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3.6. THEOREM ([L 1,2]). Let R be an element of the free group F of

finite rank m which is primitive with respect to the lower central series.

Denote by k — uj(R) its weight and by {R) the normal closure of R in F.

Let G F/(R) and let C{F) and C{G) be the corresponding Lie algebras.

Let then r be the image of R in Ck(F), the k-th component of C{F) and

denote by I the ideal of C(F) generated by r.

Then I is the kernel of the canonical homomorphism of C{F) onto C(G),

i.e.

C{G) £(F)/I.

Moreover for all n> 1 the abelian group Cn{G) is a torsion free group
whose rank is the n-th coefficient of the Maclaurin power series of the

function

4. More on uniformly exponential growth
OF ONE-RELATOR GROUPS

Any two-generated one-relator group G can be presented in the form
G (a.b : akw(a,b) l) where k G Z and w(a.b) belongs to the

commutator subgroup [F. F\ of the free group F F{a.b) freely generated

by a and b (this follows from Lemma 1.1). Since a and b constitute a basis

in F/y2(F) and [a. b] generates 72CH/73(F), one can also present G in the

form

Gr= (a. b : ak[a. b]lw{a. b) 1

where k.lE Z and w{a.b) G 73(F).
In this section we shall see that, under suitable assumptions on k.l and

w(a.b), the corresponding group has uniformly exponential growth.
As an application of Labute's Theorem we get the following :

4.1. Proposition. Let G (a.b:R(a.b)= 1) be such that R is

primitive with respect to {^(F)}^ and R G 73(F). Then G has uniformly
exponential growth.

Proof. If uj(R) > 3, Theorem 3.6 shows that the corresponding function
U{z) has a pole zo with 0 < z0 < 1. It follows that the coefficients cn{G)
grow exponentially. By Corollary 3.2, À*(G) > 1.
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For Proposition 4.3 we need the following notations. Let £ be a positive
rational number such that £ 7^ 1 and denote by Qf the smallest subgroup of
the additive group of the rationals, which contains 1 and is invariant under

multiplication by £ and £-1. In other words if £ ^ with p,q Z and

gcd(p.q) 1 then Z[j, ^]. Consider now the automorphism a of Qç

defined by a{x) £xt x G Qç. Let Z act on Qç by powers of a. Denote

by Qç Z the corresponding semidirect product. The group G^ is

a two-generated group with system of generators {ci, £>} where a 1 G

and the element b implements the automorphism a : b~xxb — a(x), x e Qç.
Let now J be a natural number > 2 and set Bd — Z^. The group Z

acts on Bd by shifts. The corresponding semidiredt product T{d), also denoted

by ZcilZ, is called the wreath product of Z and Zd. We shall consider T(d)
as generated by ä (....0,0,l,0.0....) where 1 denotes a generator of Zd

(in the expression of a it appears at the 0-th coordinate place), and by b,
the element which implements the shift.

We have short exact sequences

0 —> Qç —>G^ —> Z —>0
0 —>Bd —> T(d) —>Z —> 0

so that G^ and T(d) are two-step solvable. Slightly modifying the proof of
Proposition 2.6 one gets

4.2. LEMMA. The groups Gç and T(d) have uniformly exponential
growth.

Our last class of two-generated one-relator groups of uniformly exponential

growth is determined in the following statement.

4.3. PROPOSITION. Let G (Ka.b\ak[a.b]lw(a.b) l) with k, l G Z and

w(a.b) G F(2) where F(2) [[F, F], [F, F]] denotes the second commutator

subgroup of the free group F F(a.b) on a and b. Suppose that

(k.l) {±(2, 1),±(L 1), ±(1, 0), ±(0, 1)}. Then G has uniformly exponential

growth.

Proof. Set Gk.i {a. b\ ak[a. b]lw(a. b)) Set also

Gkj {a,b\ak[a,b]lw(a,b),F{2)) {a,b\ak[a, b]1, F(2))

which is a 2-step solvable quotient group of Gu,i. We shall show that Gk,i can

be mapped homomorphically onto either G^ or T(<i) for a suitable positive
rational number Ç 7^ 1 or natural number d >2.
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Suppose first that k ^ 1.21 and Ik ^ 0. These assumptions guarantee that

£:= jti| ^0.1. Then the map a \—> (û)^"(^). b \—» b from F onto G^

factorizes through Gtj. Indeed if we suppose, for instance, that ^ > 0, then

the image of ak[a.b]1 is the number k + /(— 1 + 0 G which is zero. Thus

Gu maps onto G^.

Suppose now that gcd(k. /) d or (k. 1) G {±(z/. 0). ±(0. d)} for some

d > 2. Then, the same arguments as before show that G^.i can be mapped

onto T(d) via the map a \—> a. b \—t b.

Finally observe that Go.o is the free two-generated two-step solvable group
F/F(1) and thus maps homomorphically onto T(d) for any d > 2.

The proof follows from Lemma 4.2. Li

Remark that the two-generated one-relator groups that are not covered by

our statements have their relator that can be reduced to one of the form buy

[a.b}w or ba~lbaw, where u: w(o.b) G F{2).

Let us finish the paper by the following observation.

In [GrLP] it was conjectured that if G is a group with m generators and

p relations, then

A*(G) > 2(in — p) — 1

For one-relator groups there is one case when Gromovfs conjecture holds

true.

4.4. Proposition. Let G (a{.a2 am : R{ax,a2 am) 1), with
m >2, be a one-relator group such that the relator R does not belong to the

commutator subgroup F' of the free group F of rank m freely generated by

ci\.ci2 am. Then X*(G) > 2m — 3.

Proof We may assume that G is torsion-free. Indeed if U.V G F
are such U Vk for some k e Z, then U G F' iff V G Ff If
the relator R is a proper power, say R Wk, then G maps onto
Gj (a\. a 2 am:W{a\.a2 am) 1), which is torsion-free, and
A*(G) > A*(G0.

Under our assumptions on R, HfG. Q) Zm~l and the second rational
homology group H2{G. Q) vanishes.

In [S] it is proven that if tf2(G.k) 0, where k is a field, then any subset
{-v/} £ G. whose image in HfG.k) is linearly independent, freely generates
a free group.

Let X {a'i x2 xu} be a finite system of generators for G. Then
A" — {-L xu}, where Ä7 denotes the image of Xj in H\(G. Q), generates
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H\(G, Q). We can find an independent subsystem [xi{,.. .xZw_, } in 7/i(G, Q)
such that its pre-image {x^,..., xim } freely generates a free group. Therefore

Xx(G) > 2(m- 1)- 1 2m-3.
"

It seems to us that for a one-relator group G of rank m>3 the inequality
A*(G) > 2m — 3 cannot be deduced directly from Magnus' Theorem as it is

claimed in [GrLP].
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