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A THEOREM OF INGHAM

IMPLYING THAT DIRICHLET'S L-FUNCTIONS

HAVE NO ZEROS WITH REAL PART ONE

by Paul T. Bateman

§1. Introduction

Using Landau's lemma on Dirichlet series with non-negative coefficients,

A. E. Ingham in [1] proved the following theorem.

Ingham's Theorem. Let

p ^ F '
n= 1

where the product is extended over all prime numbers p and e is a

bounded completely multiplicative arithmetic function. Suppose that g can
be analytically continued into some domain containing the closed interval

[^,l] of the real axis. Then

9(1)^0.

We recall that an arithmetic function e is said to be completely
multiplicative if e(mn) e(m) e(n) for all positive integers m and n. Since a

completely multiplicative arithmetic function e is determined by the values

e(p) for primes p, it is immediate that e is bounded if and only if \e(p)\ < 1

for all primes p. Actually Ingham assumed that | e(p) | is either 0 or 1 for any
prime p, but his proof can easily be modified to require only that | e(p) | < 1.

(Cf. [6]).
The most interesting application of Ingham's theorem is that obtained by

taking e(n) x(n)n~ia * where x is a residue character modulo k and a is a

real number which is different from zero if x is lhe principal character. Then
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g(s) L(s + ia, x) and the theorem gives the assertion L( 1 + ia, x) ^ 0. The
main interest in Ingham's theorem is its breadth of applicability. In contrast
the familiar use of a trigonometric inequality does not cover the case in which

a 0 and x is a real non-principal character; that case is the very one to
which Landau's lemma applies most easily (cf. §2 of [3]).

Ingham proved the theorem by establishing and using the identity
oo

* CW g(s, e) g(s, rf) g(s, er?) g(2s, er?) Hin) n~s,
Yl— 1

where £ denotes the Riemann zeta function, rj is another completely
multiplicative arithmetic function, erj is the pointwise product of e and rj,
and

Ein) e<X>, H(n) ^ r?(d).
d\n d\n

This is a generalization of a result of Ramanujan for the case e(n) na,

rj(n) nb, where a and b are fixed complex numbers.

While the identity (*) is of some interest in itself, we show that for the

purpose of proving Ingham's theorem there is no reason to make the detour
needed to prove (*). Of course we still require Landau's lemma, which we
state in the following form.

LANDAU'S Lemma. Suppose ß and 7 are real numbers with ß <.7.
Suppose that cn > 0 for n — 2, 3,... and that the series ^2cnn~s
converges for Re s > 7. Put

00

/o) S2Cn n~s (Re s>
n~ 1

If f can be analytically continued into some domain containing the closed

interval [/?, 7] of the real axis, then the series Yl cnti~^ converges.

For a proof of Landau's lemma see [5], [4], or §2 of [2].

The proof of Ingham's theorem which we give here uses an argument
similar to that used in [4] and [5], except that the argument in those two

papers was phrased in such a way as to require analytic continuation into a

domain containing the interval [0,1] of the real axis instead of the interval

l]. The interval \_\ l] could not be replaced in the hypothesis of Ingham's
theorem by a shorter interval, i.e., one of the form [0,1], where 6 > ^ ;

this is shown by the example in which e is the Liouville function À and

g(s) <(2j)/C(s) Y,Kn)n~s.
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