
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 43 (1997)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: QUATERNARY CUBIC FORMS AND PROJECTIVE ALGEBRAIC
THREEFOLDS

Autor: SCHMITT, Alexander

DOI: https://doi.org/10.5169/seals-63278

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 15.03.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-63278
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


L'Enseignement Mathématique, t. 43 (1997), p. 253-270

QUATERNARY CUBIC FORMS

AND

PROJECTIVE ALGEBRAIC THREEFOLDS

by Alexander SCHMITT

Introduction

As algebraic geometers, we are interested in a special kind of complex
manifolds, namely in complex submanifolds of projective spaces. A submanifold

A of P„ is given as the common zero locus of a set of homogeneous
polynomials such that the Jacobi matrix of these polynomials has rank n — dim A
at every point of A. We call such a manifold a projective algebraic manifold.
The main goal is the classification of projective algebraic manifolds up to bi-

holomorphic equivalence. Now, a projective algebraic manifold is in particular
an oriented and closed topological manifold. Moreover, biholomorphic maps
are orientation preserving homeomorphisms.

Thus, we obtain a natural approach to the classification of projective
algebraic manifolds which can be stated for complex dimension 3 as follows :

Given a six-dimensional, closed, and oriented topological manifold A,
describe all projective algebraic threefolds (up to biholomorphic equivalence)
whose underlying topological manifold is orientation preservingly homeomor-

phic to A.
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Of course, one does not have a general classification of the respective
topological manifolds. However, if we restrict our attention to simply connected,

six-dimensional, closed, and oriented topological manifolds with torsion free

homology, there is a classification result in the sense of algebraic topology,
due to C.T.C. Wall [Wa] and P.E. Jupp [Ju]. This means the classification of
simply connected, six-dimensional, closed, and oriented topological manifolds
with torsion free homology up to orientation preserving homeomorphy can
be reduced to the classification of certain algebraic data, so called admissible

systems of invariants.

The explicit classification of these algebraic data can be carried out in the

case the second Betti number b2 is 1 [OV]. But already for b2 2, the

picture is rather complicated and not yet complete [Sch3]. So, it seems to be

a rather hopeless task to classify systems of invariants for b2 > 2. Thus, we
restrict ourselves to the consideration of the most important part of the system
of invariants of the simply connected, six-dimensional, closed, and oriented

topological manifold X, the cup form

<Pxi S3H2(X,Z)—» z
[a G> b G> c] I—» (a U b U c)[X\.

Here, [X] is the fundamental class of X. We remark that the assumptions

we make on the manifold X imply that the whole cohomology ring of X is

determined by ipx and the third Betti number b2(X).

We can also replace Z by R or C to obtain a weaker invariant. By our
hypothesis, H2(X,Z) is a free Z-module, and H2(X.R) H2(X.Z) R,
R R, C. If we fix a basis for H2(X. R), we can identify ipx with a

homogeneous cubic polynomial. On the module of all homogeneous cubic

polynomials in b variables, there is an action of GL/,(7?) by substitution of
variables. Hence, we obtain a coarse picture of the classification of simply
connected, six-dimensional, closed, and oriented topological manifolds with
b2 b if we determine the normal forms for cubic polynomials over Z in

b variables w. r. t. the action of GL^(Z) and if we describe the set of forms

tpx, X being a topological manifold.

For the latter part, we remark that there is a simple criterion to check

whether a given cubic polynomial over Z is of the form (px or not (see

[Sch2], Cor. 1). For example, this criterion is fulfilled if all coefficients are

divisible by 6. The determination of normal forms is again very difficult.

However, if we work over the field of complex numbers instead, results are

known for up to b 4 variables. The results for b < 3 variables are easily
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accessible. On the other hand, the results for b 4 are scattered in the

literature of over 100 years. Hence, we have written an extensive summary

of the theory of complex quaternary cubic forms. Being interested in (Cubic

forms over Z)/GLb(Z), it is more reasonable to consider the action of
SLb(C) := {m G GLj,(C) | det(m) ±1}. To simplify things we will consider

the action of SL^(C) instead. This is the content of Part I.

In the second part, we treat the following weakened form of our original

problem :

Which quaternary cubic forms can occur as cup forms of simply connected

projective threefolds

For the case b < 3, we refer the reader to [OV]. In this part, we have

collected a number of examples. We also show that there is a simply connected

projective threefold with £>2 3 whose cup form defines a plane cubic with
a node, a problem which remained unsolved in [OV]. We conclude our notes

by a brief summary of the author's results concerning the non-realizability of
certain real cubic polynomials as cup forms of projective threefolds.

Acknowledgements. The results of this paper are part of the author's
thesis [Sehl]. This thesis was written under the guidance of Prof. Ch. Okonek
whom I wish to thank for many helpful discussions during the preparation of
the thesis and this paper. The author wants to acknowledge financial support by
AGE — Algebraic Geometry in Europe — Contract Number ERB CHRXCT
940557 (BBW 93.0187).

I. Quaternary Cubic Forms

In this section, we will be concerned with the space S3(C4V) of quaternary
cubic forms on which SL4(C) acts by substitution of variables. In particular,
we will treat the following problems :

1) Find "good" representatives for the orbits in S3(C4V) ;

2) Describe the categorical quotient S3(C4V)// SL4(C).
(The categorical quotient is an affine algebraic variety whose set of points

is in natural bijection with the closed orbits in S3(C4V). A good introduction
to this kind of constructions can be found in [Ne].)
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1. Normal Forms for Quaternary Cubic Forms

1.1. Normal Forms for Quaternary Cubic Forms Defining Non-Singular
Cubic Surfaces. Here, the result is as follows :

THEOREM 1. Every homogeneous polynomial of degree 3 in four variables

defining a non-singular cubic surface can be brought into one of the following
canonical forms (rl: r. s. t. G C* :

(*) r\x\ + r2x2 + r3x3 + r4x\ + r5(—xi - x2 - x3 - xffi,
5

where ±1/y/Fj 7^ 0 (Sylvester's pentahedral form)
i= 1

(*1) r(x 1 + x\ + A3 + x\) (diagonal form)

(*2) TX3 + x\ + X3 + x\ — 3sx2x3x4,

where (s3 — l)^3 + 8) 7^ 0 (non-equianharmonic form)

(*3) *2 + x3 + x4 3x2i(r2x2 + r3x3 + r4x4)

(*4) x\ + T3 + x\ - 3x\(rix\ + r2x2 + r3x3 + r4x4)

(*5) 2rx\ + x\ + x3 — 3xi(sxix2 + A1X3 + tx\),
3

where st(r ± s^ ± 1) 7^ 0.

For a proof of this theorem, we refer the reader to Segre's book [Se]. We

will also call a form being equivalent to a form of type (*) a Sylvestrian

pentahedral form. Such a form determines a configuration of five planes

which is called the Sylvester pentahedron. Forms being equivalent to diagonal

or non-equianharmonic forms will be called degenerate Sylvestrian pentahedral

forms.

Remark 1. Given a cubic form / defining a non-singular cubic surface,

one is led to ask to which of the above forms / is equivalent. This problem
is related to the geometry of the Hessian surface Hf — 0 in the following

way :

If the Hessian surface is reducible, there are two possibilities : Either it
consists of four different planes or of a cone over a smooth plane cubic and a
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plane. In the first case, / is equivalent to a diagonal form, and in the second

case, / is equivalent to a non-equianharmonic form.

If the Hessian surface is irreducible, we have to look at its singularities.

If there are precisely ten Ai-singularities, / is equivalent to a Sylves-
trian pentahedral form, and the Sylvester pentahedron is determined by
the configuration of the singular points. If there are seven singular points,

one Ai-singularity and six A^-singularities with k > 2, then / is equivalent

to a form (*3) or (*4) depending on whether the intersection of
the Hessian surface with the tangent cone to the A1-singularity consists

of a double line and an irreducible conic or of a double line and a

reducible conic. If there are four singular points on the Hessian surface, then

/ can be brought into a form of type (*5). In any case, much information

on the canonical form can be read off the configuration of the

singular points of Hf 0. We refer the reader to [Se] and [Sehl] for the
details.

The following results on canonical forms of quaternary cubic forms can be

easily derived from the treatment of Bruce and Wall [BW] of the classification
of singular cubic surfaces.

1.2. Normal Forms for Quaternary Cubic Forms Defining Cubic Surfaces
with Isolated Singularities. Here, the normal form of / depends on the
configuration of the singularities on the surface / 0, and we obtain :

THEOREM 2. The table overleaf lists the normal forms for quaternary cubic
forms defining cubic surfaces with isolated singularities. The configuration of
singularities on the respective surface is noted in the first column. Here, Ax
etc. refer to the classification of singularities (see e.g. [AGV], 242jf). Thus,
2A]A2 means that there are two A\ -singularities and one A2-singularity on
the respective surface. It is assumed throughout that I £ C*.

Remark 2. The two different forms with a Z)4 -singularity are again
distinguished by the geometry of the Hessian surface: The Hessian surface
consists in the first case of a double plane and an irreducible quadric cone
and in the second case of a double plane and two simple planes.
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Ai lxffx\ — X\X2>) +

À X2 (x\ — (1 + Pl>2 + P1X3) (x\ — (p2 + p3)x2 + P2P3X3)

pi £ C \ {0, 1} pairwise different

2Ä! lx4(xj - X1X3) -f x2(xj - (1 + p\)x2 + p]X3)(X] - p2x2),

Pi £ C \ {0,1} nctf egwa/

3A] Ixffx^ — X1X3) -f x\ [x] — (1 + p)x2 + px3), p £ C \ {0,1}

4A\ Ix4(^2 — x\x3) -f x\(x\ — 2x2 + x3)

A\A2 Ix4(^2 — X1X3) + x\x2 (x\ — (1 + p)x2 H- px3),

pec\{0,i}
2AxA2 lxffx\ — T1T3) + X^Xi — x2)

AÎ2A2 Ix4(^2 — X1X3) + X^

AIA3 /X4OC2 — *1*3) + — *1*2

2AiA3 /^4(X2 — *1*3) + *1*2

A1A4 lx4(^2 — *1*3) + *^*2

A1A5 /T4(T2 — *1*3) + *1

a2 /X4XiX2 — X3(X^ + T2 + X3 + Pl *1*3 + PlX2X3),

Pl ; P2 ^ C \ {—2, +2}

2A2 lx^X\X2 — x3(x^ H-X3 -j- px\x3), p £ C \ {—2, +2}

3A2 /T4TIT2 — X3

a3 lXârX)X2 -f Xi(x^ — X3) + p*2(*2 — *3)' p ^ C*

A4 lx4X1X2 + X^X3 + X2(X2 — *3)

a5 lx^X\X2 + Xj + X2(X2 — *3)

DA /X4X^ + X2 + X3 + XjX2X3

DrJ X4X1 +" X2 + X3

d5 X4X^ -h X1X3 + X2X3

E6 X4X1 + X1X3 + X2

% x\-£ x\-£ x\ — 3lx\x2x3, P 7^ 1
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1.3. Normal Forms for Quaternary Cubic Forms Defining Irreducible

Cubic Surfaces with Non-Isolated Singularities.

PROPOSITION 1. The canonical forms for quaternary cubic forms defining

irreducible cubic surfaces with non-isolated singularities are the following :

Canonical form The surface f — 0

XJX3 + xy_X4 Whitney's ruled surface

xfx3 + X1X2X4 + A9 Cayley's ruled surface

X1X3 + X1X9 + A9 Cone over a nodal cubic

XJX3 + x\ Cone over Neil's parabola

Remark 3. Cayley's ruled surface is actually a degeneration of Whitney's
surface. Explicit constructions of those surfaces can be found in [Hal], 33Of,

for Whitney's surface and in [Ha2], 80, for Cayley's surface.

1.4. Normal Forms for Quaternary Cubic Forms Defining Reducible Cubic

Surfaces. Here, one obtains the following obvious result:

PROPOSITION 2. A quaternary cubic form defining a reducible cubic
surface can be brought into one of the following canonical forms :

Canonical form The surface f — 0

(X\ + X2XX1X2 + X3X4) Non-sing, quadric w. transversal plane

X\(X\X2 + X3X4) Non-sing, quadric w. tangent plane

X\(x? + X3X4) Quadric cone w. transversal plane

Xi(x\ + X2X4) Cone over plane conic w. transversal line

A3 (.*2 + x?>xA) Cone over plane conic w. tangent

X1X2X3 Three different planes

X\X2(X\ +x2) Three different planes in a pencil

x]x2 Double plane and simple plane

xf Triple plane
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2. The Invariant Theory of Quaternary Cubic Forms

2.1. Stable, Semistable and Nullforms. The stable and semistable

quaternary cubic forms and the quaternary cubic nullforms were determined by
Hilbert [Hi] (for the definition of semistable and stable see [Ne], nullform
means non-semistable form) :

THEOREM 3. i) A quaternary cubic form f is stable (resp. semistable) if
and only if the surface {/ 0} has at most singularities of type A\ (resp. A2).

ii) A quaternary cubic form f is a nullform if and only if the surface

{/ 0} has isolated singularities of type A^ (k> 3), D4, D$, Eß, or Eß,

or if it has non-isolated singularities.

2.2. Degenerations of Orbits of Semistable Forms. First, one observes that
the semistable forms with closed orbit are precisely the forms whose associated

cubic surfaces have three A2 -singularities. Applying Luna's slice theorem, one
then computes the following table of degenerations where we characterize a

form by the configuration of singularities on the corresponding cubic surface :

A2 A2A1 2A1A2

\ \ I
2A 2 2A2A}

\ i
3A2

The details can be found in [Sehl], 58ff.

2.3. The Ring of Invariants. Proofs of the following results can be found
in the paper [Be]. We want to describe the ring A := C[S3(C4V)]SL4(C). This
is the coordinate ring of the categorical quotient S3(C4W)// SL^C). It is the

ring of polynomial expressions in the coefficients of cubic polynomials which

are constant on all SL^C)-orbits. In order to describe the ring A, we first
introduce the following vector space

S := jrix3 -f r2x\ + r3x3 + r4x\ + r5x5 | 0 j
On S, there is a natural action of the alternating group SI5, and A C C[S]215.

This inclusion is constructed as follows : The group of automorphisms H of the

Sylvester pentrahedron naturally acts on S, and it can be shown that the natural
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morphism S//H —> S3(C4
''
)// SL4(C) is birational. This induces the inclusion

A C C[S]W. Now, His a finite group of order 480 obviously containing 2l5.

Denote by cr;, i 1,2,3,4,5, and v the i-th symmetric function and the

Vandermonde determinant in the r,. Then C[.S']*t5 C\rr,... ,<75,1»].

THEOREM 4. The ringof invariants A is the subring of CfS]2^ generated

by the following invariant polynomials

h '.= (J4—4cT3<75, /J6 •— I24 •— cr$ff4

^32 ^40 := ^51 A 00 ^5 ^5

which satisfy a relation

^100 — •

2.4. 77z<? Discriminant. Using techniques from the paper [BC], one obtains

the following

PROPOSITION 3. 77z<? discriminant of quaternary cubic forms is given by

the formula

A (/82 - 64/16)2 - 21'(/g^ + 8/32) •

2.5. Moduli Spaces of Cubic Surfaces. Define M to be the hyper-
surface {/^00 — P(/8,/16,/24,/32,/40) 0} in the weighted projective space

P(8,16,24,32,40) P(l, 2, 3,4,5). Then M := M \ {A 0} is a moduli

space for non-singular cubic surfaces. On the other hand, every non-singular
cubic surface can be obtained as the blow up of P2 in six points in general

position. The sextuples of points in general position form an open subset

U C S6P2 of the sixth symmetric power of P2. Furthermore, there is an action
of PGL3(C) on U, and the geometric quotient Af := ZY//PGL3(C) does exist
[Is]. By [Is], §6, M is a coarse moduli space for pairs (X,L) consisting of a

cubic surface X and a globally generated line bundle L which defines a blow
down X —> P2. Forgetting the line bundle L provides us with a morphism

so that there is a surjection /: U —» M. Hence, we can view the
invariants of quaternary cubic forms as regular functions on U. This relates
the geometry of the cubic surface to the set of six points. One obtains, e.g.,
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PROPOSITION 4. The set of sextuples in U whose associated cubic surface
is given by an equation which is not a (nondegenerate) Sylvestrian pentahedral
form is the Zariski-closed subset {f*ho 0}.

Of course, a better understanding of the geometric meaning of the other

invariants should allow to extend this result.

II. Cubic Forms of Projective Threefolds

1. Preliminaries

For the convenience of the reader, we have collected the crucial theorems

which we will use in the construction of our examples.

1.1. The Lefschetz Theorem on Hyperplane Sections. We summarize

Bertini's Theorem and Lefschetz' Theorem in:

THEOREM 5. Let Y be a projective manifold, L a very ample line bundle

on Y, and X := Z{s) the zero-set of a general section s H°(X,L). Then X
is a manifold (connected if dim Y >2), and the inclusion u : X Y induces

isomorphisms

t* : Hl(Y, Z) —> H\X, Z), / 1,..., dim Y - 2;

l* : 7TfX) —* 7T/(F). i 1,..., dim Y - 2

Proof [La], Th. 3.6.7 & Th. 8.1.1.

1.2. Formulas for Blow Ups. A very simple way to obtain a new manifold

from a given one is the blow up in a point or along a smooth curve. The

cup form behaves as follows (we will suppose for simplicity that H2(Y, Z) is

without torsion) :

THEOREM 6. i) Let a: X —> Y be the blow up of Y in a point. Let

q(x[. be the cubic polynomial which describes the cup form of Y w. r. t.

the basis (k,\,... ,Kn) of H2(Y, Z). If ho £ H2(X, Z) is the cohomology class

of the exceptional divisor, then (/zo, • • •, cr*Kn) is a basis of H2(Y^ Z)
m r. t. which the cup form of X is given by

x30 + q(xi,...,xn)
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ii) Let C C Y be a smooth curve, and a : X —> Y be the blow up of Y along

this curve. Using the same notation as in i), the cup form of X is described

by the polynomial
n

q(xi,... ,xn) - 3 • ft/)*/*o) - degc(Nc/y)*o •

i=i

Here, C. a, stands for the evaluation of the homology class of C on Kj, and

Nc/y Is the normal bundle of C in Y.

Proof This follows easily from [GH], p.602ff.

1.3. Complete Intersections in Products of Projective Spaces.

Let P/7l x • • • xP7?;. be a product of projective spaces. Write 0{a\..... ar) for

the invertible sheaf nfö^ißi) G • • • G) 7t7T Opn/ (ar). Here, ?77 is the projection

onto the i-th factor. If all the af s are positive, this sheaf is very ample.

A section in it is given by a multihomogeneous polynomial of multidegree

(ü\ ar). We denote by

P„, I

a],the family of zero sets of sections of the sheaf

0(a\al)(£'--®0(a'ï,..., cÇ').

The members of this family are complete intersections of m hypersurfaces.

An iterated application of Theorem 5 shows that a general member X of
such a family is smooth and simply connected and that (h\,.... hm) with
ly := 7T*(ci ((2pn. 1 is a basis for H2(X. Z).

2. A Projective Threefold with a Nodal Cubic as Cup Form

We first compute
P4 I 1 2

Pi I 1 1
Let F be a smooth member of the family

the cup form of Y. Let (h^hf) be the canonical basis of H2(P4 x Pj.Z),
and {h\,hi) be the basis of H2(X. Z) as described in 1.3. We compute, e.g.,

h2Iî2 — h2h.2(h\ + hé(2hi + /o) 2/z|ho — 2

Here we have written the cup product followed by evaluation on the
fundamental class as multiplication. The cup form of Y is given by the polynomial

3x^ ~b 6X2X2



264 A. SCHMITT

Y contains four smooth curves Q Pj, i 1,..., 4, such that Q h\ =0,
Ci ./z2 1, and Nq/x — öp,(—1) 0 (7p, (—1). To see this, observe that Y is

defined by two equations Iq-xo+1\-x\ 0 and qo-xoFqi -vi =0. Here, xo and

xi are the homogeneous coordinates of Pi and /o,/i and qo,q\ are linear and

quadratic homogeneous polynomials in 5 variables (the homogeneous coordinates

of P4). It is easily computed that the image of Y under the projection
to P4 is the hypersurface Y := {kq\ — hqo — 0}- For a generic choice of
lo,h,qoiqi, the set S := Z(/o, /1,qo,q\) consists of 4 points (Thm. 5). It is

obvious that the projection Y —> Y is an isomorphism above Y \ S and that

the fibre above a point in S is of the type {s} x J*i. The description of the

normal bundle is a consequence of this. Let X be the blow up of Y in one of
these curves. By Theorem 6, the cup form of X is given by the polynomial

3xj + 6XJX2 — 3XQX2 + 2XQ

This defines an irreducible plane cubic with a node.

3. Quaternary Cubic Forms that are Cup Forms of Projective
Algebraic Manifolds

On the one hand, we know by [OV], Prop. 16, that cubic forms whose

Hessian vanishes identically cannot occur as cup forms of projective threefolds.

The Hessian of a quaternary cubic form / vanishes identically if and only if
the surface / 0 is a cone over a plane cubic curve. On the other hand, we
have collected a number of families in which we find cup forms of simply
connected projective threefolds. There are some families which are not covered

by these two results, for them the problem of realizability remains unsolved.

THEOREM 7. There are polynomials occurring as cup forms of projective

algebraic manifolds in the following families of non-singular forms :

(*), (*1)1 (*2), (*4) and (*5),

and in the following families of forms defining surfaces with isolated
singularities :

(AO, (2A0, (3A0, (4A0, (2A,A2), (A2), (2A2), (3A2) and

Furthermore, forms which define in P3 the union of a non-singular quadric
with a transversal plane, or the union of a quadric cone with a transversal

plane can be realized as cup forms of projective algebraic manifolds.
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We prove this result by giving examples. The cup form of a complete

intersection in a product of projective spaces is easily computed as in Section 2.

Furthermore, we will mainly use blow up constructions, hence one has to use

the formulas of Theorem 6. In some cases, we will give further details.

3.1. Sylvestrian Pentahedral Forms. Consider in P2 x P2 x P2 x P2 a
*"

p2 I 1 1 1 1 1
""

p2 I 1 1 1 1 1

p2 I 1 1 1 1 1

p2 j 1 i 1 1 1

_

The cup form of X issmooth member X of the family

described by the following polynomial

90*i*2 + 90*i*3 + 90x1*4 + 90*1*2 + 90*i*3 + 90*I*4

+ 90*2*3 + 90*2*4 + 90*2*3 + 90*2*4 + 90*3*4 + 90*3*4

+ 360*1*2*3 + 360*1*2*4 + 360*1*3*4 + 360*2*3-^4

-30(*2 + *3 + X4.)3 - 30(*i + *3 + x4)2 - 30(*i + *2 + X4)3

— 30(*i + *2 T v3)3 + 90(*i + *2 + *3 T Y4)3.

3.2. Diagonal Forms. Let X P3(/?if>e the blow up of P3 in
three points. By Theorem 6, the cup form of X is then given by

*1 + *2 + *3 "F *4 •

3.3. Non-Equianharmonic Forms. We begin by constructing a manifold Y

with b2 3 whose cup form is a non-equianharmonic ternary cubic form. X
will then be defined as the blow up of Y in one point. Suppose Z C P2 x P2

Fp, I 11
is a smooth member of the linear system P~ j

1
and C Z(s) is the zero

locus of a general section s G H{)(Z, öz(l, 0) ® Oz(l, 1)). Let Y be the blow

up of Z along the curve C. In order to apply Theorem 6, we will have to

compute the intersections C.h/, i 1,2, where (h\. h2) is the canonical basis

of H2(Z. Z). To do this, we observe that the cohomology class associated to
C is just h\ U (h\ + h2). Thus, for example,

h\ C (hi U h\ U (hi + h2))[X] h\ + h\h2 h\h2 1

We also have to compute degc(7Vc/z). This number is given by

((2h, + h2) U hi U (hi+ h2))[Z]3h\h2

The cup form of Y is given by

/ := 3*^*2 + 3*1*2 ~ 3*I*3 ~ 6*2*3 ~ 4*3.
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This describes a smooth plane cubic, and we must show that its j-invariant
does not vanish. For this, it suffices to verify that the Aronhold S -invariant is

non-zero [St, p.173]. The invariant S takes the value 3 on / [St, Prop. 4.4.7].

3.4. Non-Singular Forms whose Hessians have Seven Singular Points. We
r p? 111look at a smooth member Y of the family p~ j

j
Let Cj — Z(si) and C2

Z(s2) be two disjoint smooth curves where s\.s% G H°(Y, Oy(l. 0) 0 Oy(l. 1))

are chosen generically. The blow up X of Y along those curves has the

following cup form :

0 0 0 0 T

3xjX2 + 3xjx2 — 3xix3 — 6x2X3 — 4x3 3x1X4 • 6x2X4 4xj

This polynomial can be written as :

- ix 1 - TôOi + 2x2 + 4x3) - -^(xi + 2x2 + 4x4)

+ 3(xi + 2X2)2 [\x\ — ]^(xi +2X2) + ^(xi + 2X2 + 4x3)+Y^(XI + 2X2 + 4X4))

3.5. Non-Singular Forms whose Hessians have Four Singular Points. Let

Y be again a smooth member of j j j and choose two disjoint smooth

curves Cj Z(si) and C2 =Z(s2), where su$b G H°(Y, Oy(1: 0) 0 OY(0. 1))

are general sections. The blow up X of Y along those two curves has the

polynomial

3XJX2 + 3XJX2 — 3XJX3 — 3X2X3 — 2X3 — 3XJX4 — 3x2X4 — 2x4

as the cup form, and one checks that its Hessian defines a surface with

singularities in the points [1 : —1 : 0 : 0], [0:0:0:1], [0:0:1:0], and

[0:0:-1:1].

I 2 1

I 1 1
As we have3.6. (A 1 Suppose Y is a smooth member of

seen before, Y contains four curves of the type {p} x Pj with normal bundle

0{—\) 0 ö(— 1). Define X as the blow up of Y along two of those curves.

The cup form of X is then described by the polynomial

3x] + 6xjX2 — 3x2X3 — 3x2X4 + 2x3 + 2x4

which defines a surface in P3 with an A1-singularity in [0:1:0:0].
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3.7. (2A\). Let X be a smooth member of
Pi I i i i
Pi I l l l

p2 I l l i

p2 l l l

Its cup form is

9*1X3 + 9^1X4 + 9x2*3 + 9X2X4 + 18X3X4 + 18x3X4

+ 18X1X2X3 + 18*1X2X4 + 36X1X3X4 + 36X2X3X4

The surface in P3 defined by this polynomial has two A1-singularities in

[1:0:0:0] and [0:1:0:0].

3.8. (3Ai). Blow up Pi xPi xPi in C Z(s), where s G H0(O( 1. 1.0)®

(9(0. 1. 1)) is a generically chosen section in order to obtain a manifold X

with cup form

6x4x2X3 — 3x1X4 — 3x0*4 — 3x3X4 — 4x4

The corresponding cubic surface has three A1-singularities in the points

[1:0:0:0], [0 : 1 : 0 : 0], and [0:0:1:0].

3.9. (4Ai). Let V C Pi x Pi x Pj x Pj be a smooth divisor in

\0(ci\. «2- «3- «4)1, #/ >0, i — 1.2.3.4. The cup form of this manifold
is described by the polynomial

6a 1X2X3X4 + 602X1*3X4 + 6u3X1X2X4 + 604X1*2X3.

which defines a surface in P3 with A1-singularities in [1 : 0 : 0 : 0],

[0:1:0:0], [0 : 0 : 1 : 0], and [0 : 0 : 0 : 1].

3.10. (A2). Let y be a smooth complete intersection in the family
[p,

1 1
] • ^is ^me' blow up Y along a curve of the type {p} x Pi and in

a point. The resulting manifold X has the cup form

3x| + 6*7x2 — 3x2X? + 2x3 + X4

This polynomial defines a cubic surface with an A2 -singularity in [0 : 1 : 0 : 0].

3.11. (2A2). Let T be a projective algebraic threefold with b2 3 and cup
form q{x\. x2. x3) and suppose that q defines a smooth conic with a transversal
line (this happens, e.g., when y is a Pi-bundle over some surface). The cup
form of y blown up in one point is then

4(X|..Y2.*3) +X4 •
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3.12. (3A2). Let X (Pi x Fi x P\)A(p) be the blow up of Pi x Pi x Pi
in the point p. The cup form of X is

X4 + 6x1X2X3.

3.13. (2A1A2). Consider the curve C Z(s) c Pi x Pi x Pi where

5 G H°(G( 1. 1,0)© 0(0. 0,1)) is a general section, and let X be the blow up
of Pi x Pi x Pi along C. The cup form

6x1X2X3 — 3xix^ — 3x2X4 — 2x4

of X defines a cubic surface with A1-singularities in [1 : 0 : 0 : 0] and

[0:1:0:0] and an A2 -singularity in [0:0:1:0].

3.14. (£>4 Let X := Pi x fyipi-.pi) be the blow up of Pi x P2 in the

points p\ and P2. Its cup form is described by the polynomial

3xix^ + X3 + X4

This polynomial is the equation of a cubic surface with a D4 -singularity in

[1:0:0:0].

3.15. A Non-Singular Quadric with a Transversal Plane. Manifolds with
such cup forms may be obtained as suitable Pi -bundles over surfaces. Indeed,
let 7 be a smooth surface with £>2 3. W. r. t. a suitable basis (h\.h2.h2)
of H2(Y, Z), its cup form is given by x2 -h x2 +X3. Now, let £ be a vector
bundle of rank 2 such that c\(E) — c2(E) ^ 0. Let X := P(E)^^Y and choose

(tt*/zi, tt*/z2, tt*/z3, ci(öx(l))) as a basis of H2(X. Z). Then, by [OV], Prop.

15, the cup form of X is given by

{c](E)- c2{E))x\+ x4(xj +4+4).

3.16. A Quadric Cone with a Transversal Plane. Let 7 be a simply
connected surface with b2 3 and torsion free homology. The cup form of
7 is given by a quadratic polynomial q(x\,x2,x2) defining a smooth conic.

Thus, the cup form of 7 x Pi is given by

x4^(xi,x2,x3)

4. Real Cubic Forms which are not Cup Forms of Projective
Algebraic Manifolds

In the paper [Sch2], the author investigated the restrictions on the real

cubic forms of projective manifolds imposed by the so called Hodge-Riemann
bilinear relations :
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THEOREM 8. Let X be a Kählerian threefold and h G H2(X, R) be a

Kühler class. Then the map

H2(X,R)xH2(X,R) —> R
(<2, £>) I—> a U b U h

is a non-degenerate, symmetric bilinear form of signature (2h2,0 + 1,/z1'1 — 1).

One can restate this theorem in such a form as to obtain - at least in theory

- some explicit inequalities in the coefficients of cubic polynomials which

are satisfied by the cup forms of Kählerian and hence projective algebraic
threefolds. The main result of [Sch2] is

THEOREM 9. For n > 4, the polynomial

X° 3x")

cannot occur as the (real) cup form of a projective algebraic threefold with
b\ — 0 and b>$ 0.

As a corollary, one obtains the following generalization of a result of
Campana and Peternell [CP] :

THEOREM 10. For n > 4, twistor spaces over jj"=1P2 ore not homeomor-
phic to projective algebraic threefolds.
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