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AMENABILITY AND GROWTH

OF ONE-RELATOR GROUPS

by Tullio G. Ceccherini-Silberstein and Rostislav I. Grigorchuk

Abstract. An algorithm showing whether a group given by a one-relator

presentation is amenable or not is constructed. Sufficient conditions for a one-relator

group of exponential growth to have uniformly exponential growth are also given.

0. Introduction

A one-relator group is a group G which admits a presentation

(*) G (ai,<22,... : R(a\,<22,...,am) 1)

with one defining relation.

The paper by G. Baumslag [B 1] is a comprehensive survey of results

about one-relator groups. In particular this paper stresses the role of algorithmic
problems in the theory of one-relator groups.

Recently the interest in functional-analytical and asymptotical properties
of one-relator groups has increased. For instance, the entropy of one-relator

groups was discussed in [GrLP], random walks and Markov operators on one-
relator groups where investigated in [CV], [BCCH], [BC], and the K-functor
of reduced C*-algebras of one-relator groups was computed in [BBV]. Also
the growth functions of the groups Tn (t,a\ tat~l a'1 n/0,±l, and

of some other one-relator groups were calculated in [CEG] and [EJ].
Recall that a discrete group G is amenable if there exists a finitely

additive measure p\ V{G) {0,1 }G —> [0,1] which is G-(left)-invariant
(p(gE) p(E) for all g G G and E C G) and such that, in addition,
ß(G) 1. For our purpose it will be enough to know that a group containing
a free subgroup of rank two is not amenable, and that, on the contrary, any
solvable group is amenable ([G]).
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As easily follows from the paper of Karrass and Solitar [KS], all amenable

one-relator groups are in the following list:

1. (a : an 1) Zn, cyclic groups of finite order n— 1,2,...;
2. (a, b : & 1) Z, the infinite cyclic group;

3. (ß, Z? : bab~l an), n ^ 0.

this group contains a subgroup Z2 of index two,

but it is not Z2;

3/j. n ^ 0, ± 1 : (a,b : bab~~] an) :

these groups are 2 step-solvable and of exponential

growth (pairwise non-isomorphic).

Also Tits' alternative does hold for one-relator groups: any one-relator

group either contains a free subgroup of rank two or is solvable (and from
the above list).

But in the Karrass-Solitar paper no algorithm is given answering the

question whether, given a one-relator presentation, the corresponding group
is solvable or not. In Section 1 we present a simple algorithm and, as a

consequence, we re-obtain the above list of all amenable one-relator groups.
In the second part of the paper we investigate the uniformly exponential

growth for one-relator groups of exponential growth.

Recall that if G is a group with a finite generating system A,

is the length of an element g G G with respect to A and 7A(n)
\{g G G : \g\A < n}\ is the growth function of G with respect to the generating

system A. The limit

exists and ÀA{G) > 1. The group G is said to have exponential growth
(respectively sub-exponential growth) if Àa(G) > 1 (resp. A^(G) =1) for
some (and therefore for any other) finite system of generators A.

This class splits into two subclasses

3a. n Tl : (<z, b : bab
1

a) Z2;

(**) < n — 1 : (a^b : bab~l — a~l) :

\g\A min {n : g axa2 * ant at G A}
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Denoting now by
A *(G) inf A

A

the minimal growth rate of G, where the infimum is taken over all finite

generating systems, the group G has uniform exponential growth if À*(G) > 1.

This last concept is due to Avez [A] where the number

h(G) log(A*(G))

is called the entropy of the group G and it is discussed in [GrLP], [SW] and

in the survey paper [GH].
The simplest example of a group with uniformly exponential growth is the

free group Fm of finite rank m > 2 for which the minimal growth rate is

A*(Fm) 2m — 1, see for instance [GH].
It is not known whether a group of exponential growth has necessarily

uniformly exponential growth or not. We formulate the following :

0.1. CONJECTURE. All one-relator groups of exponential growth have

uniformly exponential growth.

Conjecture 0.1 is true for one-relator groups of rank m > 3 and for one-

relator groups with torsion, therefore we focus our attention on two-generated
one-relator groups and give sufficient conditions for such groups to have

uniformly exponential growth. We present a new method for estimating the

minimal growth rate of a finitely generated group using growth functions of
the corresponding graded Lie algebra and apply it to one-relator groups.

1. An algorithm for checking amenability

Let G be a one-relator group with presentation (*) ; the number m of
the generators of G in the presentation is called the rank of the presentation.
Untill Section 4 we shall assume that R is cyclically reduced and non trivial.

The next observation is well known. We shall include the proof stressing
the algorithmic aspect of the statement.

1.1. LEMMA. Let G — {a.b.... : R{a,b.... )} be a one-relator group
with at least two generators. Then G has a presentation (t,... : R'(t,...
with at(Rf) 0, where <jt(R') denotes the sum of the exponents of t in the
word R'. This second presentation can in fact be produced, starting from the

original one, in an algorithmical way.
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