
alters F, and increases the number of F-faces.

3.30. Construction (Edmonds [3]; type: subdivide X2, erase-sub-

divide-relabel). Suppose that there is an orientable V-loop, and hence a

pair of orientable V-loops in a prepinching region, by Condition 3.25.

u u

Figure 3.12

Changing prepinchings to get a branched cover

It follows from Construction 3.16, and its reverse, that pairs of orientable
V-loops are highly mobile, and we can move them into the pair of -edges

incident to w that is given by Condition 3.27, as in the left diagram in
Figure 3.12 (b). Now we can subdivide a face of TO incident to c, to create a
new face /, and new faces and vertices, as in the right diagram in Figure 3.12
(a), or, equivalently, expand the edge e into a disc. We expand each e-edge in
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X\ to a disc in a corresponding manner, with the exception of the six e -edges

occurring in the left diagram in Figure 3.12 (b), where we erase, subdivide

edges, and relabel, as indicated in Figure 3.12 (b).

We see that all F-faces are well F-joined, and the branching degree is

unchanged at each old vertex, and that, at the two added vertices, the branching
degree is 2.

Repeating this operation once for every prepinching region, we eliminate
all the F-loops, and obtain a diagram in which all faces are F-faces, and all

F-joined F-faces are well joined, so it is a diagram representing a branched

covering.

The algorithm terminates since we have the Normal Form 3.31 (c).

The foregoing algorithm has proved the main result.

3.31. Normal Form Theorem (Kneser [11], Edmonds [3], Skora [16]).

If ß : X\ X2 is a cellular map of CW-surfaces, then there exists a cellular

map ß' : X\ —> X'2 of CW-surfaces homotopic to ß whose diagram satisfies

one of the following.

(a) (Degree zero) The diagram is a union of punctured E-spheres with

bouquets of V-loops at the two poles, and the V-loops are identified
in pairs in such a way that no two distinct E-spheres with a vertex in

common have the same E-label The identifications have the property
that, at each vertex, there is only one face-and-edge cycle, but there can
be various labelled cycles. If X\ is orientable, the identifications can be

chosen to respect orientations of the spheres. After collapsing the spheres

to edges, there are no faces, and all incident edges have distinct E-labels,

yielding an immersion of graphs. Here ß has degree zero.

(b) (Pinching followed by covering) After pinching, consisting of collapsing
the prepinchings to edges, all faces are F -faces, all edge-adjacent pairs
are well E -joined, and the branching degree at each vertex is 1, yielding
a d-fold covering for some positive integer d. Here ß has degree d.

(c) (Branched covering) All faces are F -faces, and all edge-adjacent pairs
are well E-joined, yielding a d-fold branched covering for some positive
integer d. Here ß has degree d.

3.32. COROLLARY (Kneser [10], [11]). Any cellular map of CW-surfaces

of degree 1 is homotopic to a (possibly trivial) pinching.
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The following is an interesting illustration of Theorem 3.31.

3.33. Example: Self-maps of the real projective plane. By
considering the Puppe exact sequence [12, p. 238], [13, p. 3] associated to a

map Sl —> Sl of degree 2, one finds that each pointed homotopy class of

maps from a real projective plane to a real projective plane is determined by

its degree, and the possible values are 0, 2, and the odd positive integers. In

particular, the same holds for the (unpointed) homotopy classes of maps.

A degree zero map is given by collapsing the source surface to a point.
This is of type (a).

A degree two map is given by collapsing an unorientable loop to a point
to obtain a two-sphere, and then composing with a double covering of the

projective plane. This is an orientation-false pinching composed with a double

covering, so is of type (b).

An odd positive integer degree map is given by taking an odd positive
degree covering of one Möbius band by another, and then collapsing the

boundaries to points. This is a branched covering with a single branch point,
so is of type (c).

In the usual way, the homotopy classes of self-maps of the real projective
plane form a monoid under composition; to calculate composites one need

only calculate the degree, and that can be done easily, even using the algorithm
given here. Thus we can identify each homotopy class with its degree, and
examine the binary operation induced by composition. We find that the monoid
is obtained from the usual multiplicative monoid of non-negative integers by
identifying two distinct non-negative integers if and only if they are even and
are equal modulo 4.

4. Homomorphisms of surface groups

Throughout this section, let g : G{ -> G2 be a homomorphism of infinite
surface groups, and G, (Si | n),=be surface group
presentations.

4.1. Review. The arguments of Sections 2, 3 give us a method for
finding a normal form for a, and hence for calculating the degree of a.

Let us itemize the steps performed.
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We choose a homomorphism of free groups A: (S\ | —» {S2 \ which
induces a, and we choose, for some non-negative integer d, elements

W\,..., Wd of (5*2 I and elements e\,..., in {1,-1}, such that

d

(4.1) A(ri) Y[wir2 w7lin)•
(=i

We then use A and (4.1) in Construction 2.10 to construct a cellular

map ß\X\ —> X2 realizing a. Here S1 (resp. S2) is identified with a basis

of the free fundamental group of a specified subgraph of X\ (resp. the

whole one-skeleton of X2) with a specified base vertex; also, r\ (resp. r%)

corresponds to the boundary cycle of a certain subdivided face (resp. the

unique face). By construction, ß restricts to a graph morphism between the

specified subgraphs, and the resulting homomorphism of free fundamental

groups agrees with A.
We apply the algorithm of Section 3 to ß to obtain a new cellular map

ß' X\ —^ X2 which is in the normal form given by Theorem 3.31. Here

X'2 is obtained from X2 through Constructions 3.1 and 3.30, and there is a

natural map from the one-skeleton of X2 to the one-skeleton of X2, and both

complexes have natural base vertices, and both base vertices will be denoted

v2. By Remarks 2.5, we can trace through the steps of the algorithm and for
each transform of X\, we can identify Si with a basis of the fundamental

group of a subgraph with a base vertex. Thus for any set E' of edges which

corresponds to a maximal subtree of the one-skeleton of the dual complex
of X\, we can identify Si with a basis of the fundamental group of the

one-skeleton of X[ — E'. Throughout the algorithm Si is altered only up to

homotopy and change of base vertex. Moreover, up to conjugacy and inverse,

r\ agrees with the boundary cycle of the resulting subdivided large face

expressed in terms of the basis Si. Now ß' gives a new lifting A' of a,
via the labelling. The boundary label of each face in X[ corresponds to a

conjugate of rfl, and the subdivided large face gives a description of A'(r\)
as a product of conjugates of r2x, by viewing the large face as a compressed

version of Figure 2.4. Now we get an expression

d'

(4.2) A'(ri) P[ w\ w'~x

i= 1

in which d' is the number of F-faces, and hence equals the degree of a.
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For some purposes, it is convenient to have a new generating set S[ of

Gi adapted to the normal-form map. This can be thought of as a change of
basis within the free group, but we prefer to think of it as giving a new free

group mapping onto Gi, with a specified isomorphism to the old free group,
with the property that the new relator r\ arising from the boundary cycle of
the subdivided face corresponds to r\, up to conjugacy and inverse.

To define S[, we first choose a set of edges to erase in X[ as follows.
Choose a maximal forest of E-edge-adjacent faces in X\, and erase the

£-edges, and then choose a maximal tree of V-edge-adjacent faces and erase

the F-edges. It is clear from Figure 3.1 that, in the prepinching regions,
the interior E-edges get erased, and the interior V-edges do not. In the

one-skeleton of the resulting CW-surface, choose a base vertex v\ which maps
to v2, and choose a maximal tree, and collapse the edges; notice that these

are all £-edges, since the V-edges are loops. This gives us a surface group
presentation, -k(X\.v\) — (S[ \ r\ Now 7t(/3/(1), v\) : 7r(T|(1), v\) —> tt(X21\v2)
determines a homomorphism A" : (S\ | —» (S2 \ of free groups, and we
get an equation

d"
(4.3) A"(r[) Y[wi r2 vo'i'1

i= 1

closely related to the normal form, in which d" is the degree of a.
Here all unerased V -loops, which include all the V-loops occurring in

prepinchings, determine elements of S[ which are sent to 1 under A!. Thus
the algorithm gives us a distinguished set K Ç Sj of generators which go to 1.

We now want to examine in detail what can be said in each of the three
types of normal norm.

4.2. The degree zero case. Suppose case (a) of Theorem 3.31 holds.
Here r2 loses its significance, and we are studying a homomorphism from

a surface group to the free group tr(X^\v2) (S2 \

Form a labelled graph T by collapsing each E-sphere to an edge. The
labelling immerses T in the graph X^, since no two E-spheres at a vertex have
the same E-label. In particular, if the induced map of fundamental groups
7r(ß,v\): 7t(XuvO -> tt(X(21\v2) is surjective, then the labelling identifies
r x{2l).
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Our erasing procedure erases all but one Zs-edge in each punctured
E-sphere, and then erases V-loops incident to distinct faces as often as

possible, leaving a single face. The one-skeleton is then a copy of T with
bouquets of V-loops at each vertex. We then collapse a maximal subtree

of r to a vertex, to obtain the surface group presentation G\ (S\ | r\
Every element of is either an edge of the collapsed T, or is an unerased

V-loop. Recall that K denotes the set of elements of S[ corresponding to
unerased V-loops. Then the complement, S[ — K, is in bijective correspondence
with the edge set of the collapsed T. If we were to collapse the unerased

V-loops to vertices, we would have a face with boundary label a relation
in the fundamental groupoid of T, but this is a free groupoid, so the

relation represents a trivial element. That is, r[ lies in the normal closure

of K C S[.

This proves that any surjective homomorphism from a surface group to a

free group can be expressed in the form (S\ | r[) — (S\ | r\, K) where K is

a subset of S[ whose normal closure contains r\.

One can extract even more information from the diagram. For example,

it is natural to divide in half all those edges of T which lie outside

the maximal subtree, and subdivide the edges and faces of X[ which

map to these. This introduces an orientable V-loop around the equator of
certain punctured ^-spheres, and we can erase one old V-loop for each

equator we add. The surface obtained by deleting these equators from

X[ maps to the subtree of T obtained by deleting a point from each

edge outside the maximal subtree. Hence we have a punctured subsurface

which maps to a tree, so its fundamental group is collapsed. The

surface X[ can be recovered from the punctured surface by identifying
boundary components in pairs. The effect on the fundamental group is

to form an HNN-extension which adds a new generator conjugating one

of the boundary components to the other, and the new generator
corresponds to one of the specified generators of the fundamental group of T.
This can be used to give quite a precise normal form, but we are still
some distance from recovering all the information that is currently known.

Zieschang [17, Satz 2] showed that any surjective homomorphism from

an orientable surface group onto a free group can be expressed in the

form

{•Vp.V; v„,v„ I {xuyl)---{xn,yn})

{xuyu... ,xn,yn I {xuyx) (x
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where 0 < r < n. Grigorchuk and Kurchanov [7, Theorem 1] showed that

any surjective homomorphism from an unorientable surface group onto a free

group can be expressed in exactly one of two forms

"( ^U Lu ' * * s %n I £ 1 ^2 ' ' ' "W?

— (z\ Z2,. zr I ZjZ2 * • • Z^Z\Z2^Z3Z41 • • • Z.2r— 1 Lv) i

where z2r+1, • • are either all sent to z2r, where n is even and 0 < 2r < n,
or all sent to 1, where 0 < 2r < n. An elegant proof can be found

in [8].

Ol'shanskii [15, Section 2] used diagram techniques similar to those used

here to obtain some of the above results independently.

It is interesting to note that V-loops frequently occur in the literature.
Edmonds [3] and Skora [16], in the course of their arguments, find it necessary
to prove that, for any surface map of degree zero, there exists a non-separating

E-loop; Skora uses a non-separating point of the graph T, except in the

case where F is a tree and the map is trivial. Ol'shanskii's arguments for
maps from surface groups to free groups are based on proving that there
exists a non-collapsable V-loop. Gabai [4] used three-dimensional topology
to show that every non-injective homomorphism between surface groups can
be represented by a diagram with a non-collapsable V-loop.

We now turn to the nonzero degree case, and describe the group-theoretic
formulation of branched covers.

4.3. The branched covering case. Consider any non-negative integers
n, m, p, with m 0 or n 0, and positive integers du >.. ,dp. Let

G ^X], y i,..., xn, yn, z\, • • *, Zm•> % • • • tp

I IV;. V;) - • • (X„,y„)z* • • ff tp")

There is a canonical map from G to the surface group

G2 {-Ti î y 11 • • •, xn, y&1 Zi, Zm J (x 1, y 1
• • • (xn, yn)z\ • • zrm

obtained by annihilating the tk.
The Euler characteristic of G is defined as

p 1

X(G) 2 - m - 2n - p+ — -

a-i
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For example, if p 0 then G G2, and here the Euler characteristic plus
the rank equals 2, where the rank is the minimum number of generators, or
equivalently, the size of the generating set in the surface group presentation.

It is known that G acts, with compact quotient, as a group of isometries

on a sphere, plane or hyperbolic disc, depending as x(Q) *s positive, zero, or

negative, respectively. Any subgroup H of finite index is again of this form,
and the Riemann-Hurwitz formula says that (G : H)x(G).

If we choose a surface subgroup G\ in G of finite index, then we get a

homomorphism of surface groups G\ —* G2. A homomorphism arising in this

way is called a branched covering homomorphism of surface groups. It is not

difficult to construct the corresponding cellular map of CW-surfaces in normal

form, and find that it is a d-fold branched covering, where d (G : G\), and

the d\.... .dp can be taken as the branching degrees. Conversely, any cellular

map of CW-surfaces which is a branched covering has an associated group
homomorphism of this form.

There is an orientation map from G to {±1} which sends the x-t, yz, tt

to 1, and the zi to — 1. It follows that branched covering homomorphisms of
surface groups are orientation-true, so for infinite surface groups, the value of

d

in (4-1) is independent of the lifting chosen.
/=i

Let us take presentations and diagrams corresponding to the branched

covering. Consider an edge e in E, and a distinguished occurrence of e in the

boundary cycle of the single face / in F, and two distinct e-adjacent /-faces,
denoted /-, /. These have associated a Wi and a Wj representing paths back to

the base vertex, so wflwj represents a path between the base vertices of f and

/-, and for the purposes of checking signs, we may assume the base vertex is

incident to e. Since the/-faces are well -joined, e{w~xwf) describes whether
the two (distinguished) e-edges in the two /-faces would be identified with a

twist, or not, that is, have the same, or different, signs, respectively, in the two

occurrences in the boundary cycle of /. But ef1 ey describes whether the two

adjacent /-faces have the same orientation of not. Thus e(wflWj) ef1 e-}

d

Hence, for this choice of presentation, | ez-e(u/)| d (G : G\). In
i— 1

summary, the degree of a branched homomorphism of infinite surface groups
is given by (G : G\).

Let N denote the kernel of G —> G2. Then

(G : GO > (G : G\N) (G/N : G\N/N) (G2 : Im GO *

so the degree is at least (G2 : Im GO-
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Notice that the degree is exactly (G2 : ImGi) if and only if G\ G\N,
that is, N lies in G\. But N is generated by torsion elements, and G\ is

torsion-free, so the latter holds if and only if N is trivial, that is, G G2,

which is the case p — 0. Here we simply have an inclusion of finite index,
which corresponds to an (unbranched) covering.

In case (b) of Theorem 3.31, adding the relations to n(X[, v\) G\ which
annihilate the pinched generators leaves a surface group presentation. Let us

invent terminology to express this.

4.4. THE PINCHING CASE. A pinching homomorphism of surface groups
is a homomorphism which can be put in the form (S | r) —>• (S | r, K) where
(.S I r) is a surface group presentation, and K is a subset of S such that

deleting the occurrences of elements of K from r leaves a word r' such
that (S — K I r') is a surface group presentation. Notice that the parity of the

homomorphism is odd. If some element of K occurs twice with the same

sign in r, then the homomorphism is orientation-false, and otherwise it is
orientation-true.

It can be shown that a pinching homomorphism of surface groups can be

uniquely expressed in the form (S | r) -> (S | r, K) where K Ç S and exactly
one of the following holds :

S {-L, y j,..., xn, ynK {xi ; y 1,xm, ym},

and r (xuy{) - • (xmy}l). where 0 <m<n\
S {x\ ,yi,... ,xn,yn,zu* fzm}9 K {Xi,yu... ,v/7,y„},

and r (xuyi) - • - (xn,yn)z\ - • • zlv where 0 < m, 1 <n\
S= {^lUlr--4/nL4lr..,U, K {zU Zm},

and r (x\ ,y0 • • • {xn;y,j)z\ - • where 0 < m, 1 < 11 ;

S= {z\Zrn}, K

and r z]" • zjn where 0 < n < m

The first two types are orientation-true, and the last two types are
orientation-false.

Suppose now that a: G\ G2 factors as a pinching homomorphism
of surface groups a' : G{ -> Im a, followed by an inclusion of finite index
a" : Im a —> G2. We wish to verify that G (a) (G2 : Im a).

It is straightforward to construct a lifting A and an equation (4.1) with
d (G2 : Im a), so we have G (of < (G2 : Im a), and we may assume
G(of < (G2 : Im a). We wish to obtain a contradiction.
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Notice that the parity of a! is odd, so a' does not factor through a free

group, and hence a itself cannot factor through a free group. Thus G(a) > 0.

Let d G{od- We may assume that we started with a lifting A, and an

equation (4.1), that is, d is smallest possible. Thus in the process of applying
the algorithm of Section 3, we perform no cancellation of F - faces, and we
finish with a Normal Form map of degree d. We are not in case (a), since

d > 0, and we are not in case (b) or (c), since d < (G2 : Im a). This is

impossible, as desired.

Thus we have proved the following.

4.5. Theorem (Kneser-Edmonds-Skora). If a: G\ G2 is a homo-

morphism between infinite surface groups, then exactly one of the following
holds.

(a) The homomorphism a factors through a surjective homomorphism from
G] to a free group; here Q{ol) — 0 < (G2 : Im a).

(b) For some positive integer d, a factors as a pinching homomorphism

followed by an index d inclusion; here G{cx) — d (G2 : Im a).

(c) For some positive integer d, a is a non-injective d-fold branched covering
homomorphism of surface groups; here G {ex) — d > (G2 : Ima).

Notice that in type (b) we have the usual factorization as a surjection
followed by a (finite index) inclusion, while in type (c) we have a rather unusual

finite index inclusion followed by a surjection. In type (a), we have a special

surjection to a free group, with kernel generated by at least half the generators
in a suitable surface group presentation, followed by a homomorphism which
need not be injective.

4.6. COROLLARY (Kneser [10], [11]). If a homomorphism between infinite
surface groups has degree 1 then it is a (possibly bijective) pinching
homomorphism.

4.7. COROLLARY. If G is a surface group with negative Euler characteristic,

and a is an endomorphism of G, then either a is an automorphism,

or the image of a has infinite index in G, and the kernel of a is generated

as normal subgroup by a set consisting of at least half the generators in some

surface group presentation of G.
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Proof. If (G : Im a) is infinite, then Im a is a free group, and by a

Grigorchuk-Kurchanov-Zieschang result recovered in Case 4.2, the kernel of

a is generated as normal subgroup by a set consisting of at least half the

generators in some surface group presentation of G.

This leaves the case where Ima has finite index n in G. To see that

n — 1, we suppose that n > 1 and obtain a contradiction as follows. By
the Riemann-Hurwitz formula, and the fact that x(G) < 0, we see that

X(lmo0 nx(G) > x(G), so the rank of Imo is less than the rank of G.
This is impossible, since Im a is a quotient of G, so n — 1. Hence a is

surjective.

Since a cannot factor through a group of rank strictly smaller than that of
G, we see that a cannot factor through a non-trivial pinching homomorphism.
By Theorem 4.5, we see that a is a branched covering homomorphism. Thus
G has finite index m in some group

H y i,..., xn 5yn, z\, • •. Zm5t\ tp

I (x\,y\) tp")

where G ,xn,yn,zi,.zm\(^i,yi)• • • (x„,y„)ziBy the
Riemann-Hurwitz formula, and the fact that x(G) < 0, we see that

X(G) mx(H) < x(H),so0 > x(G) - \(//l J- >0. It fol-
/= 1

'

lows that m 1, and that a is bijective.

We can also recover Kneser's description of degree.

4.8. THEOREM (Kneser [10], [11]). Let a: G\ ^ G2 be a homomorphism
of infinite surface groups, and consider an equation (4.1) arising from some
lifting of a.

d
(i) If a is orientation-true, then Q{a) | J] e/ e(wï) |, where the map

i= 1

e: (S2 I {±1} is induced from the orientation map of G2.

(ii) If a is orientation-false, and either d is even, or the index (G2 : Im a)
is infinite, then G (a) 0.

(iü) If öl is orientation-false, and d is odd, and (G2 : Im a) is finite, then
G(a) (G2 : Im a).

Moreover, the lifting A can be chosen so that d G(a), with the original
choice of presentations.
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This result can be used to prove a theorem of Nielsen's which predates
Kneser's result.

4.9. THEOREM (Nielsen [14, Section 26], [9]). If (S | r) is a surface

group presentation of a (surface) group G, and a is an automorphism of G,
then there exists an automorphism A of the free group (S | which maps r
to a conjugate of r or r-1, such that the induced map on G is a.

Proof This is clear if G is finite, so we may assume that G is infinite.
Since a is an automorphism, the kernel is trivial, so a does not have degree

zero, and no pinching takes place. Thus a must be a branched covering
homomorphism, by Theorem 4.5. We saw in Definition 4.3 that branched

covering homomorphisms are orientation-true. It follows from Theorem 4.8

(a), that, among orientation-true maps, the degree is multiplicative with respect
to composition. Thus Ç(oï)Ç(a~l) « 5(1) 1. Thus Q(a) 1. By the final

part of Theorem 4.8, we can choose a lifting of a to an endomorphism A of
the free group on S which sends r to a conjugate of r or r-1. A theorem

of Zieschang [17] then shows that A is an automorphism. (A simple proof
of surjectivity, using Fox derivatives, is given in Theorem V.4.11 of [1], and

injectivity is proved using Nielsen reductions, as in Theorem 1.10.5 of [1].)

The foregoing argument contains elements of the original proof by Nielsen,
and of the algebraic proof by Zieschang [17], [18, Corollary 5.4.3].

4.10. Remarks. Recall that for two groups G\ and G2, the set of group
homomorphisms from G\ to G2 is partitioned into orbits under the natural

action of the group Aut(Gi) via composition. Two homomorphisms in the

same orbit are said to be strongly equivalent.

Without going into details, let us describe some known results.

Case 4.2, above, mentions surjective homomorphisms from surface groups
to free groups. Such homomorphisms have been thoroughly analyzed by

algebraic techniques, starting with the work of Zieschang [17], and Ol'shanskii

[15], and culminating in the work of Grigorchuk and Kurchanov [7]. This

work is distilled in [8] where it is shown that if a\, oo • G\ —» G2 are

homomorphisms from a surface group to a free group, then they are strongly
equivalent if and only if oq(Gi) a2(Gi) and a](G^~) 00 (G*). Together
with knowing the maps described in Case 4.1, this allows one to calculate

the exact number of strong equivalence classes of surjective homomorphisms
from a given surface group to a given free group.
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Important work of Gabai and Kazez [5], [6] which uses three-dimensional

topology shows that, if a\:a2' G\ G2 are nonzero-degree homomorphisms

between infinite surface groups, they are strongly equivalent if and only if
Q{a\) G(a2),a'i(Gj) a2(G,)and aj(G+) - aol'G,). They also show

that, if au<*2: G\ —» G2 are homomorphisms between surface groups at least

one of which is finite, then a\, 02 are strongly equivalent if and only if
Q(ct\) — 0(02), ci(Gi) Q'2(Gi) and ci(G^) a'2(G^).

5. A WORKED EXAMPLE

In this section we will apply the algorithm to a rather trivial example to

illustrate the algebraic manipulations involved.

Consider the homomorphism a : (a. b. c. d \ (a, b)(c, d)) —> (x.y | (x,y))
induced by the homomorphism of free groups A: (a.b.c.d \ —> (x,y |

determined by (a. b.c.d) 1— (x, y, x. y~1

We have

A((a,b)(c,d))(x.y)(x.y-1)

Since a is orientation-true, Kneser's Theorem 4.8 implies that G (a) is obtained

by applying the orientation map to 1 — x~ly~lx, so G(ol) — 0. Thus we want

to apply the algorithm to transform A into a map A' inducing a, such that

A'{{a, b)(c, d)) 1.

Form the CW-surfaces associated with the given surface group presentations,

so the free group generators can be viewed as loops.
Let us subdivide y into two edges, one again called y, and the other called

z. We will call the vertices 11 and v, so that x is a loop at v, y joins v to

u, and z joins u to v. The algorithm requires us to subdivide jc, but, in order
to keep the example simple, we shall not do this. Now we subdivide b and d
into two edges labelled y 1, zl, and y2, z2 respectively. Here the first letter
indicates the image label, while, since we plan to depict the moves in planar
diagrams, we also want a label to identify equal edges, and it is convenient
to use integers for this identification. Similarly, we label c and d as xl and

x2, respectively.
We first use Construction 2.9 to get a cellular map, and hence a diagram,

and then, after some simple applications of Construction 3.5 and 3.11, we
can obtain the first diagram in Figure 5.1. Now we can apply the two-step
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Figure 5.1

A worked example

Construction 3.18, to pass from the first to the second, and the second to the

third diagram. Thus the first and third diagrams are obtained from the second,

by first collapsing v 1 and v2, respectively, and then identifying z2 z4, and

y2 y3, respectively. The fourth diagram is a convenient redrawing of the
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third diagram. Now we apply Construction 3.16 (a) to identify zl z2 and

z3 z4, and arrive at the sixth diagram in Figure 5.1.

Now we can apply Construction 3.24 to arrive at the seventh diagram in

Figure 5.1, where we have three punctured spheres, as depicted in Figure 5.2,

and we see that v 1, v2 are non-separating non-trivial V-loops, and cutting

along these leaves a sphere with four punctures, which can be opened up into

a disc by cutting along jcl, yl, and zl. Thus we can rearrange the seventh

diagram in Figure 5.1 to obtain the eighth diagram.

Figure 5.2

A normal form

To see what this says about our original group homomorphism, we express-
all the steps algebraically, by manipulating groupoid presentations.

Here X2 has only one face, and we have to choose a maximal subtree, and it
is natural to choose {u, v, z}. Let us express this by writing (x,y;z | (x,yz)),
where the edges after the semicolon specify (the edge set of) a maximal
subtree among the boundary edges. Recall that for CW-surface fundamental

groupoid presentations we do not specify vertices, since they correspond to

face-adjacency cycles.

In the same spirit, we express the first diagram in Figure 5.1 as

(xl, y 1,x2, y2;zl,z2;vl,y3, z3

I xl zlylxlylz3, z3zh;l,i;ly3y2, y3 x2y2z2x2z2)

where the edges after the second semicolon specify the edges to be erased
to form a single face, and overlines indicate inverses. Here we can identify
a — x\, b — ylzl, c — x2, d — z2y2.

Now we introduce a new vertex, two new edges v2, z4, and a new face
z4 z2v2, so the second diagram is expressed as

(x\, y 1,x2, y2; zl, z2, v2\ v 1, y3, z3, z4

I x\zlylxly\z3, z3 z\v2v\,vly3y2, z4Ü2z2, y3x2y2z2x2zÄ)
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and here x2 is an arc, and we identify a — x1, b ylzl, c x2i>2,
J z2 y2. (We can recover the first diagram by collapsing v2 in the maximal
subtree, and cashing in the new face relation to identify z4 z2.)

We now collapse the edge vl in the maximal subtree, and cash in the

face relation (vl)y2 y3, to identify the two eges y2 y3. This obliges us

to choose new edges to erase, and we find that the fourth, and third, diagrams
are expressed as

(xl, y 1, x2% y2; zl, z2;z3, z4, v2

I xl zlylx\ylz3, z3 zlv2,z4v2z2, y2x2y2z2x2z4)

and here we identify a x1, b ylzl, c *= x2^2 z2y2x2y2z2, d z2y2.
We now re-triangulate, and the fifth diagram can be expressed as

(xl, y 1, x2, y2; z 1, z2; z3, z4, ul
I xl z 1 ylxlylz3, z3 ul z4, ulzlz2, y2x2y2z2x2z4)

and here we identify a x1, b — ylzl, c z2y2x2y2z2, d z2y2.
We now collapse the edge ul, and make identifications using the face

relations z2 (ul)zl, z4 (ul)z3, and the sixth diagram can be expressed

as (xl,yl,x2,y2;zl;z3 | xlzlylxlylz31y2x2y2zlx2z3)^ and here we identify
a — x 1, b ä ylzl, c zl y2x2y2zl, <i zly2.

We now retriangulate, to express relations which map to relations in the

free group.
Notice that we have now lifted a to the homomorphism

A': (a, b,c,d|-* |

determined by (a,b,c,d) i—» (x,y,yxy,y), and Af((a,b)(c,d)) 1.

Moreover, by changing presentations, we can now express g in a

more natural form. We take the non-separating v-loops vl yly2 and

v2 xlyly2x2, and get the presentation

(xl,yl, v2\ zl I xl z 1,y 1 v2v 1 yl.z 1 v2x 1 v 1

and here we identify x2 v2xlvl, y2 vlyl, so a x 1, b ylzl,
c zly2x2y2zl zlyl^lf2xlylzl, d — zly2 zlylvl.

Now we can collapse the maximal subtrees, and we have a description of
our group homomorphism as follows. We have the genus two surface group
(xl?yl, v 1,v2 I xlylvlvlylvlxlvl)t we first impose relations annihilating
the two generators vl, v2,lo get a free group, and we then impose a relation

to get the genus one surface group. Here we can identify a — x1, b y 1,

c — yl^lu2xlyl, d yIvl, and thus bd — vl, abed v2. This represents

a in one of the normal forms described in Case 4.2.
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